实际问题与二次函数(建系问题)
- 格式:ppt
- 大小:428.00 KB
- 文档页数:36
二次函数与实际问题(总11页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实际问题与二次函数一、利用函数求图形面积的最值问题一、 围成图形面积的最值1、 只围二边的矩形的面积最值问题例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。
(1) 设矩形的一边长为 米),面积为y (平方米),求y 关于x的函数关系式;(2) 当x 为何值时,所围成的苗圃面积最大最大面积是多少解:(1)设矩形的长为x (米),则宽为(18- x )(米),根据题意,得:x x x x y 18)18(2+-=-=;又∵180,0180<x<x >x >∴⎩⎨⎧-(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9)1(2182=-⨯-=-=a b x 时,81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。
2、 只围三边的矩形的面积最值例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。
问如何围,才能使养鸡场的面积最大 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值, 即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。
3、 围成正方形的面积最值例3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少(2)两个正方形的面积之和可能等于12cm 2吗 若能,求出两段铁丝的长度;若不能,请说明理由.(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm由题意得: 17)420()4(22=-+x x解得: 4,1621==x x 当161=x 时,20-x=4;当42=x 时,20-x=16答:这段铁丝剪成两段后的长度分别是16厘米、4厘米。
第9讲实际问题与二次函数一、知识梳理1.根据实际问题列二次函数解析式【例1】.(1)某工厂1月份的产值是200万元,平均每月产值的增长率为x(x>0),则该工厂第一季度的产值y 关于x的函数解析式为y=200x2+600x+600(x>0).【分析】首先分别表示出二月、三月的产值,然后再列出函数解析式即可.【解答】解:由题意得:y=200+200(1+x)+200(1+x)2=200x2+600x+600(x>0),故答案为:y=200x2+600x+600(x>0).(2)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【变式训练1】.(1)某种商品的价格为5元,准备进行两次降价,如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y与x之间的关系式为y=5(1﹣x)2.【分析】根据题意可得第一次降价后的价格为5(1﹣x),第二次降价后价格为5(1﹣x)(1﹣x),进而可得y与x之间的关系式.【解答】解:由题意得:y=5(1﹣x)2,故答案为:y=5(1﹣x)2.(2)学校准备将一块长20m,宽14m的矩形绿地扩建,如果长和宽都增加xm,设增加的面积是ym2.(1)求x与y之间的函数关系式.(2)若要使绿地面积增加72m2,长与宽都要增加多少米?【分析】(1)根据题意可以得到y与x之间的函数关系式;(2)将y=72代入(1)中的函数关系式,即可解答本题.【解答】解:(1)由题意可得,y=(20+x)(14+x)﹣20×14化简,得y=x2+34x,即x与y之间的函数关系式是:y=x2+34x;(2)将y=72代入y=x2+34x,得72=x2+34x,解得,x1=﹣36(舍去),x2=2,即若要使绿地面积增加72m2,长与宽都要增加2米.2.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.【例2】.(1)如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2.5m,那么水面宽度为()m.A.3B.6C.8D.9【分析】根据已知确定平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2.5代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,∴水面宽度为3﹣(﹣3)=6(m).故选:B.(2)如果矩形的周长是16,则该矩形面积的最大值为()A.8B.15C.16D.64【分析】首先根据矩形周长为16,设一条边长x,矩形面积为y,可表示出另一边长为8﹣x,再根据矩形面积=长×宽列出函数解析式并配方即可得结论.【解答】解:∵矩形周长为16,∴设一条边长x,矩形面积为y,则另一边长为8﹣x,∴y=(8﹣x)x=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,y有最大值是16.(3)若实数m、n满足m+n=2,则代数式2m2+mn+m﹣n的最小值是﹣6.【分析】设y=2m2+mn+m﹣n,由m+n=2得n=2﹣m,再由二次函数的性质即可解决问题.【解答】解:设y=2m2+mn+m﹣n,∵m+n=2,∴n=2﹣m,∴y=2m2+m(2﹣m)+m﹣(2﹣m)=m2+4m﹣2=(m+2)2﹣6,此为一个二次函数,开口向上,有最小值,当m=﹣2时,y有最小值为﹣6,故答案为:﹣6.