贵州省2018-2019年高二上学期第一次月考数学试题
- 格式:doc
- 大小:821.00 KB
- 文档页数:15
遵义四中2016~2017学年度第一学期9月月考试卷高二数学第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分,把答案填涂在答题卡相应位置1.已知集合{|21}A x x =-<<,2{|20}B x x x =-≤,则A B =( ) A .{|01}x x << B .{|01}x x ≤< C .{|11}x x -<≤ D . {|21}x x -<≤ 2.0sin210=( )A .12 B .12- C .32 D .32- 3.下列命题中正确的个数为( )①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱; ②残差平方和越小的模型,模型拟合的效果越好;③用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好. A .1 B .2 C .3 D .04.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A x 和B x ,样本标准差分别为A S 和B S ,则( )A .B A B A S S x x <>, B .,A B A B x x S S >>C .,A B A B x x S S <>D .,A B A B x x S S << 5.执行如图所示的程序框图,若输入8,n S ==则输出的( )A. 67B. 49C. 89D. 10116.二进制数1101(2)化为五进制数为( )A 、32(5)B 、23(5)C 、21(5)D 、12(5)7.根据秦九韶算法求1x =-时432()4361f x x x x x =+-+-的值,则2v 为 ( ) A.1- B.5- C.21 D.22- 8.一空间几何体的三视图如图所示,则该几何体的体积为( ) A .12 B .6 C .4 D .2 9.等差数列{}n a 中,如果42a =,那么26a a 的最大值为( ) A .2 B .4 C .8 D .16 10.函数2()sin sin()3f x x x π=+-图象的一条对称轴为( ) A .2x π=B .x π=C .6x π=D .3x π=11.在三棱柱111ABC A B C -中,ABC ∆是等边三角形,⊥1AA 平面ABC ,2=AB ,21=AA ,则异面直线1AB 和1BC 所成角的正弦值为( ) A .1 B .77 C .12D .32 12.已知函数2|log |,02()sin(),2104x x f x x x π<<⎧⎪=⎨≤≤⎪⎩,若存在实数1x ,2x ,3x ,4x ,满足1234x x x x <<<,且1234()()()()f x f x f x f x ===,则3412(2)(2)x x x x -⋅-⋅的取值范围是( )A .(4,16)B .(0,12)C .(9,21)D .(15,25)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上13.右边的程序中, 若输入5x =,则输出的y = . 14.用辗转相除法求两个数323、893的最大公约数是__________.15.某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第10组抽出的号码应是_________. 16.在直径AB =2的圆上有长度为1的动弦CD ,则BD AC ⋅的最大值是 .三.解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤17.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表: 质量指标值分组 [)75,85[)85,95[)95,105[)105,115[)115,125频数 62638228(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及中位数(同一组中的数据用该组区间的中点值作代表,保留一位小数);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?18.已知数列{}n a 的前n 项和n S 和通项n a 满足1(1)2n n S a =-.(1)求数列{}n a 的通项公式; (2)设函数13()log f x x =,12()()()n n b f a f a f a =+++…,求1231111n nT b b b b =++++….19.已知在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且0)cos(3sin 22=++C B A . (1)求角A 的大小; (2)若ABC ∆的面积S a ==求sin sin B C +的值.20.在一段时间内,某种商品价格x (万元)和需求量y 之间的一组数据为:(2)如果x 与y 之间具有线性相关关系,求出回归直线方程,并预测当价格定为 1.9万元,需求量大约是多少?(精确到0.01)参考数据:8.1=x ,4.7=y ,6.16512=∑=i i x ,6251=∑=i i i y x ,2.53)(512=-∑=i i y y61.428.21≈参考公式:相关系数∑∑∑===-⋅---=ni ni iini iiy yx x y yx x r 11221)()())((回归方程x b a yˆˆˆ+= 中斜率和截距的最小二乘估计公式分别为:,21.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.22.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE的面积最大.x byaˆˆ-=∑∑==---=niiniiixxyyxxb121)())((ˆ参考答案1.B【解析】试题分析:解二次不等式可得,故选B.考点:1、集合的基本运算;2、二次不等式.2.B【解析】试题分析:由题意得,,故选B.考点:诱导公式、三角函数求值.3.A【解析】试题分析:根据“残差”的意义、线性相关系数和相关指数的意义,即可作出正确的判断.解:根据线性相关系数r的绝对值越接近1,两个变量的线性相关性越强;反之,线性相关性越弱,判断①错误;根据比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果就越好,判断②正确;根据用相关指数R2刻画回归的效果时,R2的值越大说明模型的拟合效果就越好,判断③错误;综上,正确的命题是②.故选:A.考点:相关系数.4.A【解析】试题分析:由图象,得;故选A.考点:样本的数字特征.【思路点睛】本题考查样本的数字特征、折线图和学生的识图能力;样本平均数反映的是样本数据的平均水平,比较两图象中各点的纵坐标,可得两样本的平均数的大小关系,样本方差或标准差反映的是样本数据的稳定性和集中性,由图象中的各点的集中程度可比较两样本的标准差的大小关系. 5.B【解析】试题分析:当i=2时,,i=4;当i=4时,,i=6;当i=6时,,i=8;当i=8时,,i=10;不满足循环的条件i≤8,退出循环,输出S=,故选B.考点:程序框图6.B【解析】试题分析:利用二进制化为十进制和十进制化为其它进制的“除5取余法”方法即可得出,1101(2)=1×23+1×22+0+1×20=13(10) ,再由“除5取余法”得13,即化成5进制是23(5),故选B考点:进位制的转化规则7.B【解析】试题分析:,考点:秦九韶算法8.D【解析】试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是,下底是,垂直于底边的腰是,一条侧棱与底面垂直,这条侧棱长是,∴四棱锥的体积是,故选D.考点:由三视图求面积、体积.【方法点睛】本题考查由三视图求几何体的体积,在三个图形中,俯视图确定锥体的名称,即是几棱锥,正视图和侧视图确定锥体的高,注意高的大小,容易出错.几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是,下底是,垂直于底边的腰是,一条侧棱与底面垂直,这条侧棱长是,侧视图是最不好理解的一个图形,注意图形上底虚线部分,根据体积公式得到结果.9.B【解析】试题分析:由等差数列的性质及,得,由题意可知当为正时,最大,且,即,当且仅当时,取最值,故选项为B.考点:(1)等差数列的性质;(2)均值不等式.10.D【解析】试题分析:,故选D.考点:三角函数的图象与性质.11.A【解析】试题分析:如图,作交的延长线于,连接,则就是异面直线和所成的角(或其补角),由已知,,,由知,所以异面直线和所成的角为直角,正弦值为1.故选A.考点:异面直线所成的角.12.B【解析】试题分析:在平面直角坐标系中,作出函数的图象如图所示:因为存在实数,,,,满足,且,所以由图象知:,,,,当时,直线与函数的图象有个交点,直线越往上平移,的值越小,直线直线越往下平移,的值越大,因为当时,,当时,,所以的取值范围是,故选B.考点:函数的图象.13.2【解析】试题分析:INPUT的意思就是输入一数,然后作出选择,IF即为假如输入的数小于0,THEN即则执行;ELSE即为假如输入的数大于或等于0时,执行,最后输出结果;本题输入的是,所以执行,即。
一、单选题1.设集合,集合N 为函数的定义域,则( ){}|12M x x =-≤≤()lg 1y x =-M N ⋂=A . B . C . D . ()12,[]12,[)12,(]12,【答案】D【分析】根据对数的真数为正数化简集合,进而由集合的交运算即可求解. (1,)N =+∞【详解】由,所以, 101x x ->⇒>(1,)N =+∞又,所以, {}|12M x x =-≤≤(]1,2M N = 故选:D2.若,则( ) 43z i =-zz =A .1 B .-1C .D .4355i +4355i -【答案】C【分析】根据共轭复数与模长的求解计算即可.【详解】因为,故. 43z i =-4355z i z==+故选:C.3.已知椭圆中,长轴长为10 )22221(0)x y a b a b +=>>A .B .10C .D .【答案】A【分析】根据椭圆长轴和离心率的概念即可求解.【详解】,所以;又因为 210a = 5a =c e a ==得c =2c =故选:A.4.设是直线,,是两个不同的平面,下列命题中正确的是( ) l αβA .若,,则 //l α//l β//αβB .若,,则 αβ⊥l α⊥l β⊥C .若,,则 αβ⊥//l αl β⊥D .若,,则 //l αl β⊥αβ⊥【答案】D【解析】由线面平行的性质和面面平行的判定可判断选项A ;由面面垂直的性质定理和线面平行的性质可判断选项B ;由面面垂直的性质定理和线面位置关系可判断选项C ;由线面平行的性质和面面垂直的判定定理可判断选项D ;【详解】对于选项A :若,,则或与相交,故选项A 不正确; //l α//l β//αβαβ对于选项B :若,,则或,故选项B 不正确;αβ⊥l α⊥//l βl β⊂对于选项C :若,,则或或与相交,故选项C 不正确;αβ⊥//l α//l βl β⊂l β对于选项D :若,由线面平行的性质定理可得过的平面,设,则,所以//l αl γm γα= //m l ,再由面面垂直的判定定理可得,故选项D 正确;m β⊥αβ⊥故选:D5.已知{}是等差数列,且,则=( ) n a 466,4a a ==10a A .2 B .0C .D .2-4-【答案】B【分析】根据等差数列基本量的计算即可求解.【详解】设等差数列的首项为,公差为,由,即,解得. {}n a 1a d 4664a a =⎧⎨=⎩113654a d a d +=⎧⎨+=⎩191a d =⎧⎨=-⎩所以,所以. 1(1)9(1)10n a a n d n n =+-=--=-+1010100a =-+=故选:B6.已知点P (x ,y )是曲线上的一动点,则点P (x ,y )到直线的距离的最小值为2y x =240x y --=( ) ABCD .35【答案】C【分析】当曲线在点P 处的切线与已知直线平行时点P 到该直线的距离最小,结合导数的几何意义和点到直线的距离公式计算即可求解.【详解】当曲线在点P 处的切线与直线平行时,点P 到该直线的距离最小,240x y --=,2y x '=由直线的斜率,则, 240x y --=2k =22x =得,有,所以, 1x =21y x ==(1,1)P ∴到直线距离. (1,1)P 240x y --=d ==故选:C.7.如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是( )A .B .C .D .22sin 1xy x =+321x xy x -=+22cos 1x xy x =+3231x xy x -+=+【答案】D【分析】利用赋值法,结合图形和排除法即可判断ABC ;利用导数和零点的存在性定理研究函数的单调性,结合图形即可判断D. 【详解】A :设,由得, ()22sin 1x f x x =+π3π2<<sin 30>则,结合图形,不符合题意,故A 错误; ()2sin 33010f =>B :设,则,结合图形,不符合题意,故B 错误;()321x xg x x -=+()10g =C :设,当时,,,22cos ()1x x h x x =+π0,2x ⎡⎤∈⎢⎥⎣⎦cos [0,1]x ∈212x x +≥所以,即, 222cos 20111x x xx x ≤≤≤++0()1h x ≤≤当且仅当时等号成立,结合图形,不符合题意,故C 错误;1x =D :设,则, 323()1x xu x x -+=+(0)x >422263()(1)x x u x x --+'=+(0)x >设,则,42()63v x x x =--+(0)x >3()4120v x x x '=--<所以函数在上单调递减,且, ()v x (0,)+∞(0)30,(1)40v v =>=-<故存在,使得,0(0,1)x ∈0()0v x =所以当时,即,当时,即,0(0,)x x ∈()0v x >()0u x '>0(,)x x ∈+∞()0v x <()0u x '<所以函数在上单调递增,在上单调递减,结合图形,符合题意,故D 正确. ()u x 0(0,)x 0(,)x +∞故选:D.8.已知△ABC 的三个内角分别为A ,B ,C ,且满足,则的最大值为222sin 2sin 3sin C A B =-tan B ( ) ABCD .54【答案】B【分析】利用正弦定理及余弦定理表示,结合基本不等式求得的取值范围,从而求得cos B cos B 的取值范围,即得.tan B 【详解】依题意,222sin 2sin 3sin C A B =-由余弦定理得,, 22223c a b =-2222133b ac =-所以 222222222222114143333cos 2226a c a c a ca cb ac B ac ac ac ac+-+++-+====⋅,当且仅当时等号成立, 1263≥=2a c =即为锐角,,, B 2cos 13B ≤<22419cos 1,19cos 4B B ≤<<≤,222222sin 1cos 15tan 10,cos cos cos 4B B B B B B -⎛⎤===-∈ ⎥⎝⎦所以. tan B 故选:B.二、多选题9.下列说法正确的是( ) A .直线在y 轴上的截距为2 24y x +=B .直线必过定点(2,0) ()20R ax y a a --=∈C .直线的倾斜角为10x +=2π3D .过点且垂直于直线的直线方程为 ()2,3-230x y -+=210x y ++=【答案】BD【分析】根据直线的截距式方程即可判断A ,根据直线恒过定点的求法即可判断B ,根据直线斜率的定义即可判断C ,根据垂直直线斜率之积为-1,结合直线的点斜式方程即可判断D. 【详解】A :直线在轴上的截距为,所以A 不正确; 24y x +=y 2-B :由,得,20ax y a --=(2)0x a y --=令,解得:,所以该直线恒过定点,故B 正确;200x y -=⎧⎨=⎩20x y =⎧⎨=⎩(2,0)C :设直线的倾斜角为,,斜率为 10x +=α(]0,απ∈由,故C 错误;tan α=56πα=D :由直线,得该直线的斜率为,230x y -+=12所以过点且垂直于直线的直线斜率为, (2,3)-230x y -+=2故其方程为,即,故D 正确. 32(2)y x -=-+210x y ++=故选:BD.10.斜率为1的直线l 经过抛物线的焦点F ,且与抛物线相交于两点则下24y x =()()1122,,,A x y B x y 列结论正确的有( ) A .B .抛物线的准线方程为 (1,0)F 1y =-C .D .3OA OB ⋅=-10AB =【答案】AC【分析】由抛物线的性质判断AB ;联立直线l 和抛物线方程,利用韦达定理,以及数量积公式、抛物线的定义判断CD.【详解】由抛物线知,焦点,准线方程为,所以A 正确,B 不正确.24y x =(1,0)F =1x -由,消去得:,所以, 214y x y x=-⎧⎨=⎩y 2610x x -+=126x x +=121=x x 所以,所以C 正确; 121212121212(1)(1)2()13OA OB x x y y x x x x x x x x ⋅=+=+--=-++=- 所以,所以D 不正确. 12||28AB x x =++=故选:AC11.已知函数,其图像相邻两条对称轴之间的距离为,且函数()()cos (0,2f x x πωϕωϕ=+><π2是奇函数,则下列判断正确的是( )π3f x ⎛⎫- ⎪⎝⎭A .函数f (x )的最小正周期为B .函数f (x )的图像关于点(,0)对称 ππ6C .函数f (x )在上单调递增D .函数f (x )的图像关于直线对称 3ππ4⎡⎤⎢⎥⎣⎦,7π12=-x 【答案】ABD【分析】利用函数图像相邻两条对称轴之间的距离为和函数是偶函数,求出π2π()3f x -,从而可判断选项A 正确;再利用余弦函数的图像与性质,可以判断出选项()cos(2π)6=+f x x BCD 的正误.【详解】因为函数图像相邻两条对称轴之间的距离为,则,π2π22T =πT ∴=又,2π,0T ωω=>2ω∴=又函数是偶函数,因为, π()3f x -ππ2π()cos(2())cos(2)333f x x x ϕϕ-=-+=-+所以,即, 2πππ(Z)32k k ϕ-+=+∈7ππ(Z)6k k ϕ=+∈又,,则.π2ϕ<π6ϕ∴=()cos(2π)6=+f x x 函数最小正周期,故选项A 正确; πT =函数图像对称点的横坐标为:,即, ππ2π(Z)62x k k +=+∈ππ(Z)62k x k =+∈令时,,故选项B 正确; 0k =π6x =又由:,得到 ππ2π22π(Z)6k x k k -+≤+≤∈7ππππ(Z)1212k x k k -+≤≤-+∈所以函数的单调增区间为:, ()cos(2π)6=+f x x 7πππ,π(Z)1212k k k ⎡⎤-+-+∈⎢⎥⎣⎦令时,得到一个增区间为: 1k =-5π11π,1212⎡⎤⎢⎥⎣⎦故选项C 错误;函数图像的对称所在直线方程为;, πππ2π,(Z)6122k x k x k +==-+∈令时,,故选项D 正确. 1k =-7π12=-x 故选:ABD12.将全体正整数按照以下排列的规律排成一个三角形数阵,下列结论正确的是( )A .第8行最右边的数为38B .第10行从右向左第个5数为51C .第10行所有数的和为505D .第64行从左向右第7个数为2023 【答案】BCD【分析】根据三角数阵可知第行共有个数,且第行的最后一个数字是:,即为n n n 123n ++++ .结合等差数列前n 项求和公式计算,依次判断选项即可. (1)2n n +【详解】由三角形数阵可知, ①第行共有个数;n n ②第行的最后一个数字是:,即为. n 123n ++++ (1)2n n +A :因为,故A 错误; 1234567836+++++++=B :因为,1234567891055+++++++++=所以第行中的个数字依次为.故B 正确; 101046,47,48,49,50,51,52,53,54,55C :由,故C 正确;()5545104655464748495051525354555052S S ⨯+-=+++++++++==D :由,知第行最后的一个数为;()6316312346320162⨯++++++== 632016所以第行中的数字从左到右依次为642017,2018,2019,2020,2021,2022,2023,2024,,第7个数为2023,故D 正确. L 故选:BCD.三、填空题13.已知函数的最小正周期为,则___________. ()()sin 0f x x ωω=>πω=【答案】2【分析】利用正弦型函数的周期公式可求得的值.ω【详解】因为函数的最小正周期为,则. ()()sin 0f x x ωω=>π2π2πω==故答案为:.214.已知直线和圆相交于、两点,则弦长:210l x y --=22:210C x y y +--=A B AB =__________.【详解】由圆方可知其圆心坐标为,半径∴C (0,1)r =d. AB ===点睛:本题主要考查了直线与圆相交求截得弦长问题,属于基础题;求直线被圆所截得的弦长时,根据圆的性质通常考虑由弦心距,弦长的一般作为直角边,圆的半径作为斜边,利用勾股定理来解决问题,通常还会用到点到直线的距离公式.15.