函数的单调性与导数(导学案)
- 格式:doc
- 大小:213.00 KB
- 文档页数:4
导数的应用(一)【2013年高考会这样考】1.利用导数研究函数的单调性,会求函数的单调区间.2.由函数单调性和导数的关系,求参数的范围.【复习指导】本讲复习时,应理顺导数与函数的关系,理解导数的意义,体会导数在解决函数有关问题时的工具性作用,重点解决利用导数来研究函数的单调性及求函数的单调区间.基础梳理一、函数的单调性与导数1.函数f(x)在某个区间(a,b)内的单调性与其导数的正负有如下关系(1)若,则f(x)在这个区间内单调递增;(2)若,则f(x)在这个区间内单调递减;(3)若,则f(x)在这个区间内是常数.2.利用导数判断函数单调性的一般步骤(1)求;(2)在定义域内解不等式;(3)根据结果确定f(x)的单调区间.二、函数的极值与导数1.函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧,右侧,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧,右侧,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.双基自测1.若函数f(x)=x3+x a2+3x-9在x=-3时取得极值,则a等于 ( )A.2 B.3C.4 D.52.函数f(x)=1+x-sin x在(0,2π)上是( )A.增函数B.减函数C.在(0,π)上增,在(π,2π)上减D.在(0,π)上减,在(π,2π)上增3.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点 ( ) A.1个B.2个C.3个D.4个4函数f(x)=x3-15x2-33x+6的单调减区间为________.5.已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是________.总结:1.f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件.2.可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.典例分析考点一函数的单调性与导数[例1] (2011·天津高考改编)已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.(1)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)当t>0时,求f(x)的单调区间.[巧练模拟]——————(课堂突破保分题,分分必保!)1.(2012·舟山模拟)已知函数f(x)=x2+3x-2ln x,则函数f(x)的单调减区间为________.反思:求可导函数单调区间的一般步骤和方法考点二函数的极值与导数[例2] (2011·安徽高考)设f(x)=e x1+ax2,其中a为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[巧练模拟]———————(课堂突破保分题,分分必保!)2.(2012·青田模拟)若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是 ( )A .(0,1)B .(-∞,1)C .(0,+∞) D.⎝⎛⎭⎪⎫0,12反思: 求函数极值的步骤:考点三 函数的单调性与极值的综合问题[例3](理) (2012·兰州调研)已知实数a>0,函数f(x)=ax 22)-(x (x ∈R)有极大值32. (1)求函数f(x)的单调区间; (2)求实数a 的值.[巧练模拟]—————(课堂突破保分题,分分必保!)3.(2012·台州调研)f(x)的导函数f ′(x)的图象如图所 示,则函数f(x)的图象最有可能是图中的( )4.(2012·海淀模拟)函数f (x )=x 2+ax +1(a ∈R).(1)若f (x )在点(1,f (1))处的切线斜率为12,求实数a 的值;(2)若f (x )在x =1处取得极值,求函数f (x )的单调区间反思:1.求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能. 2.如果一个函数在给定定义域上的单调区间不止一个,这些区间之间一般不能用并集符号“∪”连接,只能用“,”或“和”字隔开.一、选择题1.已知f (x )的定义域为R ,f (x )的导函数f ′(x )的图象如图所示,则( )A .f (x )在x =1处取得极小值B .f (x )在x =1处取得极大值C .f (x )是R 上的增函数D .f (x )是(-∞,1)上的减函数,(1,+∞)上的增函数 2.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1) D.⎝⎛⎭⎫-∞,-123.函数f (x )=x 3+3x 2+4x -a 的极值点的个数是( ) A .2 B .1 C .0 D .由a 确定4.已知f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是( ) A .0 B .1 C .2 D .35.若f (x )=ln xx,e<a <b ,则( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1二、填空题6.设函数f (x )=x (e x+1)+12x 2,则函数f (x )的单调增区间为________.7.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是________.三、解答题8.已知函数f (x )=13x 3+ax 2-bx (a ,b ∈R).若y =f (x )图象上的点⎝⎛⎭⎫1,-113处的切线斜率为-4,求y =f (x )的极大值.9.已知f (x )=e x -ax -1. (1)求f (x )的单调增区间;(2)若f (x )在定义域R 内单调递增,求a 的取值范围. 解:(1)∵f (x )=e x -ax -1,∴f ′(x )=e x -a . 令f ′(x )>0,得e x >a ,当a ≤0时,有f ′(x )>0在R 上恒成立; 当a >0时,有x ≥ln a .综上,当a ≤0时,f (x )的单调增区间为(-∞,+∞); 当a >0时,f (x )的单调增区间为[ln a ,+∞). (2)由(1)知f ′(x )=e x -a .∵f (x )在R 上单调递增,∴f ′(x )=e x -a ≥0恒成立, 即a ≤e x ,x ∈R 恒成立.∵x ∈R 时,e x ∈(0,+∞),∴a ≤0. 即a 的取值范围为(-∞,0].10.已知函数f (x )=x 3-3x 2+ax +b 在x =-1处的切线与x 轴平行. (1)求a 的值和函数f (x )的单调区间;(2)若函数y =f (x )的图象与抛物线y =32x 2-15x +3恰有三个不同交点,求b 的取值范围.解:(1)f ′(x )=3x 2-6x +a , 由f ′(-1)=0,解得a =-9.则f ′(x )=3x 2-6x -9=3(x -3)(x +1),故f (x )的单调递增区间为(-∞,-1),(3,+∞);f (x )的单调递减区间为(-1,3). (2)令g (x )=f (x )-⎝⎛⎭⎫32x 2-15x +3=x 3-92x 2+6x +b -3, 则原题意等价于g (x )=0有三个不同的根. ∵g ′(x )=3x 2-9x +6=3(x -2)(x -1),∴g (x )在(-∞,1),(2,+∞)上递增,在(1,2)上递减. 则g (x )的极小值为g (2)=b -1<0, 且g (x )的极大值为g (1)=b -12>0,解得12<b <1.∴b 的取值范围⎝ ⎛⎭⎪⎫12,1。
§3.3.1函数的单调性与导数(第 1课时)[自学目标]:1. 会熟练求导,求函数单调区间,证明单调性。
2. 会从导数的角度解释增减及增减快慢的情况 [重点]: 会熟练用求导,求函数单调区间 [难点]: 证明单调性 [教材助读]:1、复习回顾:求导公式和运算法则 (1)常函数: (2)幂函数 :(3)三角函数 : (4)对数函数的导数: (5)指数函数的导数:运算法则:2、函数的单调性与其导数的正负有如下关系在某个区间(a ,b )内,如果________,那么函数()y f x =在这个区间内单调递增; 如果()0f x '<,那么函数()y f x =在这个区间内单调________. 如果恒有'()0f x =,则()f x 是________。