(4)某百货商店服装在销售过程中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件,当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?【分析】根据题意可以得到利润与所将价格的关系式,根据二次函数的性质求最值即可.【解答】解:设每件童装降价x元,利润为y元,由题意,得:y=(40﹣x)(20+2x)=﹣2(x﹣15)2+1250,∴当x=15时,y取得最大值,此时y=1250元,答:每件童装降价15元时,每天销售这种童装的利润最高,最高利润是1250元.【变式训练2】.(1)一次足球训练中,小明从球门正前方将球射向球门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高是2.44m,若足球能射入球门,则小明与球门的距离可能是()A.10m B.8m C.6m D.5m【分析】建立直角坐标系,根据题意求出函数解析式,求y<2.44对应的x的值.【解答】解:如图,建立直角坐标系,设抛物线解析式为y=a(x﹣6)2+3,将(0,0)代入解析式得a=,∴抛物线解析式为y=(x﹣6)2+3,当x=10时,y=,<2.44,满足题意,故选:A.(2)如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.【分析】设P(x,x2﹣2x﹣3)根据矩形的周长公式得到C=﹣2(x﹣)2+.根据二次函数的性质来求最值即可.【解答】解:设P(x,x2﹣2x3),∵过点P分别向x轴和y轴作垂线,垂足分别为A、B,∴四边形OAPB为矩形,∴四边形OAPB周长=2P A+2OA=﹣2(x2﹣2x﹣3)+2x=﹣2x2+6x+6=﹣2(x2﹣3x)+6,=﹣2+.∴当x=时,四边形OAPB周长有最大值,最大值为.故答案为.(3)已知抛物线y=﹣x2﹣3x+3,点P(m,n)在抛物线上,则m+n的最大值是4.【分析】把点P(m,n)代入抛物线的解析式,得到n=﹣m2﹣3m+3,等式两边同加m得m+n=﹣m2﹣2m+3,得到m+n关于m的二次函数解析式,然后整理成顶点式形式,再根据二次函数的最值问题解答.【解答】解:∵点P(m,n)在抛物线y=﹣x2﹣3x+3上,∴n=﹣m2﹣3m+3,∴m+n=﹣m2﹣2m+3=﹣(m+1)2+4,∴当m=﹣1时,m+n有最大值4.故答案为:4.(4)某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套.现因临近春节,商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套.设保暖内衣售价为x元,每星期的销量为y件.(1)求商家降价前每星期的销售利润为多少元?(2)求y与x之间的函数关系式.(3)当每件售价定为多少时,每星期的销售利润最大?最大销售利润是多少?【分析】(1)商家降价前,每套的利润是30元,销售量是80套,根据利润=每套的利润×销售量,即可得出结论;(2)根据每降价5元,每星期可多卖出20套,当保暖内衣售价为x元时列出函数关系即可;(3)根据每星期的销售利润等于单套的利润乘以销售量列出函数的关系式,然后根据二次函数的性质求函数最值.【解答】解:(1)由题意得:(130﹣100)×80=2400 (元),∴商家降价前每星期的销售利润为2400元;(2)由题意可得:y=×20+80=﹣4x+600,∴y与x之间的函数关系式为y=﹣4x+600;(3)设每星期的销售利润为w元,则:w=(x﹣100)y=(x﹣100)(﹣4x+600)=﹣4(x﹣125)²+2500,∴当每件售价定为125 元时,每星期的销售利润最大,最大销售利润2500元.答:当每件售价定为125 元时,每星期的销售利润最大,最大销售利润2500元.二、课堂训练1.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y,则y关于x的函数关系式为()A.y=x(40﹣x)B.y=x(18﹣x)C.y=x(40﹣2x)D.y=2x(40﹣2x)【分析】先用含x的代数式表示苗圃园与墙平行的一边长,再根据面积=长×宽列出y关于x的函数关系式.【解答】解:设这个苗圃园垂直于墙的一边长为x米,则苗圃园与墙平行的一边长为(40﹣2x)米.依题意可得:y=x(40﹣2x).故选:C.2.如图1,是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作抛物线,在如图2所示的平面直角坐标系中,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点C)距球网的水平距离为2.5米,则排球运动路线的函数表达式为()A.y=﹣x2﹣x+B.y=﹣x2+x+C.y=x2﹣x+D.y=x2+x+【分析】方法一:根据题意结合函数的图象,得出图中A、B、C的坐标,再利用待定系数法求出函数关系式即可;方法二:根据四个选项中关系式系数的特点,结合抛物线位置,确定a、b的符号和c的值,就可以直接得出答案.【解答】解:方法一:0.26+2.24=2.5=(米)根据题意和所建立的坐标系可知,A(﹣5,),B(0,),C(,0),设排球运动路线的函数关系式为y=ax2+bx+c,将A、B、C的坐标代入得:,解得,a=﹣,b=﹣,c=,∴排球运动路线的函数关系式为y=﹣x2﹣x+,故选:A.方法二:排球运动路线的函数关系式为y=ax2+bx+c,由图象可知,a<0,a、b同号,即b<0,c=,故选:A.3.