已知双曲线,若过右焦点F 且倾斜角为的直线与双曲线的右支有两个22221(0,0)x y a b a b-=>>30 交点,则此双曲线离心率的取值范围是___________.【答案】【分析】根据题意可知双曲线的渐近线方程的斜率需小于直线的斜率,得,结合b y x a =b <.b =【详解】由题意知,双曲线的渐近线方程为, by x a=±要使直线与双曲线的右支有两个交点, 需使双曲线的渐近线方程的斜率小于直线的斜率, by x a=即,即,由tan 30b a ︒<=b <b =,整理得,所以 <2234c a <c e a =<因为双曲线中,所以双曲线的离心率的范围是, 1e >故答案为:. 16.已知三棱锥的所有顶点都在球O 的球面上,SC 是球O 的直径若平面平面S ABC -.SCA ⊥SCB ,,,三棱锥的体积为9,则球O 的表面积为______. SA AC =SB BC =S ABC -【答案】36π【详解】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得 ,解得r=3. 112932r r r ⨯⨯⨯⨯=球O 的表面积为: .2436r ππ=点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.四、解答题17.已知数列{a n }的前n 项和为S n ,且满足,. 13a =123n n S a ++=(1)求数列{a n }的通项公式;(2)若等差数列{b n }的前n 项和为T n ,且,,求数列的前n 项和Q n .11T a =33T a =11{}n n b b +【答案】(1)(2)3nn a =9(21)nn +【分析】(1)根据数列的通项与的关系,化简求得,得到数列是首项为n a n S 13()n n a a n N ++=∈{}n a 3、公比为3的等比数列,即求解通项公式; (2)由(1)可得,得到,利用裂项法,3(21)n b n =-()()11111192n 12n 1182n 12n 1n n b b +⎛⎫==- ⎪-+-+⎝⎭即可求解.【详解】(1)当时,得, 1n =29a =由,得,123n n S a ++=123(2)n n S a n -+=≥两式相减得,又,∴,112()n n n n S S a a -+-=-1n n n S S a --=13(2)n n a a n +=≥又,∴,显然, 213a a =13()n n a a n N ++=∈10,3n n na a a +≠=即数列是首项为3、公比为3的等比数列,∴;{}n a 1333n nn a -=⨯=(2)设数列的公差为,则有,{}n b d 13b =由得,解得,∴,33T a =13327b d +=6d =3(1)63(21)n b n n =+-⨯=-又, ()()11111192n 12n 1182n 12n 1n n b b +⎛⎫==- ⎪-+-+⎝⎭∴==. n 111111Q 1183352n 12n 1⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111182n 1⎛⎫- ⎪+⎝⎭()n 92n 1+【点睛】本题主要考查等比数列的定义及通项公式、以及“裂项法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“裂项法”之后求和时,弄错项数导致错解,能较好的考查逻辑思维能力及基本计算能力等.18.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足.222sin sin sin sin sin A B C B C --=(1)求角A ;(2)若,求△ABC 周长的取值范围. 6a =【答案】(1) 2π3A =(2)(12,6+【分析】(1)根据正弦定理边角互化,可得,由余弦定理即可求解,222a b c bc --=(2)根据正弦定理得,由内角和关系以及和差角公式可得b B=1sin 2c B B ⎫=-⎪⎪⎭,进而由三角函数的性质即可求解.【详解】(1)由正弦定理可得:,222a b c bc --=,, 2221cos 22c b a A bc +-∴==-()0,πA ∈ 2π3A ∴=(2)因为,,所以,故πA B C ++=2π3A =π3B C +=ππ(0)33C BB =-<<由正弦定理得: 62πsin sin sin sin3a bc A B C====所以,b B=π1sin 32c C B B B ⎫⎛⎫==-=-⎪ ⎪⎪⎝⎭⎭所以周长 ABCA 1π6sin 623a b cB B B B ⎫⎛⎫=++=++-=++⎪ ⎪⎪⎝⎭⎭因为,则π03B <<ππ2π<333B <+πsin 13B ⎛⎫<+≤ ⎪⎝⎭故π12663B ⎛⎫<++≤+ ⎪⎝⎭求周长的取值范围为.ABC A (12,6+19.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备9.810.3 10.0 10.29.99.810.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.x y 21s 22s(1)求,,,;x y 21s 22s(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高). 【答案】(1);(2)新设备生产产品的该项指标的均值较旧设221210,10.3,0.036,0.04x y s s ====备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断. 【详解】(1), 9.810.31010.29.99.81010.110.29.71010x +++++++++==, 10.110.410.11010.110.310.610.510.410.510.310y +++++++++==, 22222222210.20.300.20.10.200.10.20.30.03610s +++++++++==. 222222222220.20.10.20.30.200.30.20.10.20.0410s +++++++++==(2)依题意,, 0.320.15y x -==⨯===,所以新设备生产产品的该项指标的均值较旧设备有显著提高. y x -≥20.设函数,其中.22()3ln 1f x a x ax x =+-+0a >(1)讨论的单调性;()f x (2)若的图象与轴没有公共点,求a 的取值范围.()y f x =x 【答案】(1)的减区间为,增区间为;(2). ()f x 10,a ⎛⎫ ⎪⎝⎭1,+a ⎛⎫∞ ⎪⎝⎭1a e >【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据及(1)的单调性性可得,从而可求a 的取值范围.()10f >()min 0f x >【详解】(1)函数的定义域为,()0,∞+又, ()23(1)()ax ax f x x+-'=因为,故,0,0a x >>230ax +>当时,;当时,; 10x a<<()0f x '<1x a >()0f x '>所以的减区间为,增区间为. ()f x 10,a ⎛⎫ ⎪⎝⎭1,+a ⎛⎫∞ ⎪⎝⎭(2)因为且的图与轴没有公共点,()2110f a a =++>()y f x =x 所以的图象在轴的上方,()y f x =x 由(1)中函数的单调性可得, ()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭故即. 33ln 0a +>1a e>【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化. 21.如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥体积最大时,求面MAB 与面MCD 所成二面角的正切值.M ABC -【答案】(1)证明见解析;(2)2.【分析】(1)证得平面,结合面面垂直的判定定理即可证出结论;DM ⊥BMC (2)当在的中点位置时体积最大,建立空间直角坐标系,利用空间向量的夹角坐标公式即M A AB 可求出结果.【详解】(1)由题设知,平面平面,交线为.CMD ⊥ABCD CD 因为,平面,BC CD ⊥BC ⊂ABCD 所以平面,平面,BC ⊥CMD DM ⊂CMD 故,因为是上异于,的点,且为直径, BC DM ⊥M A CDC D DC 所以,又,平面,DM CM ⊥BC CM C =I ,BC CM ⊂BMC 所以平面,而平面,DM ⊥BMC DM ⊂AMD故平面平面;AMD ⊥BMC (2)以D 为坐标原点,的方向为轴正方向,的方向为轴正方向,建立如图所示的空间DA x DC y 直角坐标系.D xyz -当三棱锥M −ABC 体积最大时,M 为的中点.CD 由题设得,()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,1,1D A B C M()()()2,1,1,0,2,0,2,0,0AM AB DA =-==设是平面MAB 的法向量,则(),,n x y z = 即,可取, 00n AM n AB ⎧⋅=⎪⎨⋅=⎪⎩ 2020x y z y -++=⎧⎨=⎩()1,0,2n = 又是平面的一个法向量,因此 DAMCD, cos ,n DA n DA n DA ⋅=== []0π,,n DA ∈ 得, sin ,n DA = tan ,2n DA = 所以面与面所成二面角的正切值是.MAB MCD 222.已知椭圆的左,右焦点分别为、,离心率为,直线l 经过点2222:1(0)x y C a b a b+=>>1F 2F 122F 且与椭圆C 交于不同两点A ,B ,当A 是椭圆C 上顶点时,l 与圆相切.223x y +=(1)求椭圆C 的标准方程;(2)求的取值范围.11F A F B ⋅ 【答案】(1) 2211612x y +=(2)[]12.7-【分析】(1)根据题意列出方程组,解之即可;22212bc c e a c a b⎧=⎪⎪==⎨⎪⎪=-⎩(2)当直线的斜率不存在时,易得;当直线的斜率存在时,设直线方程为l 117F A F B ⋅= l ,,,联立椭圆方程,利用韦达定理和平面向量数量积的坐标表示可得(2)y k x =-11(,)A x y 22(,)B x y ,令得,结合不等式的性质计算即可求解. 11F A F B ⋅= 22283634k k -+2343t k =+≥11577F A F B t ⋅=- 【详解】(1)当A 为椭圆的上顶点时,直线l 与圆相切, 则圆心到直线l ,a =有,得,1122bc a =bc =则,解得22212bc c e a c a b⎧=⎪⎪==⎨⎪⎪=-⎩4,a b ==所以椭圆的标准方程是; C 2211612x y +=(2)由(1)知,则椭圆的左焦点,当直线的斜率不存在时,2c =1(2,0)F -l 易求得,,则;(2,3)A (2,3)B -11443(3)7F A F B ⋅=⨯+⨯-= 当直线的斜率存在时,设直线方程为,,. l (2)y k x =-11(,)A x y 22(,)B x y 由,消得,, ()22211612y k x x y ⎧=-⎪⎨+=⎪⎩y 2222(34)1616480k x k x k +-+-=, 21221634k x x k ∴+=+2122164834k x x k-=+ 21112121212(2)(2)(2)(2)(2)(2)F A F B x x y y x x k x x ⋅=+++=+++--2221212(1)2(1)()4(1)k x x k x x k =++-+++, 2222222221648162836(1)2(1)4(1)343434k k k k k k k k k --=+⨯+-⨯++=+++令,则, 2343t k =+≥2112283675757734k t F A F B k t t--⋅===-+ ,,, 3t ≥ 1103t <≤571277t -≤-<综上可知,的取值范围是. 11F A F B ⋅ []12,7-。
双峰县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}2. 已知偶函数f (x )满足当x >0时,3f (x )﹣2f ()=,则f (﹣2)等于( )A .B .C .D .3. 设x ∈R ,则x >2的一个必要不充分条件是( )A .x >1B .x <1C .x >3D .x <34. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能5. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .6. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=7. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 8. 如图,该程序运行后输出的结果为( )A.7 B.15 C.31 D.639.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件10.已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B 两点,若△AFB的周长为4,则C的方程为()1A.+=1 B.+y2=1 C.+=1 D.+=111.α是第四象限角,,则sinα=()A.B.C.D.12.已知函数f(x)=a x(a>0且a≠1)在(0,2)内的值域是(1,a2),则函数y=f(x)的图象大致是()A.B.C.D.二、填空题13.直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(1,0)之间距离的最小值为.14.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是.15.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度.16.S n =++…+= .17.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= . 18.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .三、解答题19.(本小题满分10分)已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θθ=⎧⎨=⎩,(α为参数),经过伸缩变换32x xy y'=⎧⎨'=⎩后得到曲线2C . (1)求曲线2C 的参数方程;(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.20.已知一个几何体的三视图如图所示. (Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A 为所在线段中点,点B 为顶点,求在几何体侧面上从点A 到点B 的最短路径的长.21.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.22.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式.23.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.24.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?双峰县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.2.【答案】D【解析】解:∵当x>0时,3f(x)﹣2f()=…①,∴3f()﹣2f(x)==…②,①×3+③×2得:5f(x)=,故f(x)=,又∵函数f(x)为偶函数,故f(﹣2)=f(2)=,故选:D.【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x>0时,函数f(x)的解析式,是解答的关键.3.【答案】A【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,x<1是x>2的既不充分也不必要条件,x>3是x>2的充分条件,x<3是x>2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.4.【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2﹣mx﹣1=0,根据韦达定理得:x1x2=﹣1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=﹣1+1=0,则⊥,∴△AOB为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.5.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A(,),B(,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1∴离心率的取值范围是1<e<故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.6.【答案】D【解析】考点:直线的方程.7.【答案】B【解析】8.【答案】如图,该程序运行后输出的结果为()D【解析】解:因为A=1,s=1判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2;判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3;判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4;判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5;判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5.故答案为5.【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.9.【答案】A【解析】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.10.【答案】A【解析】解:∵△AFB的周长为4,1∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.11.【答案】B【解析】解:∵α是第四象限角,∴sinα=,故选B.【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.12.【答案】B【解析】解:函数f(x)=a x(a>0且a≠1)在(0,2)内的值域是(1,a2),则由于指数函数是单调函数,则有a>1,由底数大于1指数函数的图象上升,且在x轴上面,可知B正确.故选B.二、填空题13.【答案】.【解析】解:∵△AOB是直角三角形(O是坐标原点),∴圆心到直线ax+by=1的距离d=,即d==,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d==≥,∴点P(a,b)与点(1,0)之间距离的最小值为.故答案为:.【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.14.【答案】.【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外区域D:表示正方形OABC,(如图)其中O为坐标原点,A(2,0),B(2,2),C(0,2).因此在区域D内随机取一个点P,则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,且在扇形OAC的外部,如图中的阴影部分∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.15.【答案】201616.【答案】【解析】解:∵==(﹣),∴S n=++…+=[(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣)=,故答案为:.【点评】本题主要考查利用裂项法进行数列求和,属于中档题.17.【答案】3.【解析】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4,∴x=3,故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.18.【答案】()0,2x π∃∈,sin 1≥【解析】试题分析:“(0,)2x π∀∈,sin 1x <”的否定是()0,2x π∃∈,sin 1≥ 考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.三、解答题19.【答案】(1)3cos 2sin x y θθ=⎧⎨=⎩(为参数);(2【解析】试题解析: (1)将曲线1cos :sin x C y αα=⎧⎨=⎩(α为参数),化为221x y +=,由伸缩变换32x x y y '=⎧⎨'=⎩化为1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩, 代入圆的方程211132x y ⎛⎫⎛⎫''+= ⎪ ⎪⎝⎭⎝⎭,得到()()222:194x y C ''+=,可得参数方程为3cos2sinxyαα=⎧⎨=⎩;考点:坐标系与参数方程.20.【答案】【解析】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S圆锥侧=×2π×2×2=4π;S圆柱侧=2π×2×4=16π;S圆柱底=π×22=4π.∴几何体的表面积S=20π+4π;(Ⅱ)沿A点与B点所在母线剪开圆柱侧面,如图:则AB===2,∴以从A点到B点在侧面上的最短路径的长为2.21.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当,即,时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为22.【答案】【解析】解:(1)由导数的几何意义f′(a+1)=12∴3(a+1)2﹣3a(a+1)=12∴3a=9∴a=3(2)∵f′(x)=3x2﹣3ax,f(0)=b∴由f′(x)=3x(x﹣a)=0得x1=0,x2=a∵x∈[﹣1,1],1<a<2∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.∴f(x)在区间[﹣1,1]上的最大值为f(0)∵f(0)=b,∴b=1∵,∴f(﹣1)<f(1)∴f(﹣1)是函数f(x)的最小值,∴∴∴f(x)=x3﹣2x2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.23.【答案】【解析】解:(Ⅰ)∵,∴a=c,∴b2=c2∴椭圆方程为+=1又点A(1,)在椭圆上,∴=1,∴c2=2∴a=2,b=,∴椭圆方程为=1 …(Ⅱ)设直线BD方程为y=x+b,D(x,y1),B(x2,y2),1与椭圆方程联立,可得4x2+2bx+b2﹣4=0△=﹣8b2+64>0,∴﹣2<b<2x1+x2=﹣b,x1x2=∴|BD|==,设d为点A到直线y=x+b的距离,∴d=∴△ABD面积S=≤=当且仅当b=±2时,△ABD的面积最大,最大值为…(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k==2﹣,k2==﹣21此时k1+k2=0,猜想λ=1时成立.证明如下:k+k2=+=2+m=2﹣2=01当λ=1,k1+k2=0,故当且仅当λ=1时满足条件…【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.24.【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求.。