[预习自测]1、 已知导函数()f x ' 的下列信息: 当1 < x < 4 时, ()0;f x '> 当 x > 4 , 或 x < 1时, ()0;f x '< 当 x = 4 , 或 x = 1时, ()0.f x '= 试画出函数()f x 的图象的大致形状.探究一:利用单调性求单调区间判断下列函数的单调性, 并求出单调区间:32(1) ()3; (2) ()23;f x x x f x x x =+=--(3) ()sin ,(0,); f x x x x π=-∈ 32(4) ()2312 1.f x xx x =+-+(5) x x y ln = (6)33xy e x =-探究二:利用单调性判断函数图象如图, 水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h 与时间t 的函数关系图象.一般地, 如果一个函数在某一范围内导数的绝对值较大, 那么函数在这个范围内变化得快, 这时, 函数的图象就比较“陡峭”(向上或向下); 反之, 函数的图象就“平缓”一些.如图,函数()y f x = 在(0,)b 或(,0)a 内的图象“陡峭”,在(,)b +∞ 或(,)a -∞ 内的图象平缓.2设'()f x 是函数()f x 的导数,'()y f x =的图像如图所示,则()y f x =的图像最有可能的是( ).A0 xy 12 xyB 012xyC0 12xyD0 1221xy'()y f x =[当堂检测]1判断下列函数的单调性, 并求出单调区间:2(1) ()24; (2) ();x f x x x f x e x =-+=-332(3) ()3; (4) ().f x x x f x x x x =-=--[拓展提升]1.讨论二次函数 的单调区间.2 .求证: 函数 在(0,2)内是减函数.3 判定函数1+-=x e y x的单调区间)0()(2≠++=a c bx ax x f 762)(23+-=x x x f4. 求函数xxxf ln2)(2-=的单调减区间6.设函数)()(23Rxcxbxxxf∈++=,已知)()()(/xfxfxg-=是奇函数(1)求cb,的值;(2)求)(xg的单调区间。
函数的单调性与导数(获奖教案3.3.1函数的单调性与导数教材分析“函数单调性与导数”是⾼中数学(选修1-1)第三章导数及其应⽤的第三节,本节的教学内容属导数的应⽤,是在学⽣学习了导数的概念、计算、⼏何意义的基础上学习的内容,学好它既可加深对导数的理解,⼜可为后⾯研究函数的极值和最值打好基础.由于学⽣在⾼⼀已经掌握了单调性的定义,并能⽤定义判定在给定区间上函数的单调性.通过本节课的学习,应使学⽣体验到,⽤导数判断单调性要⽐⽤定义判断简捷得多(尤其对于三次和三次以上的多项式函数,或图象难以画出的函数⽽⾔),充分展⽰了导数解决问题的优越性.课时分配本节内容⽤1课时完成,主要经历从⽣活中的变化率问题抽象概括出函数平均变化率概念的过程,体会从特殊到⼀般的数学思想,体现了数学知识来源于⽣活,⼜服务于⽣活.教学⽬标重点:利⽤导数研究函数的单调性,会求函数的单调区间.难点:⒈探究函数的单调性与导数的关系;⒉如何⽤导数判断函数的单调性.知识点:1.探索函数的单调性与导数的关系;2.会利⽤导数判断函数的单调性并求函数的单调区间.能⼒点:1.通过本节的学习,掌握⽤导数研究单调性的⽅法.2.在探索过程中培养学⽣的观察、分析、概括的能⼒渗透数形结合思想、转化思想.教育点:通过在教学过程中让学⽣多动⼿、多观察、勤思考、善总结,培养学⽣的探索精神,引导学⽣养成⾃主学习的学习习惯.⾃主探究点:通过问题的探究,体会知识的类⽐迁移.以已知探求未知,从特殊到⼀般的数学思想⽅法.考试点:利⽤导数判断函数的单调性并求函数的单调区间.易错易混点:导数的正负决定函数的单调性,⽽不是导数的单调性决定函数的单调性.教具准备:多媒体课件,三⾓板课堂模式:学案导学⼀.引⼊新课y 的单调性,如何进⾏?师:判断函数的单调性有哪些⽅法?⽐如判断2x⽣:⽤定义法、图像法.师:因为⼆次函数的图像我们⾮常熟悉,可以画出其图像,指出其单调区间,再想⼀下,有没有需要注意的地⽅?⽣:注意定义域.师:如果遇到函数x x y 33-=,如何判断单调性呢?你能画出该函数的图像吗?师:定义是解决问题的最根本⽅法,但定义法较繁琐,⼜不能画出它的图像,那该如何解决呢?揭⽰并板书课题:函数的单调性与导数【设计意图】通过复习回顾,巩固旧知.从已学过的知识(判断⼆次函数的单调性)⼊⼿,提出新的问题(判断三次函数的单调性),引起认知冲突,激发学习的兴趣.师:函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最⼤值或最⼩值等性质是⾮常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有⼀个基本的了解.函数的单调性与函数的导数⼀样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?⼆.探究新知师:如图(1),它表⽰跳⽔运动中⾼度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图(2)表⽰⾼台跳⽔运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最⾼点,以及从最⾼点到⼊⽔这两段时间的运动状态有什么区别?⽣:通过观察图像,可以发现:(1)运动员从起点到最⾼点,离⽔⾯的⾼度h 随时间t 的增加⽽增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最⾼点到⼊⽔,运动员离⽔⾯的⾼度h 随时间t 的增加⽽减少,即()h t 是减函数.相应地,'()()0v t h t =<.【设计意图】从具体的实际情景出发,提出本节课要探索的问题,函数的单调性与导数的关系.为学⽣提供⼀个联想的“源”,巧妙设问,把学习任务转移给学⽣;让学⽣完成对函数单调性与导数关系的第⼀次认识,明确研究课题.师:导数的⼏何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么函数的单调性与导数有什么关系呢?观察下⾯函数的图像,探讨函数的单调性与其导数正负的关系.(1)函数x y =的定义域为R ,并且在定义域上是增函数,其导数01/>=y ;(2)函数2x y =的定义域为R ,在),(+∞-∞上单调递减,在),0(+∞上单调递增;⽽x y 2/=,当0x 时,其导数0/>y ;当0=x 时,其导数0/=y .(3)函数3x y =的定义域为R ,在定义域上为增函数;⽽2/3x y =,若0≠x ,则其导数032>x ,当0=x 时,其导数032=x ;(4)函数x y 1=的定义域为),0()0,(+∞?-∞,在)0,(-∞上单调递减,在),0(+∞上单调递减,⽽2/1xy -=,因为0≠x ,所以0/师:以上四个函数的单调性及其导数符号的关系说明,在区间),(b a 内,如果0)(/>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)(/内单调递减.【设计意图】从具体的函数出发,体会数形结合思想的运⽤.让学⽣体会从特殊到⼀般,从具体到抽象的过程,降低思维难度,让学⽣在⽼师的引导下⾃主学习和探索,提⾼学习的成就感和⾃信⼼.三. 理解新知师:如图,导数'0()f x 表⽰函数)(x f 在点00(,)x y 处的切线的斜率.观察图像回答,函数在某个点处的导数值与函数在该点处的单调性是怎样的关系?⽣:在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数)(x f 在0x 附近单调递增;在1x x =处,0)(1/师⽣共同总结:函数的单调性与导数的关系: 在某个区间),(b a内,如果0)(/>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)(/【设计意图】通过导数的⼏何意义来验证由具体函数所得到的结论,形成⼀般性结论.让学⽣经历观察、分析、归纳、发现规律的过程,体会函数单调性与导数的关系.四.运⽤新知例1、已知导函数'()f x 的下列信息:当14x <<时,'()0f x >;当4x >,或1x <时,'()0f x <;当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的⼤致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减;当4x =,或1x =时,'()0f x =,这两点⽐较特殊,我们把它称为“临界点”.综上,函数()y f x =图像的⼤致形状如图所⽰.学⽣思考,并在纸上画出函数图像教师投影若⼲学⽣的作业情况,学⽣共同分析.【设计意图】让学⽣通过此题加深理解导函数是如何影响原函数的,这是今后利⽤导函数研究函数的必备技能.这⾥让学⽣切实理解,为今后学习扫清障碍. 例2、判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+;(2)2()23f x x x =-- (3)()sin (0,)f x x x x π=-∈;(4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以,'22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图1所⽰.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增;当'()0f x <,即1x <时,函数2()23f x x x =--单调递减;函数2()23f x x x =--的图像如图2所⽰.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-<因此,函数()sin f x x x =-在(0,)π单调递减,如图3所⽰.(4)因为32()23241f x x x x =+-+,所以.当'()0f x >,即时,函数2()23f x x x =-- ;当'()0f x <,即时,函数2()23f x x x =-- ;函数32()23241f x x x x =+-+的图像如图4所⽰.