对于向上抛出的物体,在没有空气阻力的条件下,满足这样的关系式:h=vt﹣gt2,其中h是上升高度,v是初始速度,g为重力加速度(g≈10m/s2),t为抛出后的时间.若v=20m/s,则下列说法正确的是()A.当h=20m时,对应两个不同的时刻点B.当h=25 m时,对应一个时刻点C.当h=15m时,对应两个不同的时刻点D.h取任意值,均对应两个不同的时刻点【分析】把v=20m/s,g≈10m/s2代入h=vt﹣gt2,将其写成顶点式,根据二次函数的性质可得函数的最大值,则问题得解.【解答】解:∵h=vt﹣gt2,v=20m/s,g≈10m/s2,∴h=20t﹣5t2=﹣5(t2﹣4t)=﹣5(t﹣2)2+20,∴当t=2s时,h有最大值为20m,即物体能达到的最大高度为20m,且h=20m时,只有一个时刻,∴A、B、D均不正确.∵h=20t﹣5t2为开口向下的二次函数,h有最大值为20m,∴当h=15m时,对应两个不同的时刻点.∴C正确.故选:C.4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外【分析】根据题目中的二次函数解析式可以判断各个小题中的说法是否正确,从而可以解答本题.【解答】解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1(舍去),故D选项正确,故选:C.5.如图,已知二次函数的图象(0≤x≤1+2).关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值﹣2,无最大值B.有最小值﹣2,有最大值﹣1.5C.有最小值﹣2,有最大值2D.有最小值﹣1.5,有最大值2【分析】根据图象及x的取值范围,求出最大值和最小值即可.【解答】解:根据图象及x的取值范围,当x=1时,y取最小值为﹣2,当x=1+2,y取最大值为2,∴该函数有最小值﹣2,有最大值2,故选:C.6.一台机器原价为60万元,如果每年价格的折旧率为x,两年后这台机器的价格为y万元,则y关于x的函数关系式为y=60(1﹣x)2.【分析】原价为60万元,一年后的价格是60×(1﹣x),二年后的价格是为:60×(1﹣x)×(1﹣x)=60(1﹣x)2,可得结论.【解答】解:由题意知:两年后的价格是为:y=60×(1﹣x)×(1﹣x)=60(1﹣x)2,则函数解析式是:y=60(1﹣x)2,故答案为:y=60(1﹣x)2.7.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=﹣2x2+4x+1,则喷出水珠的最大高度是3 m.【分析】先把函数关系式配方,求出函数的最大值,即可得出水珠达到的最大高度.【解答】解:∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3,∴当x=1时,y有最大值为3,∴喷出水珠的最大高度是3m,故答案为:3.8.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为39元.【分析】设销售单价为x元时,销售利润最大,单价利润为x﹣20元,销售数量为280﹣(x﹣30)•10,根据公式利润=(售价﹣进价)×销售数量.通过配方可求利润最大值.【解答】解:设销售单价为x元时,销售利润最大,单价利润为(x﹣20)元,销售数量为280﹣(x﹣30)•10,∴利润总额为y=(x﹣20)•[280﹣(x﹣30)•10],化简得:y=﹣10x2+780x﹣11600,配方得:y=﹣10(x﹣39)2+3160,当单价为39元时,有最大利润3610元,故答案为:39.9.汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=﹣3t2+8t,汽车从刹车到停下来所用时间是秒.【分析】当汽车停下来时,s最大,故将s=﹣3t2+8t写成顶点式,则顶点横坐标值即为所求.【解答】解:∵s=﹣3t2+8t,=﹣3(t﹣)2+,∴当t=秒时,s取得最大值,即汽车停下来.故答案为:.10.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测,某校统计了学生早晨到校情况,发现从7:00开始,在校门口的学生人数y(单位:人)随时间x(单位:分钟)的变化情况的图象是二次函数图象的一部分,如图所示.(1)求y与x之间的函数解析式;(2)求校门口排队等待体温检测的学生人数最多时有多少人;(3)从7:00开始,需要多少分钟校门口的学生才能全部进校?【分析】(1)根据图象用待定系数法求函数解析式即可;(2)根据函数的性质求最值;(3)令y=0,解方程﹣x2+16x+34=0即可.【解答】解:(1)设y与x之间的函数解析式为y=ax2+bx+c,根据题意得:,解得:,∴y=﹣x2+16x+34;(2)由(1)知,﹣<0,∴y有最大值,y max===162,∴校门口排队等待体温检测的学生人数最多时有162人;(3)令y=0,得:﹣x2+16x+34=0,解得:x1=﹣2(舍),x2=34,∴从7:00开始,需要34分钟校门口的学生才能全部进校.11.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量×(售价﹣成本)=4000”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.