2019-2020学年贵州省贵阳一中高二(上)第一次月考数学试卷一、选择题(本大题共12小题,共48.0分)1.已知下图的程序,如果程序执行后输出的结果是990,那么在UNTIL后面的“条件”应为()A. i>9B. i>=9C. i<=8D. i<82.执行图的程序框图,如果输入a=1,b=1,则输出的S=()A. 54B. 33C. 20D. 73.101(9)化为十进制数为()A. 9B. 11C. 82D. 1014.两个整数315和2016的最大公约数是()A. 38B. 57C. 63D. 835.读下面的程序:下面的程序在执行时如果输入6,那么输出的结果为()A. 6B. 720C. 120D. 16.如图是一个程序框图,则输出k的值为()A. 6B. 7C. 8D. 97.下列抽样方法中是简单随机抽样的是()A. 在机器传送带上抽取30件产品作为样本B. 在无限多个个体中抽取50个个体作为样本C. 箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,每次任意地拿出一个零件进和质量检验,检验后不再把它放回箱子里,直到抽10个零件为止D. 从50个个体中一次性抽取5个个体作为样本8.某班有34位同学,座位号记为01,02,…34,用如图的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是()A. 23B. 09C. 02D. 169.一个学校高三年级共有学生200人,其中男生有120人,女生有80人,为了调查高三复习状况,用分层抽样的方法从全体高三学生中抽取一个容量为25的样本,应抽取女生的人数为()A. 20B. 15C. 12D. 1010.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有()A. 60辆B. 80辆C. 70辆D. 140辆11.为了在程序运行后得到Y=16,应输入X的值是()A. 3或−3B. −5C. −5或5D. 5或−312.图是一个算法程序框图,若输入的x=3,则输出的y的值为()A. −2B. 6C. 0D. −1二、填空题(本大题共5小题,共20.0分)13.已知下列程序INPUT xIF x<=−1THENy=−x−1ELSEIF x>1THENy=−x∧2+1ELSEy=x−1END IFEND IFPRINT“y=”;yEND如果输出的是y=0.75,则输入的x是________.14.把“五进制”数1234(5)转化为“四进制”数的末尾数是______ .15.153与119的最大公约数为___;16.采用系统抽样方法,从123人中抽取一个容量为12的样本,则抽样距为______ .17.运行程序框图,若输出的S的值为29−1,则判断框内的整数a为29______ .三、解答题(本大题共5小题,共32.0分)18.用秦九韶算法计算f(x)=2x4+3x3+5x+4在x=2时的值.写出详细步骤.19.从两个班中各随机抽取10名学生,他们的数学成绩如下:甲班:76 74 82 96 64 76 78 72 54 68乙班:86 84 65 76 75 92 83 74 88 87画出茎叶图并分析两个班学生的数学学习情况.20.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.21.某校举办安全法规知识竞赛,从参赛的高一学生中抽出100人的成绩作为样本进行统计,并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分组,得到成绩分布的频率分布直方图(如图).(1)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩.22.为了了解某中学高二女生的身高情况,该校对高二女生的身高(单位:cm)进行了一次随机抽样测量,将所得数据整理后列出了如下频率分布表:(1)表中m,n,M,N所表示的数分别是多少?(2)绘制频率分布折线图.(3)估计该校高二女生身高小于162.5cm的人数占总人数的百分比.-------- 答案与解析 --------1.答案:C解析:解:∵输出的结果是990,即S=1×11×10×9,需执行3次,即i小于等于8时,退出循环,∴程序中UNTIL后面的“条件”应为i≤8.故选:C先根据输出的结果推出循环体执行的次数,再根据S=1×11×10×9=990得到程序中UNTIL后面的“条件”.本题主要考查了直到型循环语句,语句的识别问题是一个逆向性思维,一般认为学习是从算法步骤(自然语言)至程序框图,再到算法语言(程序),如果将程序摆在我们的面前,要识别逐个语句,整体把握,概括程序的功能,属于基础题.2.答案:C解析:【分析】本题考查了程序框图的应用问题,是基础题.模拟执行程序框图的运行过程,写出每次运行后S的值,求出程序运行后输出的S值.【解答】解:执行如图所示的程序框图知,第一次运行后S=2,a=2,b=3,k=2;第二次运行后S=7,a=5,b=8,k=4;第三次运行后S=20,a=13,b=21,k=6;此时不满足k≤4,则输出的n=20.故选C.3.答案:C解析:解:由题意,101(9)=1×92+0×91+1×90=82,故选:C.利用累加权重法,即可将九进制数转化为十进制,从而得解.本题考查九进制与十进制之间的转化,熟练掌握九进制与十进制之间的转化法则是解题的关键,属于基本知识的考查.4.答案:C解析:解:∵2016=315×6+126,315=2×126+63,126=63×2+0∴两个数315和2016的最大公约数是63,故选C.用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,余数为0,从而可得两个数的最大公约数.利用辗转相除法的关键是用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数.5.答案:B解析:【分析】按照程序的流程,写出前6次循环的结果,直到第六次,不满足循环的条件,执行输出.解决程序中的循环结构,一般先按照流程写出前几次循环的结果,找出循环遵循的规律.【解答】解:经过第一次循环得到S=1,I=2经过第二次循环得到S=2,I=3经过第三次循环得到S=6,I=4经过第四次循环得到S=24,I=5经过第五次循环得到S=120,I=6经过第六次循环得到S=720,I=7此时,不满足循环的条件,执行输出S故选B.6.答案:B解析:【分析】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结果,是基础题.根据题意,模拟程序框图的运行过程,即可得出输出的k值.【解答】解:程序框图的执行过程如下:S=1,K=10;S=10,k=9;11S=9,k=8;11S=8,k=7;循环结束,11故选B.7.答案:C解析:【分析】本题考查简单随机抽样的判定,属于基础题目.根据简单随机抽样的概念进行判定即可.【解答】解:A不是,因为传送带上的产品数量不确定;B不是,因为个体的数量无限;C是,因为满足简单随机抽样的定义;D不是,因为它不是逐个抽取.故选C.8.答案:D解析:【分析】本题考查了简单随机抽样,属于基础题.【简单】解:从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字中小于34的编号依次为21,32,09,16,其中第4个为16.故选D.9.答案:D解析:解:各层在样本和总体中的比例不变=10∴25×80200故选D根据在总体与样本中的比例相同的原理,比例乘以样本容量即得结果.本题主要考查分层抽样,要注意各层在样本和总体中的比例不变,属于基础题.10.答案:D解析:【分析】本题考查频率分布直方图,考查数据处理能力,是基础题.根据频率分布直方图,可得时速在[50,70)的汽车的频率,结合样本容量为200,把频率看作概率即可估算出结果.【解答】解:由于时速在[50,70)的数据对应的矩形高之和为0.03+0.04=0.07,由于数据的组距为10,故时速在[50,70)的数据的频率为:0.07×10=0.7,故时速在[50,70)的数据的频数为:0.7×200=140.故选D.11.答案:C解析:解:本程序含义为:输入x如果x<0,执行:y=(x+1)2否则,执行:y=(x−1)2因为输出y=16由y=(x+1)2,可得,x=−5由y=(x−1)2可得,x=5故x=5或−5故选C.首先分析程序含义,判断执行过程,对于结果为y=16,所以根据程序,分别计算求出x的值即可.本题选择选择结构的程序语句,根据两个执行语句分别计算,属于基础题.本题是考查条件结构的一道好题.12.答案:A解析:【分析】本题主要考查条件结构的程序框图.【解答】解:根据程序框图可知,其功能为计算分段函数y ={x +3,x <0,0,x =0,x −5,x >0的函数值,因为x =3,所以y =3−5=−2.故选A .13.答案:−1.75解析:【分析】本题考查条件语句及分段函数,由程序求解即可.【解答】解:由程序可知本题为根据输入的x ,求函数y ={−x −1,x ≤−1,x −1,−1<x ≤1,−x 2+1,x >1的函数值,我们可以分段令y =0.75,并验证,可求得x =−1.75.故答案为−1.7514.答案:2解析:解:五进制”数为1234(5)转化为“十进制”数为1×53+2×52+3×51+4=194. 194÷4=48…2,48÷4=12…0,12÷4=3…0,3÷4=0…3,把余数从下往上排序:3002,即:(194)10=(3002)4.其末位数字是2.故答案为:2.首先把五进制数字转化成十进制数字,用所给的数字最后一个数乘以5的0次方,依次向前类推,相加得到十进制数字,再用这个数字除以4,倒序取余.本小题考查进位制之间的转化,本题涉及到三个进位制之间的转化,实际上不管是什么之间的转化,原理都是相同的,属于基础题.15.答案:17解析:【分析】本题考查更相减损术与辗转相除法求最大公约数,这是一个算法案例,这种题目出现的比较少,但是要掌握题目的解法.解法一、用更相减损术求153与119的最大公约数,先用大数减去小数,再用减数和差中较大的数字减去较小的数字,这样减下去,直到减数和差相同,得到最大公约数.解法二、用辗转相除法求153与119的最大公约数.【解答】解:法一、用更相减损术,153−119=34,119−34=85,85−34=51,51−34=17,34−17=17,所以153与119的最大公约数就是17.法二、用辗转相除法,153=119×1+34,119=34×3+17,34=17×2+0,所以153与119的最大公约数就是17.故答案为17.16.答案:10解析:解:根据系统抽样方法的定义,从123人中抽取一个容量为12的样本,∵不能整除,∴先利用随机抽样方法剔除3个个体,=10.再确定系统抽样的抽样间隔为12012故答案为:10.从123人中抽取一个容量为12的样本,不能整除,先利用随机抽样方法剔除3个个体,再确定抽样间隔.本题考查了系统抽样方法,当总体个数不能被样本容量整除时,要先剔除部分个体,再确定抽样间隔.17.答案:10解析:解:29−129=1−129, 由程序框图可知,输出结果是首项为12,公比为12的等比数列的前k 项和,若输出的S 的值为1−129,则判断框中的整数a 为10.故答案为:10.模拟程序的运行,可知输出结果是首项为12,公比为12的等比数列的前k 项和,由输出的S 的值为1−129,可求判断框中的整数a 的值.本题主要考查了算法和程序框图的应用,着重考查了学生的逻辑推理能力,属于基础题. 18.答案:解∵f(x)=2x 4+3x 3+5x +4=(((2x +3)x +0)x +5)x +4,∴v 1=2×2+3=7,∴v 2=7×2+0=14,v 3=14×2+5=33,v 4=33×2+4=70,即f(2)=70.解析:利用秦九韶算法:f(x)=(((2x +3)x +0)x +5)x +4,将x =2代入计算,即可得x =2时的函数值.本题考查用秦九韶算法进行求多项式的值的运算,考查运算能力,是一个基础题.19.答案:解:两个班学生的数学成绩的茎叶图如下;甲班这10个同学数学成绩的中位数和平均数分别是75,74;乙班这10个同学数学成绩的中位数和平均数分别是83.5,81.甲班这10个同学数学成绩的方差:s 2=111.2,乙班这10个同学数学成绩的方差:s 2=61, ∴乙班同学的数学成绩更加稳定.解析:将数的十位作为一个主干(茎),将个位数作为分枝(叶),列在主干的左或右面,画出茎叶图;由茎叶图知,找出数据中最多的数据众数是出现次最多的数,把数据按照从小到大的顺序排列得到中位数;首先写出数据的平均数表示式和方差的表示式,把数据代入计算表示出数据的平均数和方差的表示式,两部分进行比较,得到结果.本题考查读茎叶图,考查求一组数据的平均数,考查求一组数据的方差,本题是一个平均数和方差的实际应用问题.20.答案:解:(1)x 甲=99+100+98+100+100+1036=100, x 乙=99+100+102+99+100+1006=100, S 甲2=16[(99−100)2+(100−100)2+(98−100)2+(100−100)2+(100−100)2+(103−100)2]=73.S 乙2=16[(99−100)2+(100−100)2+(102−100)2+(99−100)2+(100−100)2+(100−100)2]=1.(2)因为两个机床产品的平均数相等,且S 甲2>S 乙2,说明甲机床加工零件波动比较大,因此乙机床加工零件的质量更稳定.解析:本题考查两组数据的平均数和方差,对于两组数据通常要求它们的平均数和方差,来比较两组数据的平均水平和波动大小,本题是一个基础题.(1)根据所给的两组数据,分布求出两组数据的平均数,结果两组数据的平均数相等,再利用方差公式求两组数据的方差,得到甲的方差大于乙的方差.(2)对于两组数据的平均数和方差进行比较,知道两组数据的平均数相等,甲的方差大于乙的方差,说明乙机床生产的零件质量比较稳定.21.答案:解:(1)60分以上(包括60分)的频率为0.02×10+0.03×10+0.02×10+0.01×10=0.8,所以高一年级这次知识竞赛的合格率为80%;(2)利用区间的中点值,计算样本的平均数为45×0.01×10+55×0.01×10+65×0.02×10+75×0.03×10+85×0.02×10+95×0.01×10=72,据此,可以估计高一年级这次知识竞赛的学生的平均成绩为72分.解析:本题考查了频率分布直方图的应用问题,也考查了平均数的计算问题,是基础题目.(1)根据频率分布直方图计算60分以上(包括60分)的频率即可;(2)利用区间的中点值,计算样本的平均数即可.22.答案:略.解析:(1)由于频率和为1,所以N=1,所以n=1−(0.02+0.08+0.40+0.30+0.16)=0.04,M=1=50,m=50−(1+4+20+15+8)=2故有m=2,n=0.04,M=50,N=1.0.02(2)频率分布折线图如图:(3)估计该校髙二女生身高小于162.5cm的人数占总人数的百分比为(0.02%20+%200.08%20+%200.40)%20×%20100%%20%20=%2050%.。
高二数学上第一次月考试题一、选择题1.已知两点()()1,3,3,3--BA ,则直线AB 的斜率是( )A .3B .3-C .33D .33- 2.下列说法中正确的是( )A .平行于同一直线的两个平面平行B .垂直于同一直线的两个平面平行C .平行于同一平面的两条直线平行D .垂直于同一平面的两个平面平行3.用一个平面去截一个正四棱柱(底面是正方形,侧棱与底面垂直),截法不同,所得截面的形状不一定相同,在各种截法中,边数最多的截面的形状为 ( ) A .四边形 B .五边形 C .六边形 D .八边形4.用斜二测画法画一个水平放置的平面图形为如下图的一个正方形,则原来图形的形状是( )A .B . C. D .5.圆锥的底面半径为a ,侧面展开图是半圆面,那么此圆锥的侧面积是 ( ) A .22a π B .24a π C. 2a π D .23a π 6.为了得到函数⎪⎭⎫⎝⎛-=32sin πx y 的图像,只需把函数x y 2sin =的图像( ) A .向左平移125π个单位长度 B .向右平移125π个单位长度 C.向左平移3π个单位长度 D .向右平移6π个单位长度 7.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 1 2 4 5 销售额y (万元)10263549根据上表可得回归方程ˆˆˆybx a =+,其中ˆb 约等于9,据此模型预测广告费用为8万元时,销售额约为( )A .55万元B .57万元 C. 66万元 D .75万元8.棱锥的中截面(过棱锥高的中点且与高垂直的截面)将棱锥的侧面分成两部分,这两部分的面积的比为( )A . 4:1B . 3:1 C. 2:1 D .1:1 9.若过定点()3,0-P 的直线l 与直线232+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .⎪⎭⎫⎢⎣⎡3,6ππ B .⎪⎭⎫ ⎝⎛2,6ππ C.⎪⎭⎫ ⎝⎛2,3ππ D .⎥⎦⎤⎢⎣⎡2,3ππ10.执行如图所示程序框图,若输出x 值为47,则实数a 等于( )A .2B .3 C. 4 D .511.若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥+-011405201y x y x y x ,则y x z +=的最大值是( )A .6B .7 C. 8 D .912.在体积为15的斜三棱柱111C B A ABC -中,P 是C C 1上的一点,ABC P -的体积为3,则三棱锥111C B A P -的体积为( )A .1B .23C. 2 D .3 二、填空题13.如图,点F E ,分别为正方体的面11A ADD ,面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是 .(要求:把可能的图的序号都填上)14.设向量()()1,2,,1a b m =-=,如果向量2a b +与2a b -平行,则a b ⋅= .15.某几何体的三视图如下图(单位:cm )则该几何体的表面积是 2cm .16.定义在()5,2+-b b 上的奇函数()x f 是减函数,且满足()()01<++a f a f ,则实数a 取值范围是三、解答题17. 已知在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且.2,2cos cos =+-=c a bca B C (1)求角B ;(2)当边长b 取得最小值时,求ABC ∆的面积;18.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1) //PA 平面BDE ; (2)平面⊥PAC 平面BDE ;19.