学⽣练(3)、(4)【设计意图】让学⽣初步体会⽤导数的⽅法确定函数单调性的简便. 【师⽣活动】总结求()y f x =单调区间的步骤:(1)确定函数()y f x =的定义域;(2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间;(4)解不等式'()0f x <,解集在定义域内的部分为减区间.例3.已知函数xx y 1+=,试讨论出此函数的单调区间. 解:2222//)1)(1(111)1(x x x x x x x x y +-=-=-=+=2令0)1)(1(2>+-xx x . 解得11-<>x x 或∴xx y 1+=的单调增区间是:),1()1-,(+∞-∞和令0)1)(1(2<+-x x x ,解得1001<<<<-x x 或∴xx y 1+=的单调减区间是:)1,0()0,1(和-练习:93P 1题五.课堂⼩结(1)函数的单调性与导数的关系(2)求解函数()y f x =单调区间【设计意图】通过师⽣共同反思,优化学⽣的认知结构.六. 布置作业必做:课本89P A 组 1,2 选做:1、求下列函数的单调区间: (1) 76223+-=x x y (2) x xy 21+=(3) []π2,0,sin ∈=x x y (4) x x y ln = 2、已知32()f x x bx cx d =+++的图像过点(0,2)P 且在1x =-处的切线⽅程为670x y -+=,求(1)()f x 的解析式;(2)求函数()y f x =的单调区间.3、已知函数13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 【设计意图】体现了分层、有梯度的教学,学⽣动⼿练习,加强学⽣的应⽤意识.七.教后反思1. 本节课的亮点:教学过程中教师指导启发学⽣以已知的熟悉的⼆次函数为研究的起点,发现函数的导数的正负与函数单调性的关系,从⽽到更多的,更复杂的函数,从中发现规律,并推⼴到⼀般.这个过程中既让学⽣获得了关于新知的内容,更可贵的是让学⽣体会到如何研究⼀个新问题,即探究⽅法的体验与感知.同时也渗透了归纳推理的数学思想⽅法,培养了学⽣的探索精神,积累了探究经验.2. 不⾜之处:学⽣对与数形结合的理解还不是很熟练,今后应多加强训练.⼋、板书设计。
导数的简单应用之层数与函数的单调性(导学案)学习目标:(1)能探索并应用函数的单调性与导数的关系求单调区间;(2)能解决含参函数的单调性问题以及函数单调性与导数关系逆推。
学习重点:利用导数研究函数的单调性、求函数的单调区间。
学习难点:探求含参函数的单调性的问题。
复习回顾:导数的概念、几何意义、导数的计算基础梳理:函数的单调性与导数的关系:.(1)函数)(x f y =在某个区间内可导①若0)(/>x f ,则)(x f 在这个区间内 ;②若0)(/<x f ,则)(x f 在这个区间内 ;③如果在某个区间内恒有0)(/=x f ,则)(x f 为 ;(2)求解函数()y f x =单调区间的步骤:①确定函数()y f x =的 ; ②求导数''()y f x =; ③解不等式'()0f x >,解集在定义域内的部分为 ;④解不等式'()0f x <,解集在定义域内的部分为 .质疑探究:在区间(a ,b )内,若f ′(x )>0,则f (x )在此区间上单调递增,反之也成立吗?提示:)(x f 在(a ,b )内单调递增,则 。
结论:f ′(x )>0是)(x f 在(a ,b )内单调递增的 条件。
基础检测:1、已知函数的下列信息:当14x <<时,'()0f x >;当4x >,或1x <时,'()0f x <;当4x =,或1x =时,'()0f x =。
试画出函数()y f x =图像的大致形状.2、判断函数3()3f x x x =+的单调性,并求出单调区间.考点突破:例1、(2012年高考重庆卷)设f(x)=12321ln +++x x x a ,其中a ∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f(x)的单调区间与极值。
函数的单调性编号:007一、考纲要求:函数的基本性质二、复习目标:1.理解函数的单调性2.能判断或证明函数的单调性三、重点难点:判断或证明函数的单调性四、要点梳理:1.函数的单调性(1)单调函数的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.2.函数的最值一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接. 两种形式设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么 ①f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数. 两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 四种方法 函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性.五、基础自测:1.判断下列说法是否正确:(1)若定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 是R 上的单调增函数; (2)若定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 在R 上不是单调减函数; (3)若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间[0,)+∞上是单调增函数,则函数()f x 在R 上是单调增函数;(4)若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上是单调增函数,则函数()f x 在R 上是单调增函数.2、下列函数 (1)2()(1)f x x =- (2)()x f x e = (3)()ln(1)f x x =+ (4) 111y x =-- (5)||y x x =在(,0)x ∈-∞是减函数的序号是_________________ 4.六、典例精讲:例1 (1)判断函数()f x = (2)判断函数1()ln 1xf x x-=+的单调性,并证明你的结论.例2(1) 函数32()15336f x x x x =--+的单调递增区间为 . (2) 函数20.7log (32)y x x =-+的单调减区间是____________________例3.已知函数()f x 对任意x ,y ∈R ,总有()()()f x f y f x y +=+,且当0x >时,()0f x <, ,求证:()f x 是R 上的减函数.七、千思百练:1.函数1()f x x x=-的单调增区间为 . 2、设函数()f x 是减函数,且()0f x >,下列函数中为增函数的是_________(1)1()y f x =-(2)12log ()y f x = (3)()2f x y = (4)[]2()y f x =(5)32()y x f x =-3.函数()f x 是R 上的减函数,a ∈R ,记2()m f a =,(1)n f a =-,则m ,n 的大小关系是 .4、(必修1第37页第7题)函数21()21x x f x -=+的单调区间是_______________________5、(必修1第55页第12题)对于任意的12,,x x R ∈若函数1()()2xf x =,则1212()()()22f x f x x xf ++与的大小关系是__________________八、反思感悟:1、判断函数单调性的常见方法:(1)图像法 (2)定义法 (3)导数法2、复合函数单调性的判断:同增异减法。
专题 函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值 (1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(2)相同单调性函数的和、差、积、商函数还具有相同的单调性.( )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(5)对于函数f (x ),x ∈D ,若x 1,x 2∈D ,且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( )(6)函数f (x )=log 5(2x +1)的单调增区间是(0,+∞).( )考点一 求函数的单调性(区间)A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)(2)函数f (x )=lg x 2的单调递减区间是________.(3)判断并证明函数f (x )=axx 2-1(其中a >0)在x ∈(-1,1)上的单调性.(二次除以一次的处理; 拓展一次除以一次) [方法引航] 判断函数单调性的方法(1)定义法:取值,作差,变形,定号,下结论. (2)利用复合函数关系:简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,单调增;图象逐渐下降,单调减. (4)性质法:增函数与减函数的加减问题。
