2017年春季学期新版北师大版七年级数学下册《6.2.1频率的稳定性》同步练习含答案
- 格式:doc
- 大小:299.50 KB
- 文档页数:7
一、选择题1.列一组数据的频数分布表时,落在各个小组内的数据的个数叫做( )A.组距B.频数C.频率D.样本容量2.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需知道相应样本的( ) A.平均数 B.中位数 C.众数 D.频率分布3.已知样本7,8,10,14,9,7,12,11,10,8,13,10,8,11,10,9,12,9,13,11,那么这组样本数据落在8.5~11.5内的频率是( ) A.0.4 B.0.6 C.0.5D.0.654.在频数分布表中,各小组的频数之和( )A.小于数据总数B.等于数据总数C.大于数据总数D.不能确定二、填空题1.已知一组数据共100个,在频数分布表中,某一小组的频数为4,则这一小组的频率为__.2.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2,8,15,20,5,则第四组的频数和频率分别是________.3.有一块实验田,抽取1000个麦穗,考察它们的长度(单位:厘米),从频数分布表中可以得到样本数据落在 5.75~6.05之间的频率是0.36,于是可以估计在这块实验田里,长度在5.75~6.05厘米之间的麦穗约占________.4.已知一组数据:25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28,填写下面的频数分布表:分组频数累计频数频率20.5~22.522.5~24.524.5~26.526.5~28.528.5~30.5合计三、解答题1.某中学举行了一次演讲比赛,分段统计参赛同学的成绩,结果如下表:(分数均为整数,满分为100分) 请根据表中提供的信息,解答下列各题:(1)参加这次演讲比赛的同学共有________人;(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________;(3)所有参赛同学的平均得分M(分)在什么范围内?答:________;(4)将成绩频数分布直方图补充完整.2.某单位对全体职工的年龄进行了调查统计,结果如下(单位:岁):21 32 44 50 46 55 60 59 38 49 19 52 34 35 48 52 39 41 44 46 38 43 45 46 24 21 32 30 28 27 将数据适当分组,列出频数分布表,绘制相应的频数分布直方图.3.调查统计你所在居民小区各户的一个月用水量,将数据适当分组,并绘制相应的频数分布直方图. 分数段(分)61~7071~8081~9091~100人数(人)2864。
北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷一.解答题(共17小题)1.在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?2.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:(1)请估计:当次数S很大时,摸到白球的频率将会接近;假如你去摸一次,你摸到红球的概率是(精确到0.1).(2)试估算口袋中红球有多少只?3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率(1)完成上表;(2)“摸到白球”的概率的估计值是(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.5.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?6.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中白球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?7.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“可乐”区域的频率(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“可乐”的概率约是;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?8.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.9.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.(1)的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?10.在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D 四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.11.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?12.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.13.某校九年级兴趣小组进行投针实验,在地面上有一组平行线,相邻两条平行线间的距离都为5cm,将一长为3cm的针任意投向这组平行线,下表是他们的实验数据.(1)计算出针与平行线相交的频率,并完成统计表;(2)估算出针与平行线相交的频率;(3)由表中的数据说明:在以上条件下相交于不相交的可能性相同吗?(4)能否利用列表或树形图法求出针与平行线相交的概率?14.