【解答】解:(1)∵依题意,得:y=50+(100﹣x)××10=﹣5x+550,∴y与x的函数关系式为y=﹣5x+550;(2)∵依题意得:y(x﹣50)=4000,即(﹣5x+550)(x﹣50)=4000,解得:x1=70,x2=90,∵70<90,∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w,依题意得w=y(x﹣50)=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵﹣5<0,此图象开口向下,∴当x=80时,w有最大值为4500元,∴为了每月所获利润最大,该商品销售单价应定为80元.三、课后巩固1.设等边三角形的边长为x(x>0),面积为y,则y与x的函数关系式是()A.y=x2B.y=C.y=D.y=【分析】作出三角形的高,利用直角三角形的性质及勾股定理可得高,利用三角形的面积=底×高,把相关数值代入即可求解.【解答】解:作出BC边上的高AD.∵△ABC是等边三角形,边长为x,∴CD=x,∴高为h=x,∴y=x×h=x2.故选:D.2.如图1是一只葡萄酒杯,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,若AB=4,CD=3,以顶点C为原点建立如图2所示的平面直角坐标系,则抛物线的表达式为()A.B.C.D.【分析】直接根据题意得出B点坐标,进而假设出抛物线解析式,进而得出答案.【解答】解:∵AB=4,CD=3,∴B(2,3),设抛物线解析式为:y=ax2,则3=4x,解得:a=,故抛物线的表达式为:y=x2.故选:A.3.中国贵州省内的射电望远镜(F AST)是目前世界上口径最大,精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点O到口径面AB的距离是100米,若按如图(2)建立平面直角坐标系,则抛物线的解析式是()A.y=x2﹣100B.y=﹣x2﹣100C.y=x2D.y=﹣x2【分析】直接利用抛物线解析式结合已知点坐标得出答案.【解答】解:由题意可得:A(﹣250,0),O(0,﹣100),设抛物线解析式为:y=ax2﹣100,则0=62500a﹣100,解得:a=,故抛物线解析式为:y=x2﹣100.故选:A.4.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是()①图象具有对称性,对称轴是直线x=1;②当﹣1<x<1或x>3时,函数值随x值的增大而增大;③当x=﹣1或x=3时,函数的最小值是0;④当x=1时,函数的最大值是4.A.4B.3C.2D.1【分析】观察图象,分别计算出对称轴、函数图象与x轴的交点坐标,结合图象逐个选项分析判断即可.【解答】解:观察图象可知,图象具有对称性,对称轴是直线x=﹣=1,故①正确;令|x2﹣2x﹣3|=0可得x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x1=﹣1,x2=3,∴(﹣1,0)和(3,0)是函数图象与x轴的交点坐标,又对称轴是直线x=1,∴当﹣1<x<1或x>3时,函数值y随x值的增大而增大,故②正确;由图象可知(﹣1,0)和(3,0)是函数图象的最低点,则当x=﹣1或x=3时,函数最小值是0,故③正确;由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故④错误.综上,只有④错误.故选:B.5.如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线.图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米.当喷射出的水流距离喷水头20米时,达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O处,草坡上距离O的水平距离为30米处有一棵高度约为2.3米的石榴树AB,因为刚刚被喷洒了农药,近期不能被喷灌.下列说法正确的是()A.水流运行轨迹满足函数y=﹣x2﹣x+1B.水流喷射的最远水平距离是40米C.喷射出的水流与坡面OA之间的最大铅直高度是9.1米D.若将喷灌架向后移动7米,可以避开对这棵石榴树的喷灌【分析】设抛物线的解析式为y=a(x﹣20)2+c,用待定系数法求得解析式,则可判断A;当x=40时,y=0.1×40=4,y=4,解方程,即可判断B;计算当x=30时的y值,则可判断选项C和D.【解答】解:由题意可设抛物线的解析式为y=a(x﹣20)2+c,将(0,1),(20,11)分别代入,得:,解得:,∴y=﹣(x﹣20)2+11=﹣x2+x+1,故A错误;∵坡度为1:10,∴直线OA的解析式为y=0.1x,当x=40时,y=0.1×40=4,令y=4,得﹣x2+x+1=4,∴x2﹣40x+120=0,解得x=20±2≠40,∴B错误;设喷射出的水流与坡面OA之间的铅直高度为h米,则h=﹣x2+x+1﹣0.1x=﹣x2+x+1,∴对称轴为x=﹣=18,∴h max=9.1,故C正确;将喷灌架向后移动7米,则图2中x=30时抛物线上的点的纵坐标值等于x=37时的函数值,当x=37时,y=﹣×372+37+1=3.775,在图2中,当x=30时,点B的纵坐标为:0.1×30+2.3=5.3>3.775,故D错误.故选:C.6.如图,某抛物线型桥拱的最大高度为16米,跨度为40米,如图所示建立平面直角坐标系,则该抛物线对应的函数关系式为y=﹣x2+x.【分析】由图象可知抛物线顶点坐标(20,16),经过(0,0),(40,0).利用顶点式即可解决问题.【解答】解:由图象可知抛物线顶点坐标(20,16),经过(0,0),(40,0).设抛物线的解析式为y=a(x﹣20)2+16,把(0,0)代入得到a=﹣,∴抛物线的解析式为y=﹣(x﹣20)2+16,即y=﹣x2+x,故答案为:y=﹣x2+x.7.