1.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x C .y =ln x D .y =|x |2.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12 C .[0,+∞) D.⎝ ⎛⎭⎪⎫12,+∞3.已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.(掌握对勾函数;明确对勾函数的特征)考点二 利用函数的单调性求最值[例2] (1)函数f (x )=x +1在[1,2]上的最大值和最小值分别是________. (2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________.1.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12考点三 函数单调性的应用[例3] (1)已知11122x y⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列不等关系一定成立的是( )A .22x y< B .22log log x y < C .33x y > D .cos cos x y <(2)已知f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.[方法引航] (1)利用单调性比较大小,首先把不在同一个单调区间上的变量转化为同一个单调区间,再结合单调性进行比较.(2)已知函数的单调性确定参数的值域范围要注意以下两点:①任意子区间上也是单调的;②注意衔接点的取值.1.在本例(2)中,若f (x )不变且a ∈⎣⎢⎡⎭⎪⎫32,2.解不等式f (4a 2-2a -5)<f (a +2).2.定义在R 上的函数()f x =25,1,, 1.x ax x a x x---≤>⎧⎨⎩ 对任意12xx ≠都有,1212()[()()]0x x f x f x -->成立,则实数a 的取值范围是( )A. [-3,-2]B. [-3,0)C.(-∞,-2]D. (-∞,0)[易错警示]定义域的请求——求函数单调区间先求我1.函数的单调区间是定义域的子集,求函数的单调区间必须做到“定义域优先”的原则.[典例1] 函数f (x )=x 2+x -6的单调增区间为________.[警示] 求函数的单调区间,应该先求定义域,在定义域内寻找减区间、增区间;若增区间或减区间是间断的,要分开写,不能用“并集符号”合并联结. 2.利用函数单调性解不等式时也要先求定义域.[典例2] 已知,定义在[-2,3]上的函数f (x )是减函数,则满足f (x )<f (2x -3)的x 的取值范围是________.[警示] 这类不等式应等价于:单调性和定义域构成的不等式组.[高考真题体验]1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x2.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数 3.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( ) A .f (x )=1x 2 B .f (x )=x 2+1 C .f (x )=x 3 D .f (x )=2-x 4.函数f (x )=xx -1(x ≥2)的最大值为________. 5.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.课时规范训练 A 组 基础演练1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增D .先递增再递减2.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫1x >f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞)3.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1)4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .a >-14B .a ≥-14C .-14≤a <0D .-14≤a ≤05.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-36.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.7.y =-x 2+2|x |+3的单调增区间为________.8.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________.9.函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)求g (t )的最小值.10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证(判断)f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.B 组 能力突破1.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)>f (2) B .f (a +1)<f (2) C .f (a +1)=f (2)D .不能确定2.已知f (x )=⎩⎨⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( ) A .(-∞,-2) B .(-∞,0) C .(0,2)D .(-2,0)3.函数f (x )=log 5(2x +1)的单调递增区间是________.4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(函数背景是什么?) (1)求f (1)的值;(2)证明:f(x)为单调递减函数;(3)若f(3)=-1,求f(x)在[2,9]上的最小值.。
2. 利用导数研究函数的单调性⑴学习目标⑴理解导数与单调性的关系,能熟练利用导数研究函数的单调性 ;⑵熟悉含参函数(可转化为二次函数)的单调性的讨论 . 课前热身1.函数()(1)e x f x x =+的单调增区间是_________,减区间是________.2.函数221()33f x x x x =+-的单调增区间是_________,减区间是________.3.函数1()ln f x x x =+的单调增区间是_________,减区间是________.问题探究【类型一】利用导数研究函数的单调性例 已知函数3()2ln f x x x x=++,求函数()f x 的单调区间.求函数的单调区间的具体步骤 ⑴求函数()f x 的定义域; ⑵求'()f x ; ⑶求不等式'()0f x >和'()0f x <的解集;或求出'()0f x =的根,用'()0f x =的根将()f x 的定义域分成若干区间,列表考察这若干个区间内'()f x 的符号,进而确定()f x 的单调区间.变式⑴ 函数改为“21()ln 2f x x a x =-,a R ∈”?变式⑵ 函数改为“21()ln (1),2f x x a x a x a R =-+-∈”?课堂检测: 1.函数()2ln f x x x =-单调递减区间是________2.求函数2()ln (0)f x a x a x=+≠的单调增区间.2. 利用导数研究函数的单调性⑵【课前热身】1.函数()ln f x x x =的单调增区间是_________,减区间是________.2.函数321()23f x x ax bx =++-在(,0)-∞上是增函数,在(0,1)上是减函数,在(1,)+∞上是增函数,则______,______.a b ==3.函数321()3f x x ax ax =++在R 上是增函数,则a 的取值范围是________.【类型二】 由函数的单调性求参数的范围例 已知函数3221()313f x x mx m x =+-+,m ∈R .若)(x f 在区间(2,3)-上是减函数,求m 的取值范围.若已知y =f (x )的单调性,求参数的取值范围,一般是转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解.变式⑴ 若)(x f 在区间(2,3)-上不单调,求m 的取值范围.变式⑵ 若)(x f 在区间(2,3)-上存在单调递减区间,求m 的取值范围.练习:设函数2()ln 2f x x x ax =+-在1[, 2]2上存在单调递增区间,试求实数a 的取值范围.。
《函数的单调性》导学案
一、教学目标
(1)知识与技能:使学生理解函数单调性的概念,并能从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法.
(2)过程与方法:从生活实际和已有旧知出发,引导学生探索函数的单调性的概念,通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
(3)情感态度价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,也培养学生细心观察、归纳、分析的良好习惯和不断探求新知识的精神.
二、教学重难点
教学重点:(1)函数单调性的概念及其应用;
(2)常见函数的单调区间的求法.
教学难点:利用函数图象、单调性的定义判断和证明函数的单调性.