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)你能估算出学习小组做摸球实验的口袋中白球个数吗?(3)若摸球实验是从口袋里先摸出一球,不放回,再摸出一球;请用树状图或列表分析计算,这两只球颜色相同的概率是多少?15.某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.16.在一个不透明的箱子中装有2个红球、n个白球和1个黄球,这些球除颜色外无其他差别.(1)若每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么估计箱子里白球的个数n为;(2)如果箱子里白球的个数n为1,小亮随机从箱子里摸出1个球不放回,再随机摸出1个球,请用画树状图或列表法求两次均摸到红球的概率.17.如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(3)根据(2),若0<x<y,试求出x与y的值.北师大新版七年级下学期《6.2 频率的稳定性》2019年同步练习卷参考答案与试题解析一.解答题(共17小题)1.在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?【分析】(1)根据摸出的黑球的频率在0.4附近摆动可估计摸出一球是黑球的概率为0.4,据此可得;(2)根据概率公式可得.【解答】解:(1)∵摸出的黑球的频率在0.4附近摆动,∴估计袋中黑球的个数约为20×0.4=8个;(2)由(1)知袋子中红球6个、黑球8个、白球6个,第一次摸出白球后袋子中还有白球5个,总的球数为19个,故摸出白球的概率是.【点评】本题主要考查频率估计概率和概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.2.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:(1)请估计:当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是0.7(精确到0.1).(2)试估算口袋中红球有多少只?【分析】(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1﹣0.3=0.7;(2)根据红球的概率公式得到相应方程求解即可;【解答】解:(1)当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是1﹣0.3=0.7;故答案为:0.3,0.7;(2)估算口袋中红球有x只,由题意得0.7=,解之得x=70,∴估计口袋中红球有70只;【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率(1)完成上表;(2)“摸到白球”的概率的估计值是0.6(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?【分析】(1)利用频率=频数÷样本容量=频率直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.6;(3)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数.【解答】解:(1)填表如下:摸到白球的频率(2)“摸到白球”的概率的估计值是0.60;(3)由(2)摸到白球的概率为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20﹣12=8(个).答:黑球8个,白球12个.故答案为:(1)0.59,0.58;(2)0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.【分析】(1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;(2)根据小球分别标有数字3、4、5、x,用列表法或画树状图法说明当x=7时,得出“和为8”的概率,即可得出答案.【解答】解:(1)利用图表得出:实验次数越大越接近实际概率,所以出现“和为8”的概率是.故答案为;(2)当x=7时,画树状图如下:则两个小球上数字之和为8的概率是:=≠,所以x的值不可以取7.【点评】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.5.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?【分析】(1)根据概率公式分别计算小明获胜和小颖获胜的概率,比较即可得;(2)设向袋子中放入了x个红球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【解答】解:(1)不公平,∵袋子中共有30个小球,从中摸出一个小球,是黑球的概率为=,从中摸出一个小球,是黄球的概率为=,∴这个游戏不公平;(2)设裁判向袋子中放入了x个红球,根据题意可得:=0.25,解得:x=10,经检验:x=10是分式方程的解,∴裁判放入了10个红球.【点评】本题主要考查概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解题的关键.6.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)(2)试估算口袋中白球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?【分析】(1)根据统计数据,当n很大时,摸到白球的频率接近0.6;(2)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数;(3)先利用列表法展示所有20种等可能的结果数,再找出两只球颜色不同所占结果数,然后根据概率公式求解.