一个球从地面上竖直向上弹起的过程中,距离地面高度h(米)与经过的时间t(秒)满足以下函数关系:h=﹣5t2+15t,则该球从弹起回到地面需要经过3秒,距离地面的最大高度为米.【分析】当该球从弹起回到地面时h=0,代入求出时间t即可;对函数关系式进行配方找到最大值即距离地面的最大高度.【解答】解:当该球从弹起回到地面时h=0,∴0=﹣5t2+15t,解得:t1=0或t2=3,t=0时小球还未离开地面,∴t=3时小球从弹起回到地面;∵h=﹣5t2+15t=﹣5(t﹣)2+,﹣5<0,∴当t=时,h取得最大值;故答案为:3,.8.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2,飞机着陆至停下来共滑行750m.【分析】将函数解析式配方成顶点式求出y的最大值即可得.【解答】解:∵y=60t﹣t2=﹣(t﹣25)2+750,∴当t=25时,y取得最大值750,即飞机着陆后滑行750米才能停下来,故答案为:750m.9.二次函数y=x2﹣2x+m的最小值为2,则m的值为3.【分析】先把y=x2﹣2x+m配成顶点式得到y=(x﹣1)2+m﹣1,根据二次函数的性质得到当x=1时,y有最小值为m﹣1,根据题意得m﹣1=2,然后解方程即可.【解答】解:y=x2﹣2x+m=(x﹣1)2+m﹣1,∵a=1>0,∴当x=1时,y有最小值为m﹣1,∴m﹣1=2,∴m=3.故答案为:3.10.为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.【分析】(1)分为8≤x≤32和32<x≤40求解析式;(2)根据“利润=(售价﹣成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.【解答】解:(1)当8≤x≤32时,设y=kx+b(k≠0),则,解得:,∴当8≤x≤32时,y=﹣3x+216,当32<x≤40时,y=120,∴y=.(2)设利润为W,则:当8≤x≤32时,W=(x﹣8)y=(x﹣8)(﹣3x+216)=﹣3(x﹣40)2+3072,∵开口向下,对称轴为直线x=40,∴当8≤x≤32时,W随x的增大而增大,∴x=32时,W最大=2880,当32<x≤40时,W=(x﹣8)y=120(x﹣8)=120x﹣960,∵W随x的增大而增大,∴x=40时,W最大=3840,∵3840>2880,∴最大利润为3840元.11.为鼓励更多的农民工返乡创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给农民工自主销售,成本价与出厂价之间的差价由政府承担.王明按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系满足一次函数:y=﹣5x+400.(1)王明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设王明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少?(3)物价部门规定,这种节能灯的销售单价不得高于35元,如果王明想要每月获得的利润不低于4125元,那么政府为他承担的总差价最少为多少元?【分析】(1)求出销售量,根据政府每件补贴2元,即可解决问题;(2)构建二次函数,利用二次函数的性质解决问题即可;(3)根据条件确定出自变量的取值范围,求出y的最小值即可解决问题.【解答】解:(1)当x=20时,y=﹣5x+400=﹣5×20+400=300,300×(12﹣10)=300×2=600(元),答:政府这个月为他承担的总差价为600元;(2)依题意得,w=(x﹣10)(﹣5x+400)=﹣5x2+450x﹣4000=﹣5(x﹣45)2+6125,∵a=﹣5<0,∴当x=45时,w有最大值6125元.答:当销售单价定为45元时,每月可获得最大利润6125元;(3)由题意得:﹣5x2+450x﹣4000=4125,解得:x1=25,x2=65,∵a=﹣5<0,抛物线开口向下,当25≤x≤65时,4125≤w≤6125,又∵x≤35,∴当25≤x≤35时,w≥4125,∴当x=35时,政府每个月为他承担的总差价最小,y=﹣5×35+400=225,225×2=450(元),∴政府每个月为他承担的总差价最小值450元,答:销售单价定为35元时,政府每个月为他承担的总差价最少为450元.。
二次函数与实际问题一、引言二次函数是高中数学中非常重要的一部分,它在实际生活中有着广泛的应用。
本文旨在介绍二次函数的基本概念、性质以及如何应用到实际问题中。
二、二次函数的定义与性质1. 二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a,b,c为常数,x,y为自变量和因变量。
2. 二次函数的图像特征(1)对称轴:x=-b/2a(2)顶点:(-b/2a, c-b²/4a)(3)开口方向:当a>0时,开口向上;当a<0时,开口向下。
(4)零点:即方程ax²+bx+c=0的解。
当b²-4ac>0时,有两个不相等实根;当b²-4ac=0时,有一个重根;当b²-4ac<0时,无实根。
3. 二次函数与一次函数、常数函数的比较(1)一次函数y=kx+b是一个斜率为k、截距为b的直线。
(2)常数函数y=c是一个水平直线,其值始终为c。
(3)与一次函数相比,二次函数具有更加复杂的图像特征;与常数函数相比,二次函数具有更加丰富的变化。
三、二次函数的应用1. 最值问题对于二次函数y=ax²+bx+c,当a>0时,其最小值为c-b²/4a,即顶点的纵坐标;当a<0时,其最大值为c-b²/4a。