三、课堂导学。
1-10函数的单调性班级:姓名:一导学案1.理解函数单调性概念;221.(1)f(x)=x的图像(2)f(x)=x2的图像在y轴的左侧,在y轴的右侧。
(3)图像的“上升”“下降”反映了函数的一个基本性质:。
2.以二次函数f(x)=x2为例,结合其图像和下表,发现:(1f(x1)上是(2f(x12.单调减函数的定义(如图⑤)3.单调区间例1.x⑥例2. 例3.下列说法正确的是()A . 定义在),(b a 上的函数)(x f ,若存在21x x <时,有)()(21x f x f <,那么)(x f 在),(b a 上是增函数B . 定义在),(b a 上的函数)(x f ,若有无穷多对21,x x ∈),(b a 使得21x x <时,有)()(21x f x f <,那么)(x f 在),(b a 上是增函数C.若函数)(x f 在区间1I 上是增函数,在区间2I 上是增函数,那么)(x f 在21I I ⋃上也一定为增函数D .若函数)(x f 在区间I 上是增函数且)()(21x f x f <(21,x x ∈I ),那么21x x <例4.画出反比例函数xy 1=的图像。
(1)求函数的定义域.I (2)它在定义域I 上的单调性是怎样的?证明你的结论。
1.设(x f 上递2.3. 探究一次函数)(R x b mx y ∈+=的单调性,并证明你的结论。
4.证明:(1)函数1)(2+=x x f 在)0,(-∞上是减函数。
(2)函数xx f 11)(-=在)0,(-∞上是增数。
四.课外作业非常学案活页作业P69页第1课时。
五.课堂小结知识:方法:12x =++设122x x -<<,则2121(2)(2)0,0x x x x -->->∴21()()f x f x -211221121222()(12)(2)(2)a a x x x x a x x --=----=--- ∵1221()0(2)(2)x x x x -<-- 当12a <时,21()()f x f x <,此时函数21)(++=x ax x f 21(≠a 在),2(+∞-上是单调减函数; 当1a >()()f x f x >1)(+=ax x f )1(≠a ),2(+∞-。
5.3.1函数的单调性(2) 导学案1.掌握利用导数判断函数的单调性的一般步骤.2.探究函数增减的快慢与导数的关系.3.学会处理含参函数的单调性问题重点:导数判断函数的单调性的一般步骤难点:含参函数的单调性问题1.函数f (x)的单调性与导函数f ′(x)正负的关系定义在区间(a,b)内的函数y=f (x):f ′(x)的正负 f (x)的单调性f ′(x)>0单调递____f ′(x)<0单调递____增;减2.判断函数y=f (x)的单调性第1步:确定函数的______;第2步:求出导数f ′(x)的____;第3步:用f ′(x)的____将f (x)的定义域划分为若干个区间,列表给出f ′(x)在各区间上的____,由此得出函数y=f (x)在定义域内的单调性.定义域 ;零点 ;零点 ;正负3.函数图象的变化趋势与导数值大小的关系一般地,设函数y =f (x ),在区间(a ,b )上:导数的绝对值函数值变化函数的图象 越大 __ 比较“____”(向上或向下) 越小__比较“____”(向上或向下)快;陡峭 ;慢;平缓探究1. 形如f(x)=ax 3+bx 2+cx+d(a≠0)的函数应用广泛,下面我们利用导数来研究这类函数的单调性。
例3. 求函数f (x )=13x 3−12x 2−2x +1的单调区间.如果不用导数的方法,直接运用单调性的定义,你如何求解本题?用解不等式法求单调区间的步骤 1确定函数f x 的定义域; 2求导函数f ′x ;3解不等式f ′x >0或f ′x <0,并写出解集; 4根据3的结果确定函数f x 的单调区间. 跟踪训练1.求下列函数的单调区间: (1)f (x )=3x 2-2ln x ;(2)f (x )=x 2e -x .探究2:研究对数函数y =lnx 与幂函数y =x 3在区间(0,+∞)上增长快慢的情况.例4.设x>0,f(x)=lnx,g(x)=1−1x,两个函数的图像如图所示。
龙涤中学 数学 学科导学案2013—2014学年度第二学期高( 二 )年级 编号:主备人:郭丽娟 审核人:王凯 审批人: 使用时间:14、3、19课题:§1.3函数的单调性与导数 班级: 学生姓名:【三维目标】1、正确理解利用导数判断函数的单调性的原理;掌握利用导数判断函数单调性的步骤。
2、 学生经历发现问题、提出问题、分析问题、解决问题的过程,提高创新能力。
3、 在愉悦的学习氛围中,学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般。
【重点难点】重点:利用导数判断函数单调性。
难点:利用导数判断函数单调性。
【使用说明】阅读教材P22-25页,环节一:【直接导入】(所用时间: 2分钟 )提问:1.函数单调性的定义2。
判断函数单调性的步骤环节二:【合作探究】(所用时间: 25分钟 )知识探究(一):函数的单调性与导数的关系1.确定函数243=-+y x x 在哪个区间内是增函数?在哪个区间内是减函数?解答:, 问 1)、为什么243=-+y x x 在(,2)-∞上是减函数,在(2,)+∞上是增函数? 解答:,2)、研究函数的单调区间你有哪些方法? 解答:, 2、确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数?哪个区间内是减函数? 解答:,【探 究】我们知道函数的图象能直观的反映函数的变化情况,下面通过函数的图象规律来研究。
研究二次函数243=-+y x x 的图象;(1) 画出二次函数243=-+y x x 的图象,研究它的单调性。
(2) 提问:以前我们是通过二次函数图象的哪些特征来研究它的单调性的?回答:(3) 我们最近研究的哪个知识(通过图象的哪个量)能反映函数的变化规律?观察图像,能得到什么结论 回答:结论:一般地,设函数()y f x =在某个区间可导,如果在这个区间内'()0f x >,则()y f x =为这个区间内的 ; 如果在这个区间内'()0f x <,则()y f x =为这个区间内的 。
§1.3导数在研究函数中的应用1.3.1函数的单调性与导数内容要求 1.结合实例,借助几何直观探索并了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性.3.会求不超过三次的多项式函数的单调区间.知识点1函数的单调性与导数的关系(1)在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常函数(2)在区间(a,b)函数的单调性导数单调递增f′(x) ≥0单调递减f′(x)≤0常函数f′(x)=0【预习评价】思考在区间(a,b)内,函数f(x)单调递增是f′(x)>0的什么条件?提示必要不充分条件.知识点2利用导数求函数的单调区间求可导函数单调区间的基本步骤:(1)确定定义域;(2)求导数f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.【预习评价】函数f(x)=13-x2-3x+2的单调增区间是________.3x解析 f ′(x )=x 2-2x -3,令f ′(x )>0,解得x <-1或x >3,故f (x )的单调增区间是(-∞,-1),(3,+∞). 答案 (-∞,-1),(3,+∞)题型一 利用导数判断(或证明)函数的单调性【例1】 证明:函数f (x )=sin x x 在区间⎝ ⎛⎭⎪⎫π2,π上单调递减.证明 f ′(x )=x cos x -sin x x 2,又x ∈⎝ ⎛⎭⎪⎫π2,π,则cos x <0,∴x cos x -sin x <0, ∴f ′(x )<0,∴f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减.规律方法 关于利用导数证明函数单调性的问题:(1)首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行.(2)f ′(x )>0(或<0),则f (x )为单调递增(或递减)函数;但要特别注意,f (x )为单调递增(或递减)函数,则f ′(x )≥0(或≤0).【训练1】 证明:函数f (x )=ln xx 在区间(0,e)上是增函数. 证明 ∵f (x )=ln xx ,∴f ′(x )=x ·1x -ln x x 2=1-ln x x 2.又0<x <e ,∴ln x <ln e =1. ∴f ′(x )=1-ln xx 2>0,故f (x )在区间(0,e)上是增函数.题型二 利用导数求函数的单调区间 【例2】 求下列函数的单调区间:(1)f (x )=2x 3+3x 2-36x +1; (2) f (x )=sin x -x (0<x <π); (3)f (x )=3x 2-2ln x ; (4) f (x )=x 3-3tx .