如图,在三棱锥ABC P -中,平面⊥PBC 平面ABC ,PBC ∆是边长为a 的正三角形,M BAC ACB ,30,9000=∠=∠是BC 的中点.(1)求证:AC PB ⊥; (2)求点M 到平面PCA 的距离.20.如图,已知⊥PA 平面ABCD ,ABCD 为矩形,N M ,分别为PC AB ,的中点.(1)求证:AB MN ⊥;(2)若045=∠PDA ,求证:平面⊥MND 平面PDC .21.已知各项均不相等的等差数列{}n a 的前五项和205=S ,且731,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)若n T 为数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和,且存在*∈N n ,使得01≥-+n n a T λ成立,求实数λ的取值范围.22.在棱长为2正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,F 是棱AD 上的一点,E 是棱1CC 的中点.(1)如图1,若F 是棱AD 的中点,求异面直线OE 和1FD 所成角的余弦值; (2)如图2,若延长EO 与F D 1的延长线相交于点G ,求线段G D 1的长度.试卷答案一、选择题1-5: DBCAA 6-10: DDBBD 11、12:DC二、填空题13.②③ 14.25 15.1413+⎪⎭⎫ ⎝⎛-9,21 三、解答题17.解:(1) 因为b c a B C -=2cos cos ,所以.sin sin sin 2cos cos BC A B C -= 所以()B C A B C cos sin sin 2sin cos -=, 所以()B A C B cos sin 2sin =+, 所以.cos sin 2sin B A A = 在ABC ∆中,0sin ≠A , 故21cos =B ,又因为()π,0∈B ,所以.3π=B (2)由(1)求解,得3π=B ,所以222222cos b a c ac B a c ac =+-=+- 又2=+c a ,所以()ac ac c a b 34322-=-+=,又因为22⎪⎭⎫ ⎝⎛+≤c a ac ,所以1≤ac ,所以12≥b ,又因为0>b ,故b 的最小值为1,此时.4360sin 11210=⨯⨯⨯=∆ABC S18.证:(1) 连接EO , 在PAC ∆中O 是AC 的中点,E 是PC 的中点 .//AP OE ∴又⊂OE 平面⊄PA BDE ,平面BDE ,//PA ∴平面BDE ,(2)⊥PO 底面ABCD ,.BD PO ⊥∴又BD AC ⊥ ,且O PO AC = ,⊥∴BD 平面.PAC而⊂BD 平面BDE ,∴平面⊥PAC 平面.BDE19.解:(1) PBC ∆ 是边长为a 的正三角形,M 是BC 的中点.BC PM ⊥∴又 平面⊥PBC 平面ABC ,且平面 PBC 平面BC ABC =,⊥∴PM 平面ABC ,⊂AC 平面ABC , .AC PM ⊥∴090=∠ACB ,即BC AC ⊥,又M BC PM = ,⊥∴AC 平面PBC ,⊂PB 平面PBC , PB AC ⊥∴(2)PAC M ACM P V V --=,得a h 43=,即为点M 到平面PAC 的距离. 20.证明:(1) 设E 为PD 的中点,连接AE EN ,,N M , 分别为PC AB ,的中点,DC EN //∴且DC AM DC EN //,21=,且AM EN DC AM //,21∴=且AM EN =, ∴四边形AMNE 为平行四边形,AE MN //∴,⊥PA 平面PA AB ABCD ⊥∴,,又⊥∴⊥AB AD AB , 平面PAD ,又⊂AE 平面.,AE AB PAD ⊥∴.,//AB MN AE MN ⊥∴(2)AD PA PDA =∴=∠,450,则.PD AE ⊥又⊥AB 平面⊥∴CD CD AB PAD ,//,平面PAD .AE CD ⊥∴ 又⊥∴=AE D PD CD , 平面PDC ,⊥∴MN AE MN ,// 平面.PDC又⊂MN 平面∴,MND 平面⊥MND 平面.PDC 21.解:(1) 设数列{}n a 的公差为d ,则()()⎪⎩⎪⎨⎧+=+=⨯+d a a d a d a 6220245511211,即⎩⎨⎧==+d a d d a 121242, 又因为0≠d ,所以⎩⎨⎧==121d a , 所以.1+=n a n (2)因为()(),211121111+-+=++=+n n n n a a n n所以()222121211141313121+=+-=+-+++-+-=n n n n n T n , 因为存在*∈N n ,使得01≥--n n a T λ成立,所以存在*∈N n ,使得()()0222≥+-+n n nλ成立,即存在*∈N n ,使()222+≤n nλ成立, 又()1614421,4421222≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+n n n n n n ,(当且仅当2=n 时取等号) 所以.161≤λ 即实数λ的取值范围是.161,⎥⎦⎤ ⎝⎛∞-22.解:(1) 如图,连接OF ,取11D C 的中点M ,连接.,ME OMM F O ,, 分别为11,,D C AD AC 的中点,CD M D CD OF //,//1∴,且.21,211CD M D CD OF ==M D OF 1//∴且,1M D OF = ∴四边形M OFD 1为平行四边形,.//1OM F D ∴MOE ∠∴为异面直线1FD 与OE 所成的角,在MOE ∆中,易求.,3,2,5222OE ME OM OE ME OM +=∴===.OE ME ⊥∴ .51553cos ==∠∴MOE(2)∈G 平面F D 1,且F D 1在平面11A ADD 内,∈∴G 平面,11A ADD同理∈G 平面11A ACC ,又 平面 11A ADD 平面A A A ACC 111=,∴由公理2知1AA G ∈(如图)CE G A //1 ,且O 为AC 的中点,1==∴CE AG ,。
贵州省安顺市高考数学提分专练:第18题概率(解答题)姓名:________ 班级:________ 成绩:________一、真题演练 (共6题;共72分)1. (12分) (2018高一下·合肥期末) 当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活.—媒体为调查市民对低头族的认识,从某社区的500名市民中随机抽取名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:(1)求出表中的值,并补全频率分布直方图;(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查,再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.2. (12分) (2019高二上·张家口月考) 某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人次数学考试的成绩,统计结果如下表:第一次第二次第三次第四次第五次甲的成绩(分)乙的成绩(分)(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:方案一:每人从道备选题中任意抽出道,若答对,则可参加复赛,否则被淘汰.方案二:每人从道备选题中任意抽出道,若至少答对其中道,则可参加复赛,否则被润汰.已知学生甲、乙都只会道备选题中的道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.3. (12分)(2017·桂林模拟) 某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:积极参加班级工作不太主动参加班级工作合计学习积极性高18725学习积极性一般61925合计242650(Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.参考公式与临界值表:K2= .p(K2≥k0)0.1000.0500.0250.0100.001k0 2.706 3.841 5.024 6.63510.8284. (12分)(2012·山东理) 现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次得的概率;(2)求该射手的总得分X的分布列及数学期望EX.5. (12分)(2013·四川理) 某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生(1)分别求出按程序框图正确编程运行时输出y的值为i的概率pi(i=1,2,3);(2)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.甲的频数统计图(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3014610…………21001027376697乙的频数统计图(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3012117当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能性较大;(3)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.6. (12分)(2017·山东) 在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1 , A2 , A3 , A4 , A5 , A6和4名女志愿者B1 , B2 , B3 , B4 ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(12分)(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.二、模拟实训 (共14题;共168分)7. (12分) (2017高二下·临沭开学考) 某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)p(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001 k00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.78910.8288. (12分)从30个足球中抽取10个进行质量检测,说明利用随机数法抽取这个样本的步骤及公平性.9. (12分) (2017高二下·福州期中) 某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表:分数区间甲班频率乙班频率[0,30)0.10.2[30,60)0.20.2[60,90)0.30.3[90,120)0.20.2[120,150)0.20.1(Ⅰ)若成绩120分以上(含120分)为优秀,求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成下面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关系?优秀不优秀总计甲班乙班总计k0 2.072 2.706 3.841 5.024 6.6357.87910.828P(K2≥k0)0.150.100.050.0250.0100.0050.001,其中n=a+b+c+d.10. (12分) (2019高三上·沈阳月考) 司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;开车时使用手机开车时不使用手机合计男性司机人数女性司机人数合计(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望.参考公式与数据:参考数据:参考公式,其中 .11. (12分)(2017·深圳模拟) 某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.12. (12分) (2016高三上·宜春期中) 为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如表:(1)完成表格,并判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;(2)现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.(3)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为X,求X的公布列及数学期望E(X).男性公务员女性公务员总计有意愿生二胎3015无意愿生二胎2025总计附:P(k2≥k0)0.0500.0100.001k0 3.841 6.63510.82813. (12分) (2015高二下·泉州期中) 某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为P0(0<P0<1),中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(Ⅰ)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的累计得分为X,若X≤3的概率为,求P0;(Ⅱ)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?14. (12分)某技术公司新开发了A,B两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]产品A81240328产品B71840296(1)试分别估计产品A,产品B为正品的概率;(2)生产一件产品A,若是正品可盈利80元,次品则亏损10元;生产一件产品B,若是正品可盈利100元,次品则亏损20元;在(1)的前提下.记X为生产一件产品A和一件产品B所得的总利润,求随机变量X的分布列和数学期望.15. (12分) (2017高二下·赣州期末) 某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比实验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.(1)根据以上信息填好2×2联表,并判断出有多大的把握认为学生(2)成绩优良与班级有关?(3)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.(以下临界值及公式仅供参考)P(k2≥k0)0.150.100.050.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828 k2= ,n=a+b+c+d.16. (12分) (2019高一下·蛟河月考) 某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局和某医院抄录了1至6月份每月10号的昼夜温差的情况与患感冒就诊的人数,得到如下资料:日期1月10号2月10号3月10号4月10号5月10号6月10号昼夜温差x(℃)1011131286就诊人数y(人)222529261612该兴趣小组确定的研究方案是先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选出的2组数据进行检验.附;(1)若选取的是1月和6月的两组数据,请根据2月至5月的数据求出关于的线性回归方程;(2)若由线性回归方程得到的估计数,与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的.试问:该小组所得的线性回归方程是否理想?17. (12分) (2017·南昌模拟) 网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.(Ⅰ)求这4人中恰有1人去淘宝网购物的概率;(Ⅱ)用ξ、η分别表示这4人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.18. (12分) (2018高三上·云南期末) 为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为15.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过65公斤的学生人数,求的分布列及数学期望.19. (12分)(2017·成都模拟) 某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100](1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分恰好有一人在[40,50)的概率.20. (12分) (2016高三上·金山期中) 为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图.规定:成绩不低于120分时为优秀成绩.(1)从甲班的样本中有放回的随机抽取 2 个数据,求其中只有一个优秀成绩的概率;(2)从甲、乙两个班级的样本中分别抽取2名同学的成绩,记获优秀成绩的人数为ξ,求ξ的分布列和数学期望Eξ.参考答案一、真题演练 (共6题;共72分)1-1、1-2、2-1、2-2、3-1、4-1、4-2、5-1、5-2、5-3、6-1、二、模拟实训 (共14题;共168分) 7-1、7-2、8-1、9-1、10-1、10-2、11-1、11-2、11-3、12、答案:略13-1、14-1、15-1、15-2、15-3、16-1、16-2、17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、。
金湖县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A .B .C .D .2. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件3. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)4. 若函数y=|x|(1﹣x )在区间A 上是增函数,那么区间A 最大为( )A .(﹣∞,0)B .C .[0,+∞)D .5. 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法6. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 7. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2)8.设函数f(x)在x0处可导,则等于()A.f′(x0)B.f′(﹣x0)C.﹣f′(x0)D.﹣f(﹣x0)9.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.B.C.D.10.已知两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,则实数a等于()A.1或﹣3 B.﹣1或3 C.1或3 D.﹣1或﹣311.若函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g(x)=log a(x+k)的是()A.B.C.D.12.下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=|x|(x∈R) B.y=(x≠0)C.y=x(x∈R)D.y=﹣x3(x∈R)二、填空题13.满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A的个数是.14.曲线C是平面内到直线l1:x=﹣1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:①曲线C过点(﹣1,1);②曲线C关于点(﹣1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④设p1为曲线C上任意一点,则点P1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是 .15.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= .16.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .17()23k x =-+有两个不等实根,则的取值范围是 .18.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .三、解答题19.设A (x 0,y 0)(x 0,y 0≠0)是椭圆T :+y 2=1(m >0)上一点,它关于y 轴、原点、x 轴的对称点依次为B ,C ,D .E 是椭圆T 上不同于A 的另外一点,且AE ⊥AC ,如图所示.(Ⅰ) 若点A 横坐标为,且BD ∥AE ,求m 的值;(Ⅱ)求证:直线BD 与CE 的交点Q 总在椭圆+y 2=()2上.20.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.21.