2. 零点问题对于二次函数y=ax²+bx+c,求其零点即为求解方程ax²+bx+c=0的解。
可以使用求根公式或配方法等方式来求解。
3. 优化问题在实际生活中,很多问题都可以转化为求某个目标函数的最大值或最小值。
例如,在制作一个长方形纸箱时,如何使得纸箱的容积最大?假设纸箱长为x,宽为y,高为h,则容积V=xyh。
由于长和宽已知,因此我们只需要确定h的取值范围,并找出使得V最大的h即可。
由于纸箱需要稳定,在实际中我们还需要考虑其他因素(如纸板厚度等),从而确定出一个合适的取值范围。
实际问题与二次函数引言在数学中,二次函数是一种常见的函数类型。
它的图像呈现出抛物线的形状,具有许多有趣的性质和应用。
在现实生活中,我们常常遇到一些实际问题,其中涉及到二次函数的概念和计算。
本文将从多个角度深入探讨实际问题与二次函数之间的关系。
二次函数的定义二次函数的一般形式可以写作f(x)=ax2+bx+c,其中a、b和c是实数,并且a 不等于零。
二次函数的图像通常是一个向上或向下开口的抛物线。
其中,二次项a 决定了抛物线的开口方向和形状,一次项b则影响了抛物线的位置,常数项c则表示了抛物线的纵坐标偏移量。
实际问题中的二次函数在现实生活中,我们可以用二次函数来描述许多实际问题。
以下是一些常见的实际问题,其中涉及到了二次函数的概念和计算。
问题1:自由落体假设一个物体从高空自由落体,忽略空气阻力。
我们可以用二次函数来描述其下落的高度与时间的关系。
假设物体从高度ℎ0开始下落,加速度为g,则其高度ℎ与时间t的关系可以表示为ℎ(t)=ℎ0−12gt2。
这是一个典型的二次函数,其中a=−12g,b=0,c=ℎ0。
通过解这个二次方程,我们可以计算出物体在任意时间下落的高度。
问题2:抛体运动抛体运动是另一个常见的实际问题,其中涉及到了二次函数。
假设一个物体以初速度v0和发射角度θ被抛出,忽略空气阻力。
我们可以用二次函数来描述其水平方向上的位移x与时间t的关系。
假设物体的水平位移与时间的关系可以表示为x(t)=v0cosθ⋅t,其中v0cosθ是物体在水平方向上的速度。
这是一个一次函数,其中a= 0,b=v0cosθ,c=0。
问题3:成本与利润在经济学中,成本和利润也可以用二次函数来描述。
假设一个公司的总成本是由固定成本和可变成本构成的,其中可变成本与产量成正比。
我们可以用二次函数来描述总成本C与产量x的关系。
一般来说,总成本可以表示为C(x)=ax2+bx+c,其中a、b和c是常数。
类似地,我们可以用二次函数来描述利润P与产量x的关系。
二次函数与实际问题典型例题【实用版】目录1.二次函数与实际问题的关系2.典型例题解析3.总结与建议正文二次函数与实际问题的关系二次函数是数学中的一个重要概念,它在实际问题中有着广泛的应用。
通过对二次函数的学习和理解,我们可以更好地解决实际问题,提高自己的数学素养。
典型例题解析例题 1:某商场在推出优惠活动,满 200 元打 8 折,满 300 元打7 折。
现在,小明想买一件价格为 x 元的商品,请问小明应该如何选择,才能使自己所花费的钱最少?解:将小明要购买的商品价格设为 x 元,那么他需要支付的金额可以表示为 f(x)=x+0.2(x-200)+0.3(x-300),其中 x>300。
通过求导,可以得到 f(x) 的最小值出现在 x=400,此时小明需要支付的金额为f(400)=360 元。
所以,小明应该选择购买价格为 400 元的商品,才能使自己所花费的钱最少。
例题 2:一个农民有一块形状为抛物线的土地,他想在土地上种植庄稼,使得种植的庄稼面积最大。
已知土地的顶点为 (1,2),抛物线方程为y=a(x-1)^2+2。
请问农民应该如何种植庄稼?解:由于 a<0,所以抛物线开口向下。
根据二次函数的性质,顶点是函数的最大值点。
所以,农民应该在土地的顶点处种植庄稼,即 x=1,此时庄稼的面积最大,为 2。
总结与建议通过对二次函数与实际问题的典型例题进行解析,我们可以发现数学知识在解决实际问题中的重要性。
为了更好地应对类似的问题,我们建议:1.加强对二次函数概念的学习,了解其性质和应用;2.多做练习题,提高自己对二次函数问题的解题能力;3.注重数学知识的实际应用,学会将理论知识运用到实际问题中。
利用二次函数解决实际问题二次函数是数学中重要的一类函数,它具有许多应用于实际问题的能力。
通过解决二次函数相关的实际问题,我们可以更好地理解和应用这一数学工具。
本文将通过几个实际问题的案例,详细介绍如何利用二次函数解决这些问题。
案例一:抛物线的高度与水平距离的关系假设一个小球以一定的初速度从地面上抛出,并以二次函数描述它的高度与水平距离的关系。
首先,我们可以建立抛物线方程:h = ax² + bx + c其中,h为小球的高度,x为水平距离,a、b、c为常数。
当小球达到最高点时,它的速度为零,根据这一条件,可以求得抛物线的顶点坐标为(-b/2a,c-b²/4a)。
通过这一顶点坐标和给定的初速度,可以解得a、b、c的具体值。
有了这些参数,我们就能方便地计算小球在任意水平距离上的高度。
案例二:曲线拟合与数据预测在实际问题中,我们常常需要通过一些已知数据点来拟合出一个曲线,并利用这个曲线对未知数据进行预测。
二次函数是一种常用的曲线模型,因为它能很好地适应一些非线性的数据分布。
具体做法是,通过最小二乘法来求得二次函数的参数,使得拟合曲线与已知数据点之间的误差最小化。
然后,利用这个拟合曲线,我们就可以对未知数据进行预测。
这一方法在经济预测、气象预报等领域有着广泛的应用。
案例三:最优化问题二次函数也可以应用于最优化问题的求解。
以抛物线形式的二次函数为例,假设我们需要在一条直线上选择一个点,使得它到抛物线的距离最小。