解 (1) f ′(x )=6x 2+6x -36.由f ′(x )>0得6x 2+6x -36>0,解得x <-3或x >2; 由f ′(x )<0解得-3<x <2.故f (x )的增区间是(-∞,-3),(2,+∞);减区间是(-3,2). (2)f ′(x )=cos x -1.因为0<x <π,所以cos x -1<0恒成立, 故函数f (x )的单调递减区间为(0,π). (3)函数的定义域为(0,+∞), f ′(x )=6x -2x =2·3x 2-1x . 令f ′(x )>0,即2·3x 2-1x >0, 解得-33<x <0或x >33. 又∵x >0,∴x >33. 令f ′(x )<0,即2·3x 2-1x <0, 解得x <-33或0<x <33. 又∵x >0,∴0<x <33.∴f (x )的单调递增区间为(33,+∞),单调递减区间为(0,33).(4)f′(x)=3x2-3t.令f′(x) >0,得3x2-3t>0,即x2>t,∴当t≤0时,f′(x)>0恒成立,函数的增区间是(-∞,+∞);当t>0时,由x2>t解得x>t或x<-t;由f′(x)<0解得-t<x<t,函数f(x)的增区间是(-∞,-t)和(t,+∞),减区间是(-t,t).综上,当t≤0时,f(x)的增区间是(-∞,+∞);当t>0时,f(x)的增区间是(-∞,-t),(t,+∞),减区间是(-t,t).规律方法求函数的单调区间的具体步骤:(1)优先确定f(x)的定义域;(2)计算导数f′(x);(3)解f′(x)>0和f′(x)<0;(4)定义域内满足f′(x)>0的区间为增区间,定义域内满足f′(x)<0的区间为减区间.【训练2】求函数f(x)=x3+3x的单调区间.解方法一函数f(x)的定义域为(-∞,0)∪(0,+∞).f′(x)=3x2-3x2=3⎝⎛⎭⎪⎫x2-1x2.由f′(x)>0,解得x<-1或x>1.由f′(x)<0,解得-1<x<1,且x≠0.所以函数f(x)的单调递增区间为(-∞,-1),(1,+∞);单调递减区间为(-1,0),(0,1).方法二函数f(x)的定义域为(-∞,0)∪(0,+∞).f′(x)=3x2-3x2=3(x2-1x2);令f′(x)=0,得x=±1.当x 变化时,f ′(x )与f (x )的变化情况如下表: x (-∞,-1)-1 (-1,0) (0,1) 1 (1,+∞)f ′(x )+0 --0 + f (x ) 单调递增Z -4单调递减] 单调递减]4单调递增Z0),(0,1).方向1 已知函数的单调性求参数的取值范围【例3-1】 已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a 的取值范围.解 f ′(x )=2x -a x 2=2x 3-ax 2.要使f (x )在[2,+∞)上是单调递增的,则f ′(x )≥0在x ∈[2,+∞)时恒成立, 即2x 3-ax 2≥0在x ∈[2,+∞)时恒成立. ∵x 2>0,∴2x 3-a ≥0,∴a ≤2x 3在x ∈[2,+∞)上恒成立. ∴a ≤(2x 3)min .∵x ∈[2,+∞)时,y =2x 3是单调递增的, ∴(2x 3)min =16,∴a ≤16.当a =16时,f ′(x )=2x 3-16x 2≥0(x ∈[2,+∞))有且只有f ′(2)=0,∴a 的取值范围是(-∞,16].方向2利用函数的单调性证明不等式【例3-2】已知a,b为实数,且b>a>e,其中e为自然对数的底,求证:a b>b a.证明当b>a>e时,要证a b>b a,只要证b ln a>a ln b,即只要证ln aa>ln bb.构造函数y=ln xx(x>0),则y′=1-ln xx2.因为当x>e时,y′=1-ln xx2<0,所以函数y=ln xx在(e,+∞)内是减函数.又因为b>a>e,所以ln aa >ln bb.故a b>b a.规律方法(1)已知函数的单调性,求函数解析式中参数的取值范围,可转化为不等式恒成立问题,一般地,函数f(x)在区间I上单调递增(或减),转化为不等式f′(x)≥0(f′(x)≤0)在区间I上恒成立,再用有关方法可求出参数的取值范围.(2)“构造”是一种重要而灵活的思维方式,应用好构造思想解题的关键是:一要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行逻辑组合.【训练3】若函数f(x)=x3+x2+mx+1是R上的单调函数,求实数m的取值范围.解f′(x)=3x2+2x+m.因为f(x)是R上的单调函数,所以f′(x)≥0恒成立或f′(x)≤0恒成立.因为二次项系数3>0,所以只能有f′(x)≥0恒成立.因此Δ=4-12m≤0,故m≥13.当m =13时,使f ′(x )=0的点只有一个x =-13,也符合题意.故实数m 的取值范围是⎣⎢⎡⎭⎪⎫13,+∞.课堂达标1.函数f (x )=x +ln x 在(0,6)上是( ) A.增函数 B.减函数C.在⎝ ⎛⎭⎪⎫0,1e 上是减函数,在⎝ ⎛⎭⎪⎫1e ,6上是增函数D.在⎝ ⎛⎭⎪⎫0,1e 上是增函数,在⎝ ⎛⎭⎪⎫1e ,6上是减函数解析 ∵f ′(x )=1+1x >0, ∴函数在(0,6)上单调递增. 答案 A2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )解析 由导函数的图象可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确. 答案 D3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( )A.[1,+∞)B.a =1C.(-∞,1]D.(0,1)解析 ∵f ′(x )=3x 2-2ax -1,又f (x )在(0,1)内单调递减,∴不等式3x 2-2ax -1≤0在(0,1)内恒成立,∴f ′(0)≤0,且f ′(1)≤0,∴a ≥1. 答案 A4.函数y =x 2-4x +a 的增区间为______,减区间为______. 解析 y ′=2x -4,令y ′>0,得x >2;令y ′<0,得x <2, 所以y =x 2-4x +a 的增区间为(2,+∞),减区间为(-∞,2). 答案 (2,+∞) (-∞,2)5.若函数f (x )=ln x -12ax 2-2x 存在单调递减区间,则实数a 的取值范围是________.解析 f ′(x )=1x -ax -2=-ax 2+2x -1x.因为函数f (x )存在单调递减区间,所以f ′(x )≤0有解.又因为函数f (x )的定义域为(0,+∞),所以ax 2+2x -1≥0在(0,+∞)内有解. ①当a >0时,y =ax 2+2x -1为开口向上的抛物线,ax 2+2x -1≥0在(0,+∞)内恒有解;②当a <0时,y =ax 2+2x -1为开口向下的抛物线, 若ax 2+2x -1≥0在(0,+∞)内恒有解,则⎩⎨⎧Δ=4+4a ≥0,x =-1a >0,解得-1≤a <0, 而当a =-1时,f ′(x )=x 2-2x +1x =(x -1)2x ≥0,不符合题意,故-1<a <0;③当a =0时,显然符合题意.综上所述,a 的取值范围是(-1,+∞). 答案 (-1,+∞)课堂小结1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f (x )的单调区间的一般步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; (4)根据(3)的结果确定函数f (x )的单调区间.基础过关1.函数f (x )=(x -3)e x 的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4)D.(2,+∞)解析 f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,即(x -2)e x >0,解得x >2,故选D. 答案 D2.y =x ln x 在(0,5)内的单调性是( ) A.单调递增 B.单调递减C.在⎝ ⎛⎭⎪⎫0,1e 内单调递减,在⎝ ⎛⎭⎪⎫1e ,5内单调递增D.在⎝ ⎛⎭⎪⎫0,1e 内单调递增,在⎝ ⎛⎭⎪⎫1e ,5内单调递减解析 函数的定义域为(0,+∞).y ′=ln x +1,令y ′>0,得x >1e ;令y ′<0,得0<x <1e .所以函数y =x ln x 在⎝ ⎛⎭⎪⎫0,1e 内单调递减,在⎝ ⎛⎭⎪⎫1e ,5内单调递增.答案 C3.函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是( ) A.增函数 B.