长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点. (1)求证:BD 1∥平面A 1DE ; (2)求证:A 1D ⊥平面ABD 1.22.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.23.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.24.(本题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1.(1)求数列{a n}的通项公式;(2)令b n=n(a n+1),求数列{b n}的前n项和T n.金湖县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:设g(x)=xe x,y=mx﹣m,由题设原不等式有唯一整数解,即g(x)=xe x在直线y=mx﹣m下方,g′(x)=(x+1)e x,g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),结合函数图象得K PA≤m<K PB,即≤m<,,故选:C.【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.2.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A3.【答案】A【解析】解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,∴在(﹣∞,0)内f(x)也是增函数,又∵f(﹣3)=0,∴f(3)=0∴当x∈(﹣∞,﹣3)∪(0,3)时,f(x)<0;当x∈(﹣3,0)∪(3,+∞)时,f(x)>0;∴(x﹣2)•f(x)<0的解集是(﹣3,0)∪(2,3)故选:A.4.【答案】B【解析】解:y=|x|(1﹣x)=,再结合二次函数图象可知函数y=|x|(1﹣x)的单调递增区间是:.故选:B.5.【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,∴是系统抽样法,故选:C.【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.6.【答案】C【解析】考点:茎叶图,频率分布直方图.7.【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.∴函数f(x)=a x+1的图象必过定点(0,2).故选:D.【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.8.【答案】C【解析】解:=﹣=﹣f′(x0),故选C.9.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.10.【答案】A【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得a=﹣3,或a=1.故选:A.11.【答案】C【解析】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.12.【答案】D【解析】解:y=|x|(x∈R)是偶函数,不满足条件,y=(x≠0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(x∈R)是奇函数,在定义域上是增函数,不满足条件,y=﹣x3(x∈R)奇函数,在定义域上是减函数,满足条件,故选:D二、填空题13.【答案】4.【解析】解:由题意知,满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A有:{2,3},{2,3,1},{2,3,4},{2,3,1,4},故共有4个,故答案为:4.14.【答案】②③④.【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y﹣1|=k2,对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;对于②,把方程中的x被﹣2﹣x代换,y被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y﹣1|∴|PA|+|PB|≥2=2k,③正确;对于④,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|×2|y﹣1|=4|x+1||y﹣1|=4k2.所以④正确.故答案为:②③④.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.15.【答案】1.【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f(x)是偶函数,所以f(﹣1)=f(1)=1.故答案为:1.16.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.17.【答案】53, 124⎛⎤ ⎥⎝⎦【解析】试题分析:作出函数y=()23y k x=-+的图象,如图所示,函数y=的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303224k -==+,当直线()23y k x =-+2=,解得512k =,所以实数的取值范围是53,124⎛⎤⎥⎝⎦.111]考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键. 18.【答案】 60° .【解析】解:∵|﹣|=,∴∴=3,∴cos<>==∵∴与的夹角为60°. 故答案为:60° 【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.三、解答题19.【答案】【解析】(Ⅰ)解:∵BD ∥AE ,AE ⊥AC , ∴BD ⊥AC ,可知A(),故,m=2;(Ⅱ)证明:由对称性可知B (﹣x 0,y 0),C (﹣x 0,﹣y 0),D (x 0,﹣y 0),四边形ABCD 为矩形, 设E (x 1,y 1),由于A ,E 均在椭圆T 上,则,由②﹣①得:(x 1+x 0)(x 1﹣x 0)+(m+1)(y 1+y 0)(y 1﹣y 0)=0,显然x 1≠x 0,从而=,∵AE ⊥AC ,∴k AE •k AC =﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.20.【答案】(1)3B π=;(2)[1,2).【解析】21.【答案】【解析】证明:(1)连结A1D,AD1,A1D∩AD1=O,连结OE,∵长方体ABCD﹣A1B1C1D1中,ADD1A1是矩形,∴O是AD1的中点,∴OE∥BD1,∵OE∥BD1,OE⊂平面ABD1,BD1⊄平面ABD1,∴BD1∥平面A1DE.(2)∵长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,∴ADD1A1是正方形,∴A1D⊥AD1,∵长方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,∴A1D⊥AB,又AB∩AD1=A,∴A1D⊥平面ABD1.22.【答案】【解析】解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.【点评】本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.23.【答案】【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),,由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M (t ,0)(0≤t ≤2),则B (2,0),D (0,1),M (t ,0),,由=﹣2(t ﹣2)﹣1=0,解得t=,∴线段AB 上存在点,使得与垂直;(3)解:由图看出,当P 在线段BC 上时,在上的投影最大,则有最大值为4.【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.24.【答案】解:(1)∵a n+1=2a n +1, ∴a n+1+1=2(a n +1), 又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列, ∴a n +1=2n , ∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1,∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n , 于是T n =1+(n ﹣1)•2n .则所求和为12nn 6分。
五河县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或2. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( )A .B .C .D .3. 在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于( )A .B .C .D .24. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35B . =0.7x+1C . =0.7x+2.05D . =0.7x+0.455. 已知i 是虚数单位,则复数等于( )A .﹣ +iB .﹣ +iC .﹣iD .﹣i6. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( ) A .36种 B .18种 C .27种 D .24种7. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π8. 在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .219. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .410.函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6C .2D .3﹣a11.已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±312.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对二、填空题13.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 . 14.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
卜人入州八九几市潮王学校二零二零—二零二壹第一学期郎溪高二年级第一次月考数学试题总分:150分考试时间是是:120分钟本套试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷60分,第二卷90分,一共150分,考试时间是是120分钟. 第一卷(选择题一共60分)一.选择题(本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的) 1.以下说法正确的选项是〔〕 ①必然事件的概率等于1; ②互斥事件一定是对立事件; ③球的体积与半径的关系是正相关; ④汽车的重量和百公里耗油量成正相关. A.①② B .①③ C.①④D.③④2.先后抛掷质地均匀的硬币三次,那么至少一次正面朝上的概率是〔〕 A.81B.83C.85D.87 3.将八进制数135(8)化为二进制数为〔〕 A .1110101(2)B .1010101(2) C .1011101(2)D .1111001(2)4.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现用分层抽样抽取30人,那么各职称人数分别为〔〕A.5,10,15B.3,9,18C.3,10,17D.5,9,165.,样本点的中心为(4,5),那么回归直线方程为()A.x +0.08B.x +5C.x +4D.x6.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后效劳情况,记这项调查为(2)。
那么完成(1)、(2)这两项调查宜采用的抽样方法依次是()A 、 分层抽样法,系统抽样法B 、分层抽样法,简单随机抽样法C 、系统抽样法,分层抽样法D 、简单随机抽样法,分层抽样法7.对一批产品的长度(单位:毫米)进展抽样检测,以下列图为检测结果的频率分布直方图.根据HY ,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,那么其为二等品的概率是〔〕8.某从高二甲、乙两个班中各选出7名学生参加数学竞赛,他们获得的成绩(总分值是100分)的茎叶图如图,其中甲班学生成绩的众数是83,乙班学生成绩的中位数是86,那么x +y 的值是〔〕9.假设数据x 1,x 2,…,x n 的平均数为,方差为s 2,那么5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为〔〕 A.,s 2B .5+2,s 2C .5+2,25s 2D.,25s 210.用秦九韶算法计算多项式654323567983512)(x x x x x x x f ++++-+=在4-=x 时的值时,3V 的值是〔〕A.-845B.220C.-57D.3411.某程序框图如下列图,假设输出的结果是126,那么判断框中可以是〔〕A.i>6?B.i>7?C.i≥6?D.i≥512.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a与b,确定平面上一个点P(a,b),记“点P(a,b)落在直线x+y=n上〞为事件C n(2≤n≤5,n∈N),假设事件C n的概率最大,那么n的所有可能值为〔〕A.3 B.4C.2和5 D.3和4请将选择题答案填入下表:题号123456789101112总分答案第二卷(非选择题一共90分)二、填空题(本大题一一共4小题,每一小题5分,一共20分.把答案填在题中横线上)13.某工厂消费A、B、C三种不同型号的产品,产品数量之比依次为3∶4∶7,现用分层抽样方法抽出一个容量为n的样本,样本中B型号产品有28件.那么此样本的容量n等于________.14.102,238的最大公约数是_______.15.执行如下列图的程序框图,那么输出的k值是________.16.袋里装有5个球,每个球都记有1~5中的一个号码,设号码为x的球质量为(x2-5x+30)克,这些球以同等的时机(不受质量的影响)从袋里取出.假设同时从袋内任意取出两球,那么它们质量相等的概率是________.第5题图三、解答题(本大题一一共6个小题,一共70分.解容许写出文字说明、证明过程或者演算步骤) 17.〔10分〕为了参加奥运会,对自行车运发动甲、乙两人在一样的条件下进展了6次测试,测得他们的最大速度的数据如表所示:请判断:谁参加这项重大比赛更适宜,并阐述理由。
高二上学期第一次月考数学试题一、单选题1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则( ) ()U A B ⋃=ðA .{−2,3} B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:,则. {}1,0,1,2A B ⋃=-(){}U 2,3A B =- ð故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.复数等于31(i )i -A .8 B .-8C .8iD .-8i【答案】D【分析】利用复数的除法及乘方运算即得.【详解】因为.331(i )(i i)8i i -=+=-故选:D.3.在中,已知,则角为( ) ABC A 1,6AC BC B π===C A .B .C .或D .或2π4π2π6π6π56π【答案】C【分析】直接利用正弦定理即可得出答案.【详解】解:在中,已知,ABC A 1,6AC BC B π===因为, sin sin AC BCB A=所以sin sin BC BA AC⋅=所以或, 3A π=23π所以或.2C π=6π故选:C.4.若,,,则 0.52a =πlog 3b =22πlog sin 5c =A . B .C .D .a b c >>b a c >>c a b >>b c a >>【答案】A【详解】因为,,,因此选A 0.521a =>π0log 31b <=<22πlog sin 05c =<5.在平行六面体中,若,则( )1111ABCD A B C D -11BD xAB y AD z AA =++(),,x y z =A . B . ()1,1,1()1,1,1-C . D .()1,1,1-()1.1.1-【答案】D【分析】利用向量的加法公式,对向量进行分解,进而求出,,的值.1BDx y z 【详解】解:,又因,, 1111BD BB B D =+ 11BB AA = 11B D BD AD AB ==- ,∴111BD AA AD AB xAB y AD z AA =+-=++,,,1x ∴=-1y =1z =故选:.D6.设有直线m 、n 和平面、.下列四个命题中,正确的是 αβA .若m ∥,n ∥,则m ∥nααB .若m ,n ,m ∥,n ∥,则∥ ⊂α⊂αββαβC .若,m ,则m α⊥β⊂α⊥βD .若,m ,m ,则m ∥ α⊥β⊥β⊄αα【答案】D【详解】当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A 不正确, B 选项再加上两条直线相交的条件,可以判断面与面平行,故B 不正确, C 选项再加上m 垂直于两个平面的交线,得到线面垂直,故C 不正确, D 选项中由α⊥β,m ⊥β,m ,可得m ∥α,故是正确命题, ⊄α故选D7.某校共有学生2000名,各年级男、女生人数表1,已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. 现用分层抽样的方法在全校抽取64名学生,则应在初三年级抽取的学生人数为初一年级 初二年级 初三年级女生 373 x y 男生 377 370zA .24B .18C .16D .12【答案】C【详解】试题分析:由题意可知,因此三年级的总人数为,所以应0.19,3802000xx =∴=500y z +=在三年级抽取的学生人数为人,故选C. 50064162000⨯=【解析】分层抽样.8.定义域为的奇函数的图象关于直线对称,当时,,则R ()f x 1x =[]0,1x ∈()31x f x =-( )(2000)(2001)(2002)(2021)f f f f ++++= A .-2 B .0 C .2 D .4【答案】C【分析】根据函数的奇偶性和对称性可以确定函数的周期,利用周期性进行求解即可. 【详解】因为函数的图象关于直线对称,所以, ()f x 1x =(1)(1)f x f x -=+因此有,可得,因为函数是奇函数, ()(2)f x f x =-()(2)f x f x -=+()f x 所以可得,即有,从而, ()(2)f x f x -=+(2)(4)f x f x -+=+()(4)f x f x =+因此该函数的周期为,当时,,所以,4[]0,1x ∈()31x f x =-(0)0,(1)2f f ==的图象关于直线对称,,,()f x 1x =(2)(0)0f f ==(3)(1)(1)2f f f =-=-=- (2000)(2001)(2002)(2021)(0)(1)(2)(1)5[(0)(1)(2)(3)](0)(1)50022,f f f f f f f f f f f f f f ++++=++++=+++++=⨯++= 故选:C二、多选题9.下列函数中,既为奇函数又在定义域内单调递增的是( ) A . B .1010x x y -=-()22log 1y x =+C . D .3y x =|sin |y x =【答案】AC【解析】分别利用奇偶性的定义判断每个选项中函数的奇偶性,对于符合奇函数的选项再接着判断其单调性即可.【详解】四个函数的定义域为,定义域关于原点对称x R ∈A :记,所以,所以函数是奇函数,又因()1010-=-x x f x ()1010()x x f x f x --=-=-()1010-=-x x f x 为是增函数,是减函数,所以是增函数,符合题意;B :记10x y =10x y -=1010x x y -=-,则,所以函数是偶函数,不符合题()22()log 1=+g x x ()22()log 1()⎡⎤-=-+=⎣⎦g x x g x ()22()log 1=+g x x 意;C :记,则,所以函数是奇函数,根据幂函数的性3()h x x =33)()()(=-=--=-h x h x x x 3()h x x =质,函数是增函数,符合题意;D :记,则,所以3()h x x =()|sin |=t x x ()|sin()||sin |()-=-==t x x x t x 函数为偶函数. ()|sin |=t x x 故选:AC10.分别抛掷两枚质地均匀的硬币,设事件“第一枚正面朝上”,事件“第二枚正面朝上”,A =B =下列结论中正确的是( ) A .