【解答】解:(1)答案为:0.6;(2)由(1)摸到白球的概率为0.6,所以可估计口袋中白种颜色的球的个数=5×0.6=3(只);(3)画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率==.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.7.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“可乐”区域的频率(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;(3)可根据获得“洗衣粉”的概率为1﹣0.6=0.4,然后根据扇形统计图的意义,用360°乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角.【解答】解:(1)298÷500≈0.6;0.59×800=472;(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.故答案为0.6,0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.8.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.【分析】(1)根据频数与频率的关系,频数等于频率与样本容量的积,代入数据可得答案,(2)根据(1)的数据,进而可以制折线统计图,(3)由(2)的折线图,观察可得结论,(4)观察折线统计图可知,出现黄色小球的频率逐渐稳定在0.34附近,进而可得答案.【解答】解:(1)根据频数与频率的关系,频数等于频率与样本容量的积,第二行第7列应填的数据为240×0.36=86.4≈86,第三行第3列应填的数据为24÷80=0.3,故答案为:86,0.3.(2)根据(1)的数据,绘制折线统计图如图所示(3)从折线统计图可以看出,随着实验次数的增加,出现黄色小球的频率逐渐平稳;(4)观察折线统计图可知,出现黄色小球的频率逐渐稳定在0.34附近,故摸出黄球的机会约为34%.【点评】用到的知识点为:频率=所求情况数与总情况数之比.部分的具体数目=总体数目×相应频率.大量实验得到的频率接近于概率.9.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.(1)小颖的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?【分析】(1)要判断谁说的正确只要看他们说的情况有没有漏掉的即可.(2)根据频率=所求情况数与总情况数之比,即可得出结果.(3)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.【解答】解:(1)“一正一反”实际上含有“一正一反,一反一正”二种情况,共四种,所以小颖的说法是正确的(2)小明得到的“一正一反”的频率是50÷100=0.50小颖得到的“一正一反”的频率是47÷100=0.47据此,我得到“一正一反”的概率是(3)对概率的研究不能仅仅通过有限次实验得出结果,而是要通过大量的实验得出事物发生的频率去估计该事物发生的概率.我认为小聪与小颖的实验都是合理的,有效的.(8分)【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10.在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D 四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.【分析】(1)先求出D型号轿车所占的百分比,再利用总数1000辆即可求出答案;(2)利用C型号轿车销售的成交率为50%,求出C型号轿车的售出量,补充统计图即可;(3)分别求出各种型号轿车的成交率即可作出判断;(4)先求出已售出轿车的总数,利用售出的A型号车的数量即可求出答案.【解答】解:(1)∵1﹣35%﹣20%﹣20%=25%,∴1000×25%=250(辆).答:参加销展的D型轿车有250辆;(2)如图,1000×20%×50%=100;(3)四种型号轿车的成交率:A:×100%=48%;B:×100%=49%;C:50%;D:×100%=52%∴D种型号的轿车销售情况最好.(4)∵.∴抽到A型号轿车发票的概率为.【点评】利用统计图解决问题时,要善于从图中寻找各种信息.当一个事件的频率具有稳定性时,可以用该事件发生的频率来估计这一事件发生的概率.用到的知识点为:概率=所求情况数与总情况数之比.部分数目=总体数目乘以相应概率.11.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近0.6;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为0.60;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?【分析】(1)求出所有试验得出来的频率的平均值即可;(2)摸一次的概率和大量实验得出来的概率相同;(3)根据频数=总数×频率进行计算即可.【解答】解:(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.。