减函数 C.常数D.既不是增函数也不是减函数解析 求函数的导函数f ′(x )=3x 2+2ax +b ,导函数对应方程f ′(x )=0的Δ=4(a 2-3b )<0,所以f ′(x )>0恒成立,故f (x )是增函数. 答案 A4.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎫-32,3内可导,其图象如图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为________.解析 函数y =f (x )为减函数的区间,反映在图象上图象是下降的. 答案 ⎣⎢⎡⎦⎥⎤-13,1∪[2,3)5.当x >0时,f (x )=x +2x 的单调递减区间是________.解析 f ′(x )=1-2x 2=x 2-2x 2=(x -2)(x +2)x 2.由f ′(x )<0且x >0得0<x < 2. 答案 (0,2)6.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2),知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程为6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3,b -c =0,解得b =c =-3. 故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3.令f ′(x )>0,得x <1-2或x >1+2;令f ′(x )<0,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2).7.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.解 由题意得f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,则f ′(x )=-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上f ′(x )≥0恒成立.即t ≥3x 2-2x 在区间(-1,1)上恒成立.令函数g (x )=3x 2-2x ,由于g (x )的图象是对称轴为x =13,开口向上的抛物线,故t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.故t的取值范围是[5,+∞).能力提升8.已知函数f(x)在定义域R上为增函数,且f(x)<0,则g(x)=x2f(x)在(-∞,0)内的单调情况一定是()A.单调递减B.单调递增C.先增后减D.先减后增解析因为函数f(x)在定义域R上为增函数,所以f′(x)≥0.又因为g′(x)=2xf(x)+x2f′(x),所以当x∈(-∞,0)时,g′(x)>0恒成立,所以g(x)=x2f(x)在(-∞,0)内单调递增.答案 B9.已知函数y=xf′(x)的图象如图所示,选项中的四个图象中能大致表示y=f(x)的图象的是()解析由题图可知,当x<-1时,xf′(x)<0,所以f′(x)>0,此时原函数为增函数,图象应是上升的;当-1<x <0时,xf ′(x )>0,所以f ′(x )<0,此时原函数为减函数,图象应是下降的;当0<x <1时,xf ′(x )<0,所以f ′(x )<0,此时原函数为减函数,图象应是下降的;当x >1时,xf ′(x )>0,所以f ′(x )>0,此时原函数为增函数,图象应是上升的.由上述分析可知选C.答案 C10.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是________.解析 由于f ′(x )=k -1x,f (x )=kx -ln x 在区间(1,+∞)上单调递增,故f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,故k ≥1,即k 的取值范围是[1,+∞).答案 [1,+∞)11. 已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析 f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0且f ′(x )不恒为0,所以f (x )为单调递增函数.又f (-x )=(-x )3-2(-x )+e -x -1e -x =-⎝ ⎛⎭⎪⎫x 3-2x +e x -1e x =-f (x ),故f (x )为奇函数.由f (a -1)+f (2a 2)≤0得,f (2a 2)≤-f (a -1)=f (1-a ),所以2a 2≤1-a ,解得-1≤a ≤12,故实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,12. 答案 ⎣⎢⎡⎦⎥⎤-1,12 12.已知函数f (x )=ln x -f ′(1)x +1-ln 2,试求f (x )的单调区间.解 由f (x )=ln x -f ′(1)x +1-ln 2,x ∈(0,+∞),得f ′(x )=1x -f ′(1).令x =1,则f ′(1)=1-f ′(1),∴f ′(1)=12,f ′(x )=1x -12.由f ′(x )>0,即1x -12>0,得0<x <2;由f ′(x )<0,即1x -12<0,得x >2.故f (x )的单调递增区间为(0,2),单调递减区间为(2,+∞).创新突破13.已知函数f (x )=x 3+ax 2+x +1,a ∈R .(1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围. 解 (1)f ′(x )=3x 2+2ax +1,Δ=4(a 2-3).当Δ>0,即a >3或a <-3时,令f ′(x )>0,即3x 2+2ax +1>0,解得x >-a +a 2-33或x <-a -a 2-33;令f ′(x )<0,即3x 2+2ax +1<0, 解得-a -a 2-33<x <-a +a 2-33. 故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a -a 2-33,⎝ ⎛⎭⎪⎫-a +a 2-33,+∞; 单调递减区间是⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33. 当Δ<0,即-3<a <3时,对所有的x ∈R 都有f ′(x )>0,故f (x )在R 上单调递增.当Δ=0,即a =±3时,f ′⎝ ⎛⎭⎪⎫-a 3=0,且对所有的x ≠-a 3都有f ′(x )>0,故f (x )在R 上单调递增.(2)由(1),知只有当a >3或a <-3时,f (x )在⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33内是减函数, 所以⎩⎪⎨⎪⎧-a -a 2-33≤-23,-a +a 2-33≥-13.解得a ≥2.故a 的取值范围是[2,+∞).。
高一数学必修1单调性与最大(小)值第一课时导学案§1.3.1 单调性与最大(小)值导学案(第一课时)高一数学组 涂长胜[自学目标]1.理解函数的单调性的概念2.掌握函数单调性的证明方法与步骤[知识要点]1.会判断简单函数的单调性(直接法或图象法)2.会用定义证明简单函数的单调性:(取值—作差、变形—定号—判断)3.函数的单调性与单调区间的联系与区别。
[预习自测]1. 画出下列函数图象,并观察函数从左到右是怎样变化的:2f x =x f x =x x ≥(1)() (2)()(0)2f x =-x f x =x x ''≤(1)() (2)()(0)2.增函数和减函数的概念是什么?3.结合增减函数概念和教材P29页例1、例2概括用定义法证明函数增减性的步骤。
(1)(2)(3)(4)4.结合例1说说函数的单调性与单调区间的联系与区别[课内练习]1.判断1)(2-=x x f 在(0,+∞)上是增函数还是减函数 2.判断x x x f 2)(2+-=在(—∞,0)上是增函数还是减函数 3.下列函数中,在(0,2)上为增函数的是( )(A )y=x 1(B ) y=2x-1 (C ) y=1-x (D )y=2)12(-x4. 函数y=x 1的定义域为 ,单调递 区间为5.用定义法证明函数 f (x )=-2x+1在R 上为减函数[归纳反思]1.要学会从“数”和“形”两方面去理解函数的单调性2.函数的单调性是对区间而言的,它反映的是函数的局部性质[巩固提高]阳光课堂P27—P28页。
函数单调性与导数教案一、教学目标:1. 让学生理解函数单调性的概念,能够判断简单函数的单调性。
2. 引导学生掌握导数的定义和计算方法,能够利用导数判断函数的单调性。