该试验样本空间共有个样本点 B . 4()14P AB =C .与为互斥事件D .与为相互独立事件A B A B 【答案】ABD【分析】由题可得样本空间及事件样本点,结合互斥事件,独立事件的概念及古典概型概率公,A B 式逐项分析即得.【详解】对于A :试验的样本空间为:正,正,正,反,反,正,反,反,共{(Ω=)()()()}4个样本点,故A 正确;对于B :由题可知正,正,正,反,正,反,反,反, {(A =)()}{(B =)()}显然事件,事件都含有“正,反这一结果,故,故B 正确; A B ()()14P AB =对于C :事件,事件能同时发生,因此事件不互斥,故C 不正确; A B ,A B 对于D :,,,所以,故D 正确.()2142P A ==()2142P B ==()14P AB =()()()P AB P A P B =故选:ABD.11.函数(其中)的图象如图所示,则下列说法正确的是()()sin f x A x ωϕ=+π0,0,2A ωϕ>><( )A .是函数的周期 2π()f xB . π3ϕ=C .为了得到的图象,只需将的图象向左平移个单位长度()cos2g x x =()f x 6πD .为了得到的图象,只需将的图象向左平移个单位长度 ()cos2g x x =()f x π12【答案】ABD 【分析】根据可得最小正周期,再求得,代入分析可得,可判断7ππ4123T =-2ω=7π12x =π3ϕ=AB ,再结合三角函数图象变化的性质判断CD 即可. 【详解】对A ,由图可知,,最小正周期T 满足,所以, 1,A =7πππ41234T =-=T π=所以是函数的周期,故正确; 2π()f x A 对B ,,即,将代入可得,得2π2πω==()()sin 2f x x ϕ=+7π12x =7π3π22π,122k k ϕ⨯+=+∈Z ,又,所以,故B 正确; π2π3k ϕ=+π2ϕ<π3ϕ=对C ,由上述结论可知,为了得到,应将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭()cos2sin 22g x x x π⎛⎫==+ ⎪⎝⎭()f x向左平移个单位长度.故C 错误,D 正确.12π故选:ABD.12.如图,已知正方体的棱长为2,,,分别为,,的中点,1111ABCD A B C D -E F G AB AD 11B C 以下说法正确的是( )A .三棱锥的体积为2 C EFG -B .平面1A C ⊥EFGC .异面直线EF 与AGD .过点,,作正方体的截面,所得截面的面积是EFG 【答案】BD【分析】对A ,直接由锥体体积公式求解判断;对BC ,结合建系法直接判断;对D ,补全截面直接判断.【详解】对A ,,故A 错误;111321332C EFG ECF V S CC -=⋅⋅=⋅⋅=△对B ,以为轴,为轴,为轴,建立空间直角坐标系,DA x DC y 1DD z ,,则,,()()()()()10,2,0,2,0,2,1,0,0,2,1,0,1,2,2C A E F G ()2,0,0A ()12,2,2A C =-- ()1,1,0EF =,,,则平面,B 正确;()0,2,2EG = 10A C EF ⋅= 10A C EG ⋅=1A C ⊥EFG对C ,,,,故C 错误; ()1,1,0EF = ()1,2,2AG =-cos ,EF 对D ,作中点,的中点,的中点,连接,则正六边形11C D N 1BB M 1DD T ,,,,GN GM FM TN ET,故D 正确.EFMGNT 26S ==故选:BD三、填空题13.已知向量,,,若与垂直,则_________.)a =()0,1b =(c k = 2a b + ck =【答案】3-【分析】利用向量坐标垂直数量积为0求参数. k 【详解】解:由题意得:因为与垂直,所以,即2a b + c()20a b c +⋅= 20a c b c ⋅+⋅=,解得. 0+=3k =-故答案为:3-14.已知函数,则____________. ()22,0,0x x f x x x ⎧<=⎨≥⎩142log f f ⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】/ 120.5【分析】根据分段函数解析式计算可得.【详解】解:因为,212241122222log log log -==-=-又,所以,()22,0,0x x f x x x ⎧<=⎨≥⎩12141222log f f -⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭所以. 1411222log f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故答案为:1215.如图,已知球O 的面上四点,DA ⊥平面ABC .AB ⊥BC ,DA =AB =BCA B C D 、、、O 的体积等于________.【答案】92π【详解】由题意,三角形DAC ,三角形DBC 都是直角三角形,且有公共斜边, 所以DC 边的中点就是球心(到D 、A 、C 、B 四点距离相等), 所以球的半径就是线段DC 长度的一半,即, 1322R DC ===所以球的体积.34932V R ππ==故答案为:.92π16.如图,直三棱柱中,,点分别是棱111ABC A B C -12,1,120AA AB AC BAC ∠====E F 、1AB CC 、的中点,一只蚂蚁从点出发,绕过三棱柱的一条棱爬到点处,则这只蚂蚁爬行的E 111ABC A B C -F 最短路程是__________.【分析】要使爬行的最短路程,只要将底面和侧面展在同一个平面,连接,求出ABC 11BCC B EF 的长度即可.EF 【详解】若将底面沿展开使其与侧面在同一个平面,连接,因为ABC AC 11ACC A EF 120BAC ∠= ,所以与棱不相交,所以不合题意,EF若将底面沿展开和侧面展在同一个平面,连接,则与棱相交,符合题ABC BC 11BCC B EF EF BC 意,此时为这只蚂蚁爬行的最短路线,如图所示,EF过作的平行线,过作的平行线,交于点,交于,E 1BBF 11B CG EG BCH 因为,点分别是棱的中点,12,1,120AA AB AC BAC ∠====E F 、1AB CC 、所以,,1,12BE CF HG ===30ABC ∠=︒BC =所以1,4EH BH ==所以, 15144FG EG ===+=所以, EF ===四、解答题17.如图,在棱长为2的正方体中,为线段的中点,为线段的中1111ABCD A B C D -E 1DD F 1BB 点.(1)求直线与平面所成角的余弦值.CE 1AB E(2)求直线到平面的距离. 1FC 1AB E 【答案】(2) 23【分析】(1)建立空间直角坐标系,利用向量法求得直线与平面所成角的正弦值,再由CE 1AB E 平方关系求余弦值.(2)利用向量法证明平面,求得点到平面的距离即可. 1//FC 1AB E F1AB E 【详解】(1)建立如图所示空间直角坐标系,则,,,,,,,,(0,0,0)D ()2,0,0A (0,2,0)C ()12,2,2B 1(0,0,2)D ()0,0,1E (2,2,0)B ()10,2,2C ,(2,2,1)F 所以,,()2,0,1AE =- ()10,2,2AB = (0,2,1)CE =-设平面的法向量为,1AB E (),,n x y z =,令,可得, 120220n AE x z n AB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ 1x =2,2y z =-=故可取.()1,2,2n =-设直线与平面所成角,CE 1AB E θ所以,可得sin θcos θ===直线与平面CE 1AB E (2)由(1)知,,平面的法向量为,()12,0,1FC =- 1(0,0,1)B F =-1AB E ()1,2,2n =-因为,所以,1210(2)120n FC ⋅=-⨯+⨯-+⨯= 1n FC ⊥ 又平面,所以平面,1FC ⊄1AB E 1//FC 1AB E 设到平面的距离为,F 1AB E d 则, 23d =由直线与平面平行的性质知,直线到平面的距离为.1FC 1AB E 2318.在中,内角的对边分别为,且.ABC A , , AB C , , a b c sin cos b A B =(1)求角的大小;B (2)①,②,③,角.3b =sin 2sin C A =c =a C 【答案】(1);(2)答案见解析.3π【分析】(1)由正弦定理化边为角,可求得;B (2)选①②,由正弦定理化角为边,再由余弦定理可得,由勾股定理逆定理得角;选①③,aC 由正弦定理求得,得角,在直角三角形中求得;选②③,由正弦定理直接求得,再由sin C C a a 勾股定理逆定理得角.C 【详解】解:(1)因为在中,内角,,的对边分别为,,,ABC A A B C a b c 所以,()0AB C π∈,,,由正弦定理,可将化为,,sin cos b A B =sin sin cos B A AB =sin 0A ≠则,即;sin B B =tan B =3B π=(2)若选①②,由可得,sin 2sin C A =2c a =因为,由余弦定理可得,3b =2222cos b a cac B =+-则,解得22952a a =-a =由得. 222c a b =+2C π=若选①③,由正弦定理可得,,则,所以,则; sin sin C B cb =sin 1C =2C π=6A π=因此 sin ac A ==若选②③,由可得,因为得.sin 2sin C A =2c a =c =a =222c a b =+2C π=19.近年来,我国居民体重“超标”成规模增长趋势,其对人群的心血管安全构成威胁,国际上常用身体质量指数衡量人体胖瘦程度是否健康,中国成人的数值标准是:()()22kg BMI m =体重身高BMI 为偏瘦;为正常;为偏胖;为肥胖.下面是BMI 18.5<18.5BMI 23.9≤<24BMI 27.9≤<BMI 28≥社区医院为了解居民体重现状,随机抽取了100个居民体检数据,将其值分成以下五组:BMI ,,,,,得到相应的频率分布直方图.[)12,16[)16,20[)20,24[)24,28[]28,32(1)根据频率分布直方图,求的值,并估计该社区居民身体质量指数的样本数据中位数;a BMI (2)现从样本中利用分层抽样的方法从,的两组中抽取6个人,再从这6个人中随机[)16,20[)24,28抽取两人,求抽取到两人的值不在同一组的概率.BMI 【答案】(1); 0.04a =23(2)815【分析】(1)根据频率分步直方图中所有矩形面积和为1计算的值,根据中位数左边的频率和a 为求解中位数即可;0.5(2)根据分层抽样的定义可求得在,分别抽取人和人,再利用列举法即可求得[)16,20[)24,2824概率.【详解】(1)根据频率分步直方图可知组距为,所有矩形面积和为,41所以,解得;()0.010.10.080.0241a ++++⨯=0.04a =因为,两组频率之和为,而的频率为, [)12,16[)16,20()0.010.0440.2+⨯=[)20,240.140.4⨯=故中位数在之间,设为,[)20,24x 则,解得,()0.2200.10.5x +-⨯=23x =即该社区居民身体质量指数的样本数据中位数为.BMI 23(2)由频率分步直方图可知的频数为,的频数为[)16,201000.04416⨯⨯=[)24,281000.08432⨯⨯=,所以两组人数比值为,1:2按照分层抽样抽取人,则在,分别抽取人和人,6[)16,20[)24,2824记这组两个样本编号为,这组编号为,[)16,201,2[)24,283,4,5,6故从人随机抽取人所有可能样本的构成样本空间:62()()()()()()()()(){1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,Ω=()()()()()()3,4,3,5,3,6,4,5,4,6,5,6}设事件“从6个人中随机抽取两人,抽取到两人的值不在同一组”A =BMI 则,()()()()()()()(){}1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6A =故,即从这6个人中随机抽取两人,抽取到两人的值不在同一组的概率为. ()815P A =BMI 81520.已知函数.()2cos cos f x x x x =(1)求函数的最大值;()f x (2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平()y f x =移个单位,得到函数的图象,求函数的单调递减区间. π6()y g x =()g x 【答案】(1)32(2), ππ2π,2π22k k ⎛⎫-+ ⎪⎝⎭Z k ∈【分析】(1)根据降幂公式,结合余弦函数的最值进行求解即可;(2)根据三角函数图象的变换性质,结合正弦函数的单调性进行求解即可.【详解】(1) ()21cos 211cos cos 2cos 22222x f x x x x x x x +===+, π1cos(2)32x =++∴当时,取得最大值; πcos 213x ⎛⎫+= ⎪⎝⎭()f x 32(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),()y f x =得到,再把得到的图象向左平移个单位, π1cos()32y x =++π6得到的图象, ππ11cos(sin 6322y x x =+++=-+所以,当单调递增时,单调递减, ()1sin 2g x x =-+sin y x =()g x 故函数的单调递减区间为,. ()g x ππ2π,2π22k k ⎛⎫-+ ⎪⎝⎭Z k ∈21.如图,在四面体中,平面,,,.M 是的A BCD -AD ⊥BCD BC CD ⊥2AD =BD =AD 中点,P 是的中点,点Q 在线段上,且.BM AC 3AQ QC =(1)证明:平面;//PQ BCD (2)若二面角的大小为,求的大小.C BMD --60︒BDC ∠【答案】(1)证明见解析;(2).60︒【分析】(1)取中点,连接,先证明面面平行再证明线面平行;MD G ,PG QG (2)根据三垂直线作法先找到二面角的平面角,然后根据线段长度关系求解出C BM D --BDC ∠的大小.【详解】(1)取中点,连接,如下图所示:MD G ,PG QG因为为中点,为中点,所以,M AD G MD 3AG GD =又因为,所以,所以, 3AQ QC =AQ AG QC GD=//QG CD 又因为为中点,为中点,所以,P BM G MD //PG BD 又,所以平面平面,,PG QG G BD CD D == //GPQ BCD 又平面,所以平面;PQ ⊂GPQ //PQ BCD(2)设,过作交于点,过作交于点,连接,如BDC θ∠=C CH BD ⊥BD H H HI BM ⊥BM I IC 下图所示:因为平面,所以,又,所以平面,AD ⊥BCD AD CH ⊥AD BD D = CH ⊥ABD 因为平面,所以,又因为,,BM ⊂ABD CH BM ⊥HI BM ⊥HI CH H = 所以平面,所以,所以二面角的平面角为, BM ⊥HIC BM IC ⊥C BM D --60HIC ∠=︒因为,所以,BC CD BD CH ⨯=⨯cos CH θθ=又因为,所以,所以, 90BCH CBD θ∠=︒-∠=sin sin BH BCH BCθ∠==2BH θ=又因为,所以, 1sin 3HI MD MBD BH BM ∠====2HI θ=又因为为直角三角形且,HIC A 60HIC ∠=︒所以,所以, 3cos tan 60sin HC HI θθ︒====tan θ=60θ=︒所以的大小为.BDC ∠60︒【点睛】本题考查空间中线面平行的证明和几何法求解二面角有关的问题,对学生的空间位置关系的理解能力与证明能力要求较高,难度一般.证明线面平行除了可以使用判定定理之外,还可以通过面面平行来证明.22.已知函数,的对称轴为且.()2f x x bx c =-+()f x 1x =()01f =-(1)求、的值;b c (2)当时,求的取值范围;[]0,3x ∈()f x (3)若不等式成立,求实数的取值范围.()()2log 2f k f >k 【答案】(1),2b =1c =-(2)[]22-,(3)或01k <<4k >【分析】(1)利用二次函数的对称性可求得的值,由可求得的值; b ()01f =-c (2)利用二次函数的基本性质可求得的取值范围;()f x (3)由可得出关于的不等式,解之即可.()()2log 2f k f >k 【详解】(1)解:二次函数的对称轴方程为,可得,且. ()f x 12b x ==2b =()01f c ==-因此,,.2b =1c =-(2)解:由(1)可知,当时,. ()221f x x x =--[]0,3x ∈()()[]2122,2f x x =--∈-(3)解:由,可得, ()()2log 21f k f >=-()222log 2log 0k k ->可得或,解得或. 2log 0k <2log 2k >01k <<4k >。
合肥九中2018 - 2019学年第一学期高二第一次月考数学试卷(考试时间120分钟满分150分)第Ⅰ卷(选择题)一.选择题:(共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.)1.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( ) A.一个圆台、两个圆锥 B.两个圆台、一个圆柱C.两个圆台、一个圆锥 D.一个圆柱、两个圆锥2.圆锥的高扩大到原来的4倍,底面半径缩短到原来的错误!未找到引用源。
21,则圆锥的体积()A.缩小到原来的一半B.扩大到原来的2倍C.不变D.缩小到原来的813.下列命题正确的有( )①若△ABC在平面α外,它的三条边所在直线分别交α于P,Q,R,则P,Q,R三点共线;②若三条平行线a,b,c都与直线l相交,则这四条直线共面;③三条直线两两相交,则这三条直线共面.A.0个B.1个C.2个D.3个4.一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,则这个平面图形的面积为()A.1222+ B.212+C.21+D.22+5.如图所示,在正方体ABCD—A1B1C1D1中,M、N分别是BB1、BC的中点.则图中阴影部分在平面ADD1A1上的正投影为( )6.设n m ,是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题:①若αα//,n m ⊥,则n m ⊥;②若αγββα⊥m ,//,//,则γ⊥m ;③若αα//,//n m ,则n m //;④若γβγα⊥⊥,,则βα//.其中正确命题的序号是: ( )A 、①②B 、②③C 、③④D 、①④7. 长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球面的表面积为( )A .27πB .56πC .14πD .64π8.一正方体表面沿着几条棱裁开放平得到如图所示的展开图,则在原正方体中( )A .AB ∥CD B .AB ∥平面CDC .CD ∥GH D .AB ∥GH9、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .310.如图所示,正四棱锥S —ABCD 的所有棱长都等于a ,过不相邻的两条棱SA ,SC 作截面SAC ,则截面的面积为( )。