这可以被看作是一个最优化问题,即求解抛物线与直线的最短距离。
我们可以通过求解二次函数和直线的交点来解决这个问题。
具体的求解过程利用了二次函数的性质和一些微积分的知识。
总结:通过上述几个案例,可以看出二次函数在实际问题中的广泛应用。
它可以用于描述抛物线的运动、拟合非线性数据以及求解最优化问题等。
通过解决这些实际问题,我们不仅巩固了对二次函数的理解,也提升了数学在实际应用中的能力。
因此,在学习和应用二次函数时,我们应该注重理论知识和实际问题的结合,这样才能更好地掌握和利用二次函数。
利用二次函数解决实际问题类型一:利用二次函数解决面积最值(面积优化问题)1、如图,有长为24 m 的篱笆,一面利用墙(墙的最大可用长度a 为10 m),围成中间隔有一道篱笆的长方形花圃. (1)如果要围成面积为45 m 2的花圃,AB 的长是多少米?(2)能围成面积比45 m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.2、如图,已知正方形ABCD 边长为8,E ,F ,P 分别是AB ,CD ,AD 上的点,(不与正方形顶点重合),且PE ⊥PF ,PE =PF ,问当AE 为多长时,五边形EBCFP 面积最小?最小面积是多少?3、如图,在ABC ∆中,90B∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过几秒,四边形APQC 的面积最小,最小面积为多少?☆类型二、利用二次函数解决利润最值问题(利润优化问题)1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?利润最多为多少元?2、某种粮大户去年种植优质水稻360亩,今年计划增加承租x (100≤x ≤150)亩。
预计,原种植的360亩水稻今年每亩可收益440元,新增地今年每亩的收益为(440-2x )元,试问:该种粮大户今年要增加承租多少亩水稻,才能使收益最大?最大收益是多少?3.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+. (1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(总成本=进价×销售量)4、某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价每件售价(万元)每件成本每件成本(万元)每年其他每年其他费用(万元)每年最大产每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5.甲6a20200乙201040+0.05x2806a20200乙201040+0.05x280其中a为常数,且3≤a≤5.a20200乙201040+0.05x280其中a为常数,且3≤a≤5.20200乙201040+0.05x280其中a为常数,且3≤a≤5.200乙201040+0.05x280其中a为常数,且3≤a≤5.乙201040+0.05x280其中a为常数,且3≤a≤5. 201040+0.05x2801040+0.05x280其中a为常数,且3≤a≤5.40+0.05x280其中a为常数,且3≤a≤5.80其中a为常数,且3≤a≤5.其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1,y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.☆类型三、利用二次函数优化构建坐标系解决实际问题(车船通行问题)1、一座抛物线拱桥梁在一条河流上,这座拱桥下的水面离桥孔顶部3m时,水面宽6m,当水位上升1m时,水面宽为多少?(精确到0.1m)。
二次函数的实际问题二次函数是数学中的一个重要概念,在实际问题中有着广泛的应用。
通过二次函数可以描述并解决各种实际问题,例如物体的运动轨迹、金融领域的利润分析等。
本文将通过几个不同的实际问题,来说明二次函数在各个领域中的应用。
问题一:投掷运动考虑一个常见的物理问题,即投掷运动。
假设有一个物体从地面上以初始速度v₀竖直向上抛出,受到重力的作用下落。
我们希望能够描述物体的运动轨迹,并找到物体在空中的最高点和落地点。
首先,我们可以建立一个二次函数来表示物体的高度y与时间t之间的关系。
假设物体的初始高度为h₀,则物体的高度可以表示为:y(t) = -gt² + v₀t + h₀其中g表示重力加速度。
通过这个二次函数,我们可以计算出物体的运动轨迹,以及物体在空中的最高点和落地点的时间和高度。
问题二:利润分析在金融领域中,我们经常需要对企业的利润进行分析和预测。
假设一个企业的销售额与广告投入之间存在某种关系,我们可以建立一个二次函数来描述销售额与广告投入之间的关系。
假设销售额为P,广告投入为x,则二次函数可以表示为:P(x) = ax² + bx + c其中a、b、c为常数。
通过这个二次函数,我们可以分析销售额与广告投入之间的关系,并找到使得利润最大化的最优广告投入额。
问题三:物质衰变在化学领域中,物质的衰变速率也可以用二次函数来描述。
假设一个物质的衰变速率与时间的关系可以用二次函数表示:R(t) = -kt² + bt + c其中k、b、c为常数。
通过这个二次函数,我们可以分析物质的衰变速率与时间之间的关系,并预测物质的衰变情况。
总结:通过以上三个实际问题的例子,我们可以看到二次函数在不同领域中的应用之广泛。
二次函数可以方便地描述并解决各种实际问题,例如物体的运动轨迹、企业的利润分析以及物质的衰变情况等。
掌握二次函数的概念和应用,对我们理解和解决实际问题具有重要意义。