3. 培养学生运用函数单调性和导数解决实际问题的能力。
二、教学内容:1. 函数单调性的定义和判断方法。
2. 导数的定义和计算方法。
3. 利用导数判断函数的单调性。
4. 函数单调性和导数在实际问题中的应用。
三、教学重点与难点:1. 教学重点:函数单调性的判断方法,导数的计算方法,利用导数判断函数的单调性。
2. 教学难点:导数的计算方法,利用导数判断函数的单调性。
四、教学方法:1. 采用讲解法,引导学生理解函数单调性和导数的概念。
2. 采用案例分析法,让学生通过实际例子掌握函数单调性和导数的应用。
3. 采用练习法,巩固学生对函数单调性和导数的理解和掌握。
五、教学过程:1. 引入:通过生活中的例子,引导学生思考函数单调性的概念。
2. 讲解:讲解函数单调性的定义和判断方法,引导学生掌握函数单调性的基本概念。
3. 案例分析:分析实际例子,让学生通过计算导数判断函数的单调性。
4. 练习:布置练习题,让学生巩固对函数单调性和导数的理解和掌握。
5. 总结:对本节课的内容进行总结,强调函数单调性和导数在实际问题中的应用。
6. 作业布置:布置课后作业,让学生进一步巩固对本节课内容的理解和掌握。
六、教学评估:1. 通过课堂提问,检查学生对函数单调性和导数概念的理解程度。
2. 通过课堂练习,评估学生对函数单调性和导数计算方法的掌握情况。
3. 通过课后作业,评估学生对函数单调性和导数应用能力的掌握。
七、教学拓展:1. 探讨函数单调性与导数在实际问题中的应用,如经济领域、物理领域等。
2. 引入更复杂的函数单调性和导数问题,如多变量函数的单调性、隐函数的导数等。
八、教学资源:1. 教学PPT:展示函数单调性和导数的定义、判断方法、计算示例等。
2. 练习题库:提供丰富的练习题,帮助学生巩固函数单调性和导数知识。
主备人: 审核: 包科领导: 年级组长: 使用时间:3.1.1导数与函数的单调性【学习目标】1.了解可导函数的单调性与其导数的关系。
2.能利用导数研究函数的单调性,会求函数的单调区间。
3.会求不超过三次的多项式函数的单调区间。
【重点】利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。
【难点】利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。
【使用说明与学法指导】1.通过阅读教材,自主学习,思考,交流,讨论和概括,完成本节课的学习目标。
2.用红笔勾勒出疑点,合作学习后寻求解决方案。
3.带*号的为选做题。
【自主探究】1.函数的单调性与导数的关系在某个区间),(b a 内,如果0)(>'x f ,那么函数)(x f y =在这个区间内_____________:如果0)(<'x f ,那么函数)(x f y =在这个区间内_____________。
说明:特别的,如果0)(='x f ,那么函数)(x f y =在这个区间内是_____________。
2.函数)(x f 的单调增区间,可通过解不等式_____________求得,而单调减区间可由不等式_____________解得。
3.求可导函数)(x f 单调区间的步骤(1)____________________________(2)____________________________(3)____________________________【合作探究】1. 求下列函数的单调区间.62)1(24+-=x x y ;22ln )2(x x y +-= ;2. 函数x axx f -=3)(在R 上为减函数,求a 的取值范围.3. 求证:函数3223121y x x x =+-+在区间()2,1-内是减函数.4. 已知曲线106323-++=x x x y ,点),(y x P 在该曲线上移动,过点P 的切线设为l ,(1)求证:此函数在R 上单调递增;(2)求l 的斜率的范围.【巩固提高】1. 求下列函数的单调区间.(1)),0(,sin )(π∈-=x x x x f ; (2)x x x f 9)(+=;(3)x x x f ln )(=. 2. 已知函数)0(1)1(3)(223>+-+-=k k x k kx x f ,若)(x f 的单调减区间是)4,0(,求k 的值.3.已知函数32324)(x axx x f -+=在区间]1,1[-上是增函数,求实数a 的取值范围.★4.若函数x ax x f +=3)((1)求实数a 的取值范围,使)(x f 在R 上是增函数.(2)求实数a 的取值范围,使)(x f 恰好有三个单调区间. ★ 5.偶函数e dx cx bx ax x f ++++=234)(的图像过点)1,0(P ,且在1=x 处的切线方程为2-=x y ,求)(x f 的解析式.。
课题:函数的单调性与导数(导学案)
学习目标
1.了解函数的单调性与导数的关系
2.能运用导数研究函数的单调性,会求函数的单调区间。
自主学习
1、【思考】 如图(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应
地, .
(2)从最高点到入水,运动员离水面的高h 随时间t 的增加而减少,即()h t 是减函数.相应地, .
2、【思考】 导数的几何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么函数的单调性与导数有什么关系呢?
【引导】可先分析函数的单调性与导数的符号之间的关系.
【探究】观察下面函数的图象,探讨函数的单调性与其导数正负的关系.
(1)函数y x =的定义域为 ,并且在定义域上是 ,其导数 ;
(2)函数2y x =的定义域为 ,在(,0)-∞
上单调 ,在(0,)+∞上单调 ;
而2()2y x x ''==,当0x <时,其导数 ;当0x >时,其导数 ;当0x =时,其导数 。
(3)函数3y x =的定义域为 ,在定义域上为 ;
而32()3y x x ''==,若0x ≠,则其导数 ,当0x =时,其导数 ;
(4)函数1
y x
=
的定义域为(,0)(0,)-∞+∞,在(,0)-∞上单调 ,在(0
,)+∞上单调 而211
()y x x
''==-,因为0x ≠,显然0y '<.
【总结】以上四个函数的单调性及其导数符号的关系说明,在区间(,)a b 内,如果函数()y f x =在这个区间内单调递增,那么 ;如果函数()y f x =在这个区间内单调递减,那么 .
【思考】函数在某个点处的导数值与函数在该点处的单调性是怎样的关系?
【探究】如图,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.
在0x x =处,'0()0f x >,切线是“ ”式的,这时,函数()f x 在0x 附近单调 ;
在1x x =处,'0()0f x <,切线是“ ”式的,这时,函数()f x 在1x 附近单调 . 结论:
函数的单调性与导数的关系:在某个区间(,)a b 内,
如果'()0f x >,那么函数()y f x =在这个区间内 ; 如果'()0f x <,那么函数()y f x =在这个区间内
特别的,如果'()0f x =,那么函数()y f x =在这个区间内是 . 问:()0f x '>能推出()f x 为增函数,反过来成立么?
课本:例1 例2 例3
小结:求解函数()y f x =单调区间的步骤:
巩固练习
1.函数
)(x f y =是定义在
R 上的可导函数,则
)(x f y =为
R 上的单调增函数是
0)(>'x f 的 ( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.若在区间),(b a 内有0)(>'x f ,且0)(≥a f ,则在区间),(b a 内有 ( )
A.
0)(>x f B.0)(<x f C.0)(=x f D.不能确定
3.(2009.广东高考)函数x e x x f )3()(-=的单调递增区间是 ( )
A.)2,
(-∞ B.)3,0( C.)4,1( D.),2(∞+
4.若函数)(3x x a y -=的递减区间为)3
3,33(-,则a 的范围是 ( )
A.0>a
B.01<<-a
C.1>a
D.10<<a
5.函数c bx ax x x f +++=23)(,其中c b a ,,为实数,
当032
<-b a
时,)(x f 是 ( )
A.增函数
B.减函数
C.常数
D.既不是增函数也不是减函数 6.
x x y sin +=在),0[π上是 ( )
A.增函数
B.减函数
C.在)2,
0(π内为增函数,),2(ππ内为减函数
D.在),0(π内为减函数,),(ππ内为增函数
7.若函数1223++=ax x y (a 为常数)在区间)0,(-∞和),2(∞+内单调递增,在区间)2,0(单调递减,求a 的值.
8.确定函数)1ln(1+-=x x
y 的单调区间.。