贵州省高二上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019高二上·台州期末) 直线的倾斜角的大小为A .B .C .D .2. (2分)已知m、n是两条不同直线,α、β是两个不同平面,给出下列命题,其中正确的是()A . 若α∩β=m,n⊂α,n⊥m,则α⊥βB . 若m∥β,n∥β,m、n⊂α,则α∥βC . 若m⊥α,n⊥β,m⊥n,则α⊥βD . 若m∥α,n∥β,m∥n,则α∥β3. (2分) (2020高二上·合肥开学考) 某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A . 10B . 11C . 12D . 164. (2分) (2020高一下·大庆期中) 直线与平行,则a为()A . 2B . 2或-2C . -2D .5. (2分) (2016高二上·襄阳期中) 已知直线l经过点P(﹣4,2),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线l的方程是()A . 7x+24y﹣20=0B . 4x+3y+25=0C . 4x+3y+25=0或x=﹣4D . 7x+24y﹣20=0或x=﹣46. (2分) (2017高二上·石家庄期末) 某产品的广告费用x(万元)与销售额y(万元)的统计数据如下表所示,根据表中的数据可得回归方程,其中 =0,据此模型预报,当广告费用为7万元时的销售额为()x4235y38203151A . 60B . 70C . 73D . 697. (2分)掷两个面上分别记有数字1至6的正方体玩具,设事件A为“点数之和恰好为6”,则A所基本事件个数为()A . 2个B . 3个C . 4个D . 5个8. (2分) (2019高一上·衡阳期末) 将半径为,圆心角为的扇形围成一个圆锥,则该圆锥的内切球的体积为()A .B .C .D .二、多选题 (共4题;共12分)9. (3分) (2020高二上·沈阳期中) 下列说法错误的是()A . “ ”是“直线与直线互相垂直”的充要条件B . 直线的倾斜角的取值范围是C . 过,两点的所有直线的方程为D . 经过点且在轴和轴上截距都相等的直线方程为10. (3分) (2020高一下·大丰期中) 如图所示,在正方体中,E,F分别是的中点.有下列结论,其中正确的是()A . 与垂直B . 与平面垂直C . 与所成的角为45°D . 平面11. (3分)(2020·聊城模拟) 下列说法正确的是()A . 回归直线一定经过样本点的中心B . 若两个具有线性相关关系的变量的相关性越强,则线性相关系数的值越接近于1C . 在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高D . 在线性回归模型中,相关指数越接近于1,说明回归模型的拟合效果越好12. (3分) (2020高一下·昆山期中) 在同一直角坐标系中,直线与圆的位置可能是()A .B .C .D .三、填空题 (共4题;共4分)13. (1分)某校高一年级课题研究,其中对超市盈利研究的有200人,对有关测量研究的有150人,对学习方法研究的有300人,研究其他课程的有50人,利用分层抽样的方法从研究这四个课题的学生中选取14人参加全校的研究性学习培训,则应该从对学习方法研究的学生中选取的人数为:________.14. (1分) (2018高一上·广西期末) 已知在四面体中,,分别是,的中点,若,,,则与所成的角的度数为________.15. (1分)过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为________.16. (1分)(2017·榆林模拟) 已知关于空间两条不同直线m,n,两个不同平面α,β,有下列四个命题:①若m∥α且n∥α,则m∥n;②若m⊥β且m⊥n,则n∥β;③若m⊥α且m∥β,则α⊥β;④若n⊂α且m 不垂直于α,则m不垂直于n.其中正确命题的序号为________.四、解答题 (共6题;共70分)17. (15分)对一批电子元件进行寿命追踪调查,从这批产品中抽取N个产品(其中N≥200),得到频率分布直方图如表:(Ⅰ)求m的值;(Ⅱ)从频率分布直方图估算这批电子元件寿命的平均数、中位数的估计分别是多少?(Ⅲ)现要从300~400及400~500这两组中按照分层抽样的方法抽取一个样本容量为36的样本,则在300~400及400~500这两组分别抽多少件产品.18. (15分) (2020高二下·开鲁期末) “海水稻”就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区,具有耐盐碱的水稻,它比其它普通的水稻均有更强的生存竞争能力,具有抗涝,抗病虫害,抗倒伏等特点,还具有预防和治疗多种疾病的功效,防癌效果尤为显著.海水稻的灌溉是将海水稀释后进行灌溉.某试验基地为了研究海水浓度(‰)对亩产量 (吨)的影响,通过在试验田的种植实验,测得了某种海水稻的亩产量与海水浓度的数据如表.绘制散点图发现,可用线性回归模型拟合亩产量与海水浓度之间的相关关系,用最小二乘法计算得与之间的线性回归方程为 .海水浓度(‰)34567亩产量 (吨)0.620.580.490.40.31残差(1)请你估计:当浇灌海水浓度为8‰时,该品种的亩产量.(2)①完成上述残差表:②统计学中,常用相关指数来刻画回归效果,越大,模型拟合效果越好,并用它来说明预报变量与解释变量的相关性.你能否利用以上表格中的数据,利用统计学的相关知识,说明浇灌海水浓度对亩产量的贡献率?(计算中数据精确到)(附:残差公式,相关指数 )19. (10分) (2020高一下·高安期中) 如图是某单位职工的月收入情况画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息,解答下列问题.(1)为了分析职工的收入与年龄、学历等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这组中应抽取多少人?(2)试估计样本数据的中位数与平均数.20. (10分) (2019高二上·寻乌月考) 如图所示的空间几何体,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为 .且点E在平面ABC上的射影落在的平分线上.(1)求证:DE//平面ABC;(2)求二面角E—BC—A的余弦;(3)求多面体ABCDE的体积.21. (10分) (2018高二上·安庆期中) 已知圆,直线 .(I)求圆的圆心及半径;(Ⅱ)求直线被圆截得的弦的长度.22. (10分)(2018·新疆模拟) 在等差数列中,已知, .(I)求数列的通项;(II)若,求数列的前项和 .参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、多选题 (共4题;共12分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:三、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:四、解答题 (共6题;共70分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:。
2019届高二第一学期第一次月考数学试卷一、选择题1.已知集合{10}{lg(1)}M x x N x y x =+>==-,,则M N =()A .{11}x x -<<B .{1}x x >C .{11}x x -≤<D .{1}x x ≥-2.函数21)(--=x x x f 的定义域为() (A )[1,2)∪(2,+∞)(B )(1,+∞) (C )[1,2)(D )[1,+∞)3.执行如图所示的程序框图,输出的T =()(A )29 (B )44 (C )52 (D )624.已知0x >,0y >,且231x y +=,则23x y+的最小值为( ) A .1 B .2 C .4 D .2565.已知某几何体的三视图如图所示,则该几何体的体积是() A.3π+ B.23π+ C.π D.2π6.已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与3-a b 垂直,则实数值为() (A )13-(B )119(C )(D )7.已知函数()()cos (0)f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是()A. 函数()f x 的最小周期为23πB. 函数()f x 的图象关于,012π⎛⎫-⎪⎝⎭中心对称C. 函数()f x 的图象关于直线12x π=对称D. 函数()f x 的最小值为8.在数列{}n a 中,11a =,12n n a a +=,22221234n S a a a a =-+-+…22212n n a a -+-等于()A.()1213n - B. ()41125n - C. ()1413n - D. ()1123n - 9.若sin()cos(2)1sin cos()2πθθπθπθ-+-=++,则tan θ=()A .B .C .D .10.已知y x z c y x y x x y x +=⎪⎩⎪⎨⎧≥++-≤+≥302,42,且目标函数满足的最小值是5,则z 的最大值是()A .10B .12C .14D .1511.如图,正方体1111ABCD A B C D -的棱长为,,是线段11B D 上的两个动点,且2EF =,则下列结论错误..的是() A. AC BF ⊥B. 直线AE 、BF 所成的角为定值C. EF ∥平面ABCDD. 三棱锥A BEF -的体积为定值12.已知直线0x y k +-=(0)k >与圆224x y +=交于不同的两点、,是坐标原点,且有3||||OA OB AB+≥,那么的取值范围是() A.)+∞B.C.)+∞D. 二、填空题13.在ABC ∆中,角,,所对的边分别为,,,若60C ∠=,2b =,c =,则__________. 14.数列{}n a 的前项和*23()n n S a n N =-∈,则数列{}n a 的通项公式为n a =.15.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________. 16.在底面边长为2 的正三棱锥V-ABC 中,E 是BC 的中点,若VAE ∆的面积是41,则该正三棱锥的体积为__________________三、解答题 17.化简或求值: (1)1242--(2)2(lg 2)lg 2lg5+ 18.xx x f 1)(+=已知 (1) 判断并证明f(x)的奇偶性; (2) 证明f(x)在),1[+∞的单调性。
贵州省贵阳市高二上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知数列{an}是等比数列,且a2=﹣,a5=2,则{an}的公比q为()A .B .C . ﹣2D .2. (2分)设成等差数列,成等比数列,则的取值范围为()A .B .C .D .3. (2分) (2018高二下·黑龙江月考) 在中,,,,则的值等于()A .B .C .D .4. (2分)(2020·内江模拟) 已知等比数列是递增数列,,,则数列的前项和为()A .B . 或C .D . 或5. (2分)小船以10km/h的静水速度按垂直于对岸的方向行驶,同时河水的流速为10km/h.则小船实际航行速度的大小为()A . 20km/hB . 20km/hC . 10km/hD . 10km/h6. (2分)一个等差数列共n项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为()A . 14B . 16C . 18D . 207. (2分)已知为等差数列,为等比数列,其公比且,若,则()A .B .C .D . 或8. (2分) (2019高二上·集宁月考) 设等差数列的前n项和为,若,则()A . 3B . 4C . 5D . 69. (2分)(2016高一下·河源期中) 已知数列{an}满足:,,若{Cn}是单调递减数列,则实数λ的取值范围是()A . λB . λC . λD . λ10. (2分)中角A,B,C的对边分别为a,b,c,且,则()A .B .C .D .11. (2分)(2018·徐汇模拟) 若无穷等比数列的前项和为,首项为,公比为,且,(),则复数(为虚数单位)在复平面上对应的点位于()A . 第一象限.B . 第二象限.C . 第三象限.D . 第四象限.12. (2分)数列满足,且对任意的都有:()A .B .C .D .二、填空题 (共5题;共5分)13. (1分)(2019高三上·广东月考) 数列满足,,则 ________.14. (1分) (2018高二上·大连期末) 在等比数列中,成等差数列,则等比数列的公比为________.15. (1分)在△ABC中,a,b,c分别是角A,B,C的对边,且=﹣若b=, a+c=4,则a的值为________16. (1分) (2016高一下·苏州期中) 在等差数列{an}中,当a2+a9=2时,它的前10项和S10=________.17. (1分)(2017·新课标Ⅱ卷文) △ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=________.三、解答题 (共5题;共45分)18. (10分) (2016高二上·郑州开学考) 设等差数列{an}满足a3=5,a10=﹣9.(1)求{an}的通项公式;(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.19. (5分) (2017高三上·红桥期末) 在等差数列{an}中,a1=3,其前n项和为Sn ,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=(Ⅰ)求an与bn;(Ⅱ)设数列{cn}满足cn= ,求{cn}的前n项和Tn .20. (10分) (2018高二下·西湖月考) 已知分别为三个内角的对边,且.(1)求角;(2)若的面积为,求21. (10分)在中,角,,所对的边分别为,,,且.(1)求角;(2)若,求及的面积.22. (10分)(2019高三上·镇海期中) 已知数列的前n项和为,且满足:.(1)求数列的通项公式;(2)数列满足,,求数列通项公式.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共45分) 18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、。
贵州省贵阳市数学高二上学期理数第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)六个面都是平行四边形的四棱柱称为平行六面体。
如图①,在平行四边ABCD中,AC2+BD2=2(AB2+AD2),那么在图②中所示的平行六面体ABCD-A1B1C1D1中,AC12+BD12+CA12+DB12等于()A . 2(AB2+AD2+AA12)B . 3(AB2+AD2+AA12)C . 4(AB2+AD2+AA12)D . 4(AB2+AD2)2. (2分)(2017·湖南模拟) 给出下列四个命题:①∃x0∈R,ln(x02+1)<0;②∀x>2,x2>2x;③∀α,β∈R,sin(α﹣β)=sin α﹣sin β;④若q是¬p成立的必要不充分条件,则¬q是p成立的充分不必要条件.其中真命题的个数为()A . 1B . 2C . 3D . 43. (2分)平面过正方体ABCD A1B1C1D1的顶点A, //平面CB1D1 ,平面ABCD=m,平面ABB1A1=n,则m,n所成角的正弦值为()A .B .C .D .4. (2分)已知点E、F、G分别为正方体ABCD﹣A1B1C1D1的棱AB、BC、的中点,如图,则下列命题为假命题的是()A . 点P在直线FG上一定,总有AP⊥DEB . 点Q在直线BC1上运动时,三棱锥A﹣D1QC的体积为定值C . 点M是正方体面A1B1C1D1内的点到点D和点C1距离相等的点,则M的轨迹是一条直线D . 过F,D1 , G的截面是正方形5. (2分)(2018·银川模拟) 如图所示,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则此几何体的体积为()A .B . 2C . 4D .6. (2分) (2018高二上·黑龙江期中) 圆锥的轴截面是边长为4的正三角形,则该圆锥的表面积为A .B .C .D .7. (2分)下列命题中的假命题是()A . ,lgx=0B . ,tanx=1C . ,x3>0D . ,2x>08. (2分) (2017高二上·苏州月考) 下列命题为真命题的是()A . 平行于同一平面的两条直线平行B . 与某一平面成等角的两条直线平行C . 垂直于同一平面的两条直线平行D . 垂直于同一直线的两条直线平行9. (2分)在⊿ABC中,,则此三角形为()A . 直角三角形;B . 等腰直角三角形C . 等腰三角形D . 等腰或直角三角形10. (2分) (2019高一上·利辛月考) 已知为等比数列,若,则()A . -32B . 96C . -32或96D . -96或3211. (2分)一个圆柱的侧面展开图是一个正方形,则这个圆柱的底面直径与高的比是()A .B .C .D .12. (2分)如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是()A . 90°B . 60°C . 45°D . 30°二、填空题 (共4题;共4分)13. (1分)(2017·青浦模拟) 将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为________.(精确到0.01)14. (1分) (2018高二上·铜梁月考) 若圆柱的侧面展开图是一个边长为2的正方形则圆柱的体积为________.15. (1分) (2018高二上·淮安期中) 已知圆柱M的底面半径为3,高为2,圆锥N的底面直径和高相等,若圆柱M和圆锥N的体积相同,则圆锥N的高为________.16. (1分)已知等腰直角△ABC的斜边AB长为2,以它的一条直角边AC所在直线为轴旋转一周形成一个几何体,则此几何体的侧面积为________.三、解答题 (共6题;共55分)17. (10分)(2018·石嘴山模拟) 已知分别为内角的对边,且 .(1)求角;(2)若,求面积的最大值.18. (10分) (2019高三上·汉中月考) 记等差数列的前项和,已知 .(1)若,求的通项公式;(2)若,求使得的的取值范围.19. (10分) (2016高二上·武邑期中) 如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D 是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.20. (10分)(2017·南京模拟) 如图,在直四棱柱ABCD﹣A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC= ,E,F分别是BC,A1C的中点.(1)求异面直线EF,AD所成角的余弦值;(2)点M在线段A1D上,=λ.若CM∥平面AEF,求实数λ的值.21. (5分)(2017·海淀模拟) 如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PC⊥平面ABCD,点E在棱PA上.(Ⅰ)求证:直线BD⊥平面PAC;(Ⅱ)若PC∥平面BDE,求证:AE=EP;(Ⅲ)是否存在点E,使得四面体A﹣BDE的体积等于四面体P﹣BDC的体积的?若存在,求出的值;若不存在,请说明理由.22. (10分)(2019高二上·南宁月考) 在四棱锥中,,.为的中点.(1)若点为的中点,求证:平面;(2)当平面平面时,线段上是否存在一点,使得平面与平面所成锐二面角的大小为?若存在,求出点的位置,若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、。
长丰县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. “1<x <2”是“x <2”成立的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A .1B .C .2D .43. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分) 4. 下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件5. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a的值为( )A .2B .C .D .36. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 7. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)8. “双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件9. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或10.圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( )A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力. 11.若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .212.数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)二、填空题13.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 . 14.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .15.设变量x ,y 满足约束条件,则的最小值为 .16.已知函数21,0()1,0x x f x x x ⎧-≤=⎨->⎩,()21xg x =-,则((2))f g = ,[()]f g x 的值域为 .【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.17.已知函数f (x )=sinx ﹣cosx ,则= .18.在△ABC中,a=4,b=5,c=6,则=.三、解答题19.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.20.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.21.若数列{a n}的前n项和为S n,点(a n,S n)在y=x的图象上(n∈N*),(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若c1=0,且对任意正整数n都有,求证:对任意正整数n≥2,总有.22.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.23.