本文通过具体的实际问题,说明了二次函数的应用。
二次函数学习方法与建议在数学学习中,二次函数是一个非常重要的概念。
对于学生来说,理解和掌握二次函数是提高数学成绩的关键之一。
本文将介绍一些学习二次函数的方法与建议,帮助学生更好地掌握这一知识点。
一、重要概念的理解学习二次函数之前,首先要确保对相关概念的理解。
二次函数包括顶点坐标、对称轴、开口方向等重要概念。
学生应该掌握这些概念的定义,并能够在实际问题中应用。
一个有效的方法是通过练习题加深对这些概念的理解。
二、图像的分析对于二次函数的学习,理解和分析其图像是至关重要的。
学生应该熟悉二次函数图像的基本形状,并能够根据函数的不同形式进行分析。
例如,当二次函数的系数不同时,图像的开口方向、顶点位置和图像的大小会有所不同。
通过观察和分析二次函数图像,学生可以更好地理解其特点和性质。
三、解二次方程的方法解二次方程是学习二次函数过程中的重要一步。
学生应该掌握解二次方程的常用方法,如配方法、公式法等。
对于不同形式的二次方程,选择合适的解法是关键。
通过大量的练习,学生可以熟练掌握解二次方程的技巧,提高解题的准确性和效率。
四、运用实际问题将二次函数应用于实际问题是学习的一种有效方式。
通过解决与二次函数相关的实际问题,学生可以更好地理解其在实际中的应用。
例如,通过求解最值问题、抛物线运动的距离、高度等问题,学生可以将二次函数与现实生活联系起来,加深理解。
五、多角度思考问题学习二次函数时,学生需要具备多视角思考问题的能力。
他们应该学会从不同的角度来解释二次函数的性质和变化规律。
例如,通过求导数、导函数的分析,可以更深入地理解二次函数的变化趋势。
此外,将二次函数与其他数学概念、图像和实际问题相结合,可以拓宽学生的思维。
六、合理利用学习资源在学习二次函数的过程中,学生应该善于利用各种学习资源。
除了教科书和练习册,还可以通过互联网寻找相关的学习资料、视频教程等。
同时,可以参加数学兴趣班或相关的学习活动,与其他对数学感兴趣的同学一起讨论和交流。
二次函数与实际问题典型例题摘要:1.二次函数基础知识回顾2.二次函数在实际问题中的应用3.典型例题解析4.结论与建议正文:一、二次函数基础知识回顾二次函数是数学中的一种重要函数类型,其一般形式为y = ax^2 + bx + c(其中a、b、c为常数,且a ≠ 0)。
在初中和高中数学课程中,二次函数占有重要地位,与实际问题的结合尤为紧密。
二、二次函数在实际问题中的应用二次函数在实际问题中的应用广泛,如几何图形、物理运动、经济学等。
以房间定价问题为例,设房间定价为x元,宾馆利润为y,则y = (x - 20)[50 - (x - 180)/10](1/10)(x - 20)(680 - x)。
当(x - 20)(680 - x) = 660时,即x = 350时,宾馆利润最大。
三、典型例题解析1.面积问题:已知长为x,宽为(40-2x)/2,求面积最大值。
根据抛物线面积表达式,开口向下,当x = 10时,有最大面积为100cm。
2.最值问题:已知二次函数y = 5000(1/x)^2,求销售量最大值。
根据题意,第二年的销售量比第一年多销售x,第三年比第二年多销售x,于是得出y= 5000(1/x)^2。
通过求导可知,当x = 1时,销售量最大。
四、结论与建议二次函数在实际问题中的应用广泛,掌握其基本知识和解题方法至关重要。
在学习过程中,要关注开口向上向下、最值问题等关键点,同时熟练掌握多种解题方法。
在实际应用中,要善于将二次函数模型与实际问题相结合,灵活运用知识解决实际问题。
以上就是关于二次函数与实际问题的典型例题解析,希望对大家的学习有所帮助。
二次函数与实际问题引言二次函数是高中数学中的一个重要内容,也是实际问题中常常遇到的数学模型。
二次函数的图像呈现出一种开口向上或者开口向下的曲线形状,能够很好地描述实际问题中的曲线关系。
本文将深入探讨二次函数及其在实际问题中的应用。
二次函数的定义与性质二次函数的定义:设函数f(x) = ax^2 + bx + c(a≠0),其中a、b、c是常数,a称为二次函数的二次系数。
二次函数的图像当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
二次函数的顶点二次函数的顶点坐标为(h,k),其中h = -b/(2a),k = f(h)。
二次函数的对称轴二次函数的对称轴方程为x = h(即x = -b/(2a))。
二次函数的零点二次函数的零点即为方程f(x) = 0的解,可以通过求根公式或配方法求得。
二次函数在实际问题中的应用自由落体运动自由落体运动是一个常见的物理现象,也可以用二次函数来进行模拟和描述。
假设一个物体从高处自由落下,忽略空气阻力,它的下落距离与时间的关系可以用二次函数来表示。
抛物线轨迹抛物线轨迹是指一个物体在一个力的作用下进行受控抛射运动时所遵循的路径。
如投射运动中的抛体、水流喷泉等都可以用二次函数进行建模和描述。
开口向上的池塘有一片长方形的池塘,周围修建了一圈围墙。
围墙的材料价格是每米10元。
假设池塘的长为x米,宽为y米。
已知池塘的面积为100平方米。
要使得围墙的总价值最小,需要求解池塘的长和宽。
能量与时间的关系生活中很多实际问题涉及到能量的转化和传递,而能量与时间的关系常常可以用二次函数进行建模。
例如,弹簧振子的机械能与振动时间的关系、充电电池的电量衰减与使用时间的关系等等。
结论二次函数作为一种重要的数学模型,在实际问题中有着广泛的应用。
通过对二次函数的定义与性质的学习,我们可以更好地理解和解决实际问题,同时也提高了我们的数学建模能力。
通过本文对二次函数与实际问题的探讨,我们更深入地认识了二次函数的应用价值和意义。