已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a﹣3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.24.已知函数f(x)=a x(a>0且a≠1)的图象经过点(2,).(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x≥0)的值域.长丰县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:设A={x|1<x <2},B={x|x <2}, ∵A ⊊B ,故“1<x <2”是“x <2”成立的充分不必要条件. 故选A .【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.2. 【答案】B【解析】解:设圆柱的高为h ,则V 圆柱=π×12×h=h ,V 球==,∴h=.故选:B .3. 【答案】A解析:抛物线C :y x 82的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .4. 【答案】C【解析】解:对于A ,命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”,正确;对于B ,命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0,正确;对于C ,若p 且q 为假命题,则p ,q 至少有一个为假命题,故C 错误;对于D ,x 2﹣3x+2>0⇒x >2或x <1,故“x <1”是“x 2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C , 故选:C .【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.5. 【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由z=ax ﹣y (a >0)得y=ax ﹣z , ∵a >0,∴目标函数的斜率k=a >0. 平移直线y=ax ﹣z ,由图象可知当直线y=ax ﹣z 和直线2x ﹣y+2=0平行时,当直线经过B 时,此时目标函数取得最大值时最优解只有一个,不满足条件.当直线y=ax ﹣z 和直线x ﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.此时a=. 故选:B .6. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 7. 【答案】A【解析】解:∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数, ∴在(﹣∞,0)内f (x )也是增函数, 又∵f (﹣3)=0, ∴f (3)=0∴当x ∈(﹣∞,﹣3)∪(0,3)时,f (x )<0;当x ∈(﹣3,0)∪(3,+∞)时,f (x )>0; ∴(x ﹣2)•f (x )<0的解集是(﹣3,0)∪(2,3) 故选:A .8.【答案】C【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.9.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B10.【答案】C11.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.12.【答案】C【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,∵a n=﹣n+p,∴{a n}是递减数列,∵b n=2n﹣5,∴{b n}是递增数列,∵c8>c n(n≠8),∴c8是c n的最大者,则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,当n=7时,27﹣5<﹣7+p,∴p>11,n=9,10,11,…时,2n﹣5>﹣n+p总成立,当n=9时,29﹣5>﹣9+p,成立,∴p<25,而c8=a8或c8=b8,若a8≤b8,即23≥p﹣8,∴p≤16,则c8=a8=p﹣8,∴p﹣8>b7=27﹣5,∴p>12,故12<p≤16,若a8>b8,即p﹣8>28﹣5,∴p>16,∴c8=b8=23,那么c8>c9=a9,即8>p﹣9,∴p<17,故16<p<17,综上,12<p<17.故选:C.二、填空题13.【答案】3.【解析】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.14.【答案】m>1.【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则命题“∀x∈R,x2﹣2x+m>0”是真命题,即判别式△=4﹣4m<0,解得m>1,故答案为:m>115.【答案】4.【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.-+∞.16.【答案】2,[1,)【解析】17.【答案】.【解析】解:∵函数f(x)=sinx﹣cosx=sin(x﹣),则=sin(﹣)=﹣=﹣,故答案为:﹣.【点评】本题主要考查两角差的正弦公式,属于基础题.18.【答案】1.【解析】解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.三、解答题19.【答案】【解析】解:(1)依题意,根据频率分布直方图中各个小矩形的面积和等于1得,10(2a+0.02+0.03+0.04)=1,解得a=0.005.∴图中a的值0.005.(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分),【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解20.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5.【解析】试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5(5)2f =.试题解析:在[]2,5上任取两个数12x x <,则有12121233()()11x x f x f x x x -=-++12123()(1)(1)x x x x -=++0<, 所以()f x 在[]2,5上是增函数.所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2f x f ==. 考点:函数的单调性证明.【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1 21.【答案】【解析】(I )解:∵点(a n ,S n )在y=x 的图象上(n ∈N *),∴,当n ≥2时,,∴,化为,当n=1时,,解得a 1=.∴==.(2)证明:对任意正整数n都有=2n+1,∴c n =(c n ﹣c n ﹣1)+(c n ﹣1﹣c n ﹣2)+…+(c 2﹣c 1)+c 1 =(2n ﹣1)+(2n ﹣3)+…+3==(n+1)(n ﹣1).∴当n ≥2时,==.∴=+…+=<=,又=.∴.【点评】本题考查了等比数列的通项公式与等差数列的前n 项和公式、“累加求和”、“裂项求和”、对数的运算性质、“放缩法”、递推式,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(1)当时,,;对于x ∈[1,e],有f'(x )>0,∴f (x )在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f (x )是f 1(x ),f 2(x )的“活动函数”,则f 1(x )<f (x )<f 2(x )令<0,对x ∈(1,+∞)恒成立,且h (x )=f 1(x )﹣f (x )=<0对x ∈(1,+∞)恒成立,∵1)若,令p ′(x )=0,得极值点x 1=1,,当x 2>x 1=1,即时,在(x 2,+∞)上有p ′(x )>0,此时p (x )在区间(x 2,+∞)上是增函数,并且在该区间上有p (x )∈(p (x 2),+∞),不合题意;当x 2<x 1=1,即a ≥1时,同理可知,p (x )在区间(1,+∞)上,有p (x )∈(p (1),+∞),也不合题意;2)若,则有2a ﹣1≤0,此时在区间(1,+∞)上恒有p ′(x )<0,从而p (x )在区间(1,+∞)上是减函数;要使p (x )<0在此区间上恒成立,只须满足,所以≤a ≤.又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,h(x)<h(1)=+2a≤0,所以a≤综合可知a的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.23.【答案】【解析】解:由题意得命题P真时0<a<1,命题q真时由(2a﹣3)2﹣4>0解得a>或a<,由p∨q真,p∧q 假,得,p,q一真一假即:或,解得≤a<1或a>.【点评】本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题.24.【答案】【解析】解:(1)f(x)=a x(a>0且a≠1)的图象经过点(2,),∴a2=,∴a=(2)∵f(x)=()x在R上单调递减,又2<b2+2,∴f(2)≥f(b2+2),(3)∵x≥0,x2﹣2x≥﹣1,∴≤()﹣1=3∴0<f(x)≤(0,3]。
高二上学期第一次月考数学一、选择题:共12题1. 已知集合,则集合=A. B.C. D.【答案】C【解析】====,∴.故选C.2. 若任取,则点满足的概率为A. B. C. D.【答案】C【解析】由题意可得所对应区域为边长为1的正方形,面积为1, 记“点P(x,y)满足y>x为事件A,则A包含的区域满足,如图:根据几何概型的概率计算公式可知=.故选C.3. 在中,==.若点满足=,则=A. B. C. D.【答案】A【解析】试题分析:,故选A.考点:向量的加减运算.视频4. 已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为A. 24-B. 24-C. 24-D. 24-【答案】A【解析】由三视图可知,该几何体是一个长方体挖去了半个圆柱,==故选A.5. 将二进制数10 001(2)化为五进制数为A. 32(5)B. 23(5)C. 21(5)D. 12(5)【答案】A【解析】将10001(2)化为十进制数为:10001(2)=1×24+0×23+0×22+0×21+1×20=17,将17化为五进制数为32(5),∴10001(2)=32(5)6. 点P在平面ABC外,若PA=PB=PC,则点P在平面ABC上的射影是的A. 外心B. 重心C. 内心D. 垂心【答案】A【解析】过点P作平面ABC上的射影O,由题意PA=PB=PC,∵平面ABC,∴,∴,∴O是的外心.故选A.7. 设动点满足条件,则取得最大值时,点P的坐标是A. B. C. D.【答案】B【解析】作出约束条件表示的平面区域如图所示:平移直线,当直线经过点B(1,-1)时,取最大值.故选B.8. 设是两条不同的直线,是两个不同的平面.下列四个命题中,正确的是A. ,则B. ,,则C. D. , 则【答案】D........................B.,,则,也可以与平行,选项错误;C.根据面面垂直的性质可知,选项错误.D. , 则,正确.故选D.9. 如图的正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是A. 300B. 450C. 600D. 900【答案】B【解析】连接,有:,则即为所求二面角的平面角,易知=.故选B.点睛:本题考察了二面角的求法,属于基础题,作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.10. 函数=sin x+sin (-x)图象的一条对称轴为A. B. C. = D.【答案】D【解析】===,令,解得,当时,.是对称轴.故选D.点睛:研究三角函数的性质,最小正周期为,最大值为.求对称轴只需令,求解即可,求对称中心只需令,单调性均为利用整体换元思想求解.11. 在三棱柱中,是等边三角形,平面,则异面直线和所成角的正弦值为A. 1B.C.D.【答案】A【解析】如图,作交的延长线于,连接,则就是异面直线和所成的角(或其补角),由已知,,由,知异面直线和所成的角为直角,正弦值为,故选A.【方法点晴】本题主要考查异面直线所成的角立体几何解题的“补型法”,属于难题. 求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.12. 若函数分别是上的奇函数、偶函数,且满足=,则有A. B.C. D.【答案】B【解析】因为函数分别是上的奇函数、偶函数,且满足=,所以=,所以,且为增函数..故选B.点睛:本题主要考查函数解析式的求法,函数奇偶性的应用,单调性的应用.通过函数的奇偶性构建.的方程组,进而求解方程组得函数解析式.通过函数的单调性的性质,由增函数减去减函数为增函数易知函数为增函数,即可比较大小.二、填空题:共4题13. 过点的直线的方程为__________.【答案】x+2y-2=0【解析】由两点式得,直线方程为即答案为:14. 已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是,则这个三棱柱的体积是________.【答案】【解析】由=,得.所以正三棱柱的高为4,由已知得底面正三角形的重心到边的距离为2,设底面边长为=,所以=,所以==答案为:.15. 已知函数=,若=,则_____.【答案】2【解析】因为=,所以==因为=所以=.答案为:2.16. 如图,在三棱锥A-BCD中,BC=DC=AB=AD=,平面ABD平面BCD,O为BD中点,点P,Q分别为线段AO,BC上的动点(不含端点),且AP=CQ,则三棱锥P-QCO体积的最大值为________.【答案】【解析】试题分析:设,因为为中点,,所以,因为平面平面,平面平面,所以平面,所以是三棱锥的高,,所以,在中,,所以,所以,所以,所以,当且仅当时取等号,所以三棱锥体积的最大值为.考点:棱柱、棱锥、棱台的体积.【方法点晴】本题主要考查了结合体的体积的最值的求法,其中解答中涉及到直线与平面垂直的判定定理和平面与平面垂直的性质定理,以及几何体的体积公式和基本不等式的应用,着重考查了学生分析问题和解答问题的能力,以及学生的空间想象能力,解答中正确利用线面位置关系,以及数量关系表示出几何体的体积是解答的关键,试题有一定的难度,属于中档试题.三、解答题:共6题17. 在中,角的对边分别为,且满足=.(1)求角的大小;(2)若=【答案】(1)C=.(2)【解析】试题分析:(1)利用正弦定理将已知条件中角的关系都转化成边的关系,然后利用余弦定理求解;(2)利用面积公式=,先求出再利用余弦定理求出.试题解析:(1)由题意知=由正弦定理可知,-ab,化简可得ab,利用余弦定理cos C==,C=.(2)S=由(1)知,ab=6结合余弦定理得,cos C===则所以的周长18. 函数是实数集R上的奇函数,当时,.(1)求的值和函数的表达式;(2)求证:方程在区间上有唯一解.【答案】(1)f(x)=;(2)见解析.【解析】试题分析:(1)根据函数的奇偶性,利用即可解答;根据奇函数的性质求出的解析式,特别注意当时,;(2)因为log22=,所以方程在区间上有根.然后根据函数的单调性证明解的唯一性即可.试题解析:(1)函数f(x)是实数集R上的奇函数.所以f(-1)=-f(1).因为当x>0时,f(x)=log2x+x-3,所以f(1)=log21+1-3=-2.所以f(-1)=-f(1)=2.当x=0时,f(0)=f(-0)=-f(0),解得f(0)=0,当x<0时,-x>0,所以f(-x)=log2(-x)+(-x)-3=log2(-x)-x-3.所以-f(x)=log2(-x)-x-3,从而f(x)=-log2(-x)+x+3.所以f(x)=(2)因为f(2)=log22+2-3=0,所以方程f(x)=0在区间(0,+∞)上有解x=2.易知在区间(0,+∞)上为增函数,由零点存在性定理可知,方程f(x)=0在区间(0,+∞)上有唯一解.点睛:一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数在上单调且,则在上只有一个零点.19. 已知函数=(1)求函数的单调递增区间;(2)△ABC内角A,B,C的对边分别为a,b,c,若=,b=1,=,且a b,试求角B和角. 【答案】(1)[kπ﹣,kπ+],x∈Z;(2)B=,C=.【解析】试题分析:(1)利用辅助角公式将函数进行化简,然后根据正弦型函数的单调性的求法解答;(2)=,即可求出然后利用正弦定理求出.并加以检验.试题解析:(1)f(x)=cos(2x﹣)﹣cos2x=sin 2x﹣cos 2x=sin(2x﹣),令2kπ﹣2x﹣2kπ+, k∈Z,解得:kπ﹣≤x≤kπ+, k∈Z,则函数f(x)的递增区间为[kπ﹣,kπ+], k∈Z;(2)∵f(B)=sin(B-)=﹣,∴sin(B﹣)=﹣,∵0<B<π,∴﹣<B﹣<,∴B﹣=﹣,即B=,又b=1,c=,∴由正弦定理=得:sin C==,∵C为三角形的内角,∴C=或,当C=时,A=;当C=时,A=(不合题意,舍去),则B=,C=.20. 如图,在△ABC中,BC边上的高AM所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0与BC相交于点P,若点B的坐标为(1,2).(1)分别求AB和BC所在直线的方程;(2)求P点坐标和AC所在直线的方程.【答案】(1).(2)【解析】试题分析:(1)由得顶点,再根据点斜式方程求出所在直线的方程,根据垂直的条件求出直线BC的斜率,再根据点斜式方程求出所在直线的方程.(2)由得, 由于x轴是的角平分线,故的斜率为, 再根据点斜式方程求出所在直线的方程.试题解析:(1)由得顶点.又的斜率==.所以所在直线的方程为,即,BC边上的高AM所在的直线方程为,所以直线BC的斜率为,所在的直线方程为.即.(2)由得因为x轴是的平分线,故的斜率为所在直线的方程为=,即21. 如图,边长为4的正方形与矩形所在平面互相垂直,分别为的中点,.(1)求证:;(2)求证:;(3)在线段上是否存在一点,使得?若存在,求出的长;若不存在,请说明理由. 【答案】(1)见解析;(2) 见解析;(3)=.【解析】试题分析:(I)由面面垂直的性质定理可直接证得。
(Ⅱ)将转化为的中点,利用中位线证∥,再根据线面平行的判定定理即可证MN∥平面CDFE。
(Ⅲ)假设存在点P 使AP⊥MN,由(I)易得所以。
(Ⅲ)由逆向思维可知只需证得,因为,即可证得AP⊥MN。
由相似三角形的相似比即可求得FP。
试题解析:(I)因为为正方形,所以。
因为平面,,,所以. (Ⅱ)连结因为是的中点,且为矩形,所以也是的中点。
因为是的中点,所以∥,因为,所以MN∥平面CDFE。
(Ⅲ)过点作交线段于点,则点即为所求。
因为ABCD为正方形,所以∥。
因为,所以,因为,所以。
因为,且,所以,因为,所以。
因为与相似,所以,因为,所以。
考点:线线平行、线面平行、线线垂直、线面垂直。
22. 设{a n}和{b n}是两个等差数列,记c n=max{b1-a1n,b2-a2n,…,b n-a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(Ⅰ)若a n=n,b n=2n-1,求c1,c2,c3的值,并证明{c n}是等差数列;(Ⅱ)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【答案】 (Ⅰ) 见解析;(Ⅱ) 见解析.【解析】试题分析:(Ⅰ)读懂新定义{c n}的含义,即可求得{c n}的通项公式;(Ⅱ)结合新定义,通过对d1的分类讨论,进而证明.试题解析:(Ⅰ)c1=b1-a1=1-1=0,c2=max{b1-2a1,b2-2a2}=max{1-2×1,3-2×2}=-1,c3=max{b1-3a1,b2-3a2,b3-3a3}=max{1-3×1,3-3×2,5-3×3}=.当n≥3时,(b k+1-na k+1)-(b k-na k)=(b k+1-b k)-n(a k+1-a k)=2-n<0,所以b k-na k关于k∈N*单调递减.所以c n=max{b1-a1n,b2-a2n,…,b n-a n n}=b1-a1n=1-n.所以对任意n≥1,c n=1-n,于是c n+1-c n=-1,所以{c n}是等差数列.(Ⅱ)设数列{a n}和{b n}的公差分别为d1,d2,则b k-na k=b1+(k-1)d2-[a1+(k-1)d1]n=b1-a1n+(d2-nd1)(k-1).所以c n=①当d1>0时,取正整数m>,则当n≥m时,nd1>d2,因此c n=b1-a1n.此时,c m,c m+1,c m+2,…是等差数列.②当d1=0时,对任意n≥1,c n=b1-a1n+(n-1)max{d2,0}=b1-a1+(n-1)(max{d2,0}-a1).此时,c1,c2,c3,…,c n,…是等差数列.③当d1<0时,当n>时,有nd1<d2.所以=n(-d1)+d1-a1+d2+≥n(-d1)+d1-a1+d2-|b1-d2|.对任意正数M,取正整数m>max{,}, 故当n≥m时,>M.。