《6.2 频率的稳定性》同步练习1一、根据下列事件发生的可能性,把A、B、C、D、E填入事件后的括号里.1.3个人下棋,必定有一个是旁观者.()2.任意一张扑克牌,一定是红桃.()3.白天一定能见到太阳.()4.你能举起300公斤的重物.()5.任意抓一把围棋子,个数是奇数.()A.不可能发生B.发生的可能性小于50%C.发生的可能性大于50%D.必然发生100%E.发生的可能性等于50%二、小新和小丁想利用做一道数字题来决定谁去看球赛,他们叫老师给他们出一道题,若小新先做出来小新就去,若小丁先做出小丁就去.这个游戏对双方公平吗?三、初一(一)班班长重新选举,小梁和小栋都想被当选,于是全班55人进行投票选举,谁的选票多谁当选.这对双方公平吗?四、小璐和小丽都想去参加一项重要的比赛,但只有一个名额.于是他们决定抓阄,一张写着ye s,一张写着no,抓住ye s的就去,抓住no的就不去.这对双方公平吗?五、选做题小阳和小鸣掷一对骰子,如果小阳掷出的骰子点数之和为6,则加1分,否则不得分;如果小鸣掷出的点数之和为7,则加1分;否则不得分.他们各掷20次,记录每次得分,20次累计分高的为胜,这个游戏对小阳和小鸣双方公平吗?说明你的理由,和同桌交流.参考答案一、1.D 2.B 3.C 4.A 5.E二、不一定公平三、不一定公平四、公平五、不公平,理由略《6.2 频率的稳定性》同步练习2一、填空题1.从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是_____.2.一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性_____.3.小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中_____的可能性较小.4.3张飞机票2张火车票分别放在五个相同的盒子中,小亮从中任取一个盒子决定出游方式,则取到_____票的可能性较大.5.在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是_____.6.在线段AB上任三点x1、x2、x,则x2位于x1与x之间的可能性_____x2位于两端的可能性 .二、选择题7.一个口袋内装有大小和形状相同的一个白球和两个红球,从中任取一个球,得到白球,这个事件是( )A.必然事件B.不确定事件C.不可能事件D.不能确定8.有5个人站成一排,“小亮站在正中间”与“小亮站在两端”这两个事件发生的可能性 ( )A.相等B.不相等C.有时相等,有时不等D.不能确定9.从一副扑克牌中任取一张摸到大王与摸到小王的可能性( )A.相等B.不相等C.有时相等,有时不等D.无法确定10.某班共有学生36人,其中男生20人,女生16人,今从中选一名班长,任何人都有同样的当选机会,下列叙述正确的是( )A.男生当选与女生当选的可能性相等B.男生当选的可能性大于女生当选的可能性C.男生当选的可能性小于女生当选的可能性D.无法确定11.8个足球队中有2个强队,现将这8个队任意分成两组,每组4个队进行比赛,对两个强队是否在同一组的可能性大小叙述正确的是( )A.两个强队在同一组与不在同一组的可能性大小相同B.在同一组的可能性较大C.不在同一组的可能性较大D.无法确定三、解答题12.为了支援体育事业,政府决定发行电脑体育彩票,彩票的每注投注号由7个号码组成,每位号码均从0到9这10个数字中产生,每注2元,每期彩票的销售总额扣除当期彩票设奖的奖金,剩下的均作为发展体育事业的资金.某一期摇中的中奖号及对应的奖金额如下:奖级中奖条件奖金额特等奖3214578 500万/注一等奖321457×20万元/注二等奖32145××或×21457×6500元/注三等奖3214×××或××1457×500元/注四等奖321××××或×××457×50元/注五等奖32×××××或××××57×5元/注小明任意抓取一张,请你按获奖的可能性由小到大排列顺序.13.让我们做一个有趣的实验一个口袋里边装有2个红球、2个白球,这4个球除颜色不同外,形状、大小、重量都相同,将袋内的球搅匀后,伸手到袋中摸球,每次摸出一球,记住球的颜色,然后放回袋中……这样连续摸4次,记住4个球的颜色.规定:4个全红记 2分3红一白记 0分2红2白记-2分1红3白记 0分4个全白记 2分得正分为胜,得负分为败,重复上面的试验,你能获胜吗?参考答案一、1.不确定事件 2.相等 3.判断题 4.飞机5.减少有效分中有受贿裁判评分的可能性6.小于二、7.B 8.B 9.A 10.B 11.C三、12.略 13.略《6.2 频率的稳定性》同步练习3一、选择题1.下列事件中可能性是0的是( ) A .已知b a =,则cbc a =(c b a ,,是有理数) B .一年有14个月 C .明天下雨 D .2008年奥运会在中国举办 2.掷一枚硬币,正面朝上的可能性为( ) A .21 B .31C .1D .0 3.甲、乙两个工厂生产相同的产品,甲厂的立品出现次品的可能性是10%,乙厂产品出现次品的可能性为7%,请问哪一个厂的产品更让人放心一些( )A .买甲厂的B .买乙厂的C .买哪一个都一样D .不确定 二、填空题1.“苹果不抓住会从空中掉下来”这一事件的可能性为___________.2.“一条射线有两个端点”发生的可能性为__________. 3.(1)必然事件的概率是_________; (2)不可能事件的概率是___________;(3)如果A 是不确定事件,则0_________)(A P _________1.4.一不透明的盒子里放有编号为1,2,3的3张完全相同的卡片,任意抽出一张,抽到1号的可能性为_________. 三、解答题1.指出下列事件中,哪些是不确定事件,哪些是必然事件,哪些是不可能事件. (1)树上的苹果掉到人头上; (2)树上的苹果掉到月球上; (3)小明在教室里坐着; (4)骰子的每个面的点数不超过6; (5)小亮数学测验得满分; (6)小林语言测验不及格.2.投掷一枚骰子,出现1点、2点、3点、4点、5点、6点的概率各是多少?出现点数不超过3的概率是多少?3.小丽和小芳都想参加志愿者活动,但现要只有一个名额,小丽想了一个办法,他将一个转盘(均质的)均匀分成6份如图所示,游戏规定:随意转动转盘,若指针指到3,则小丽去,指针指到2则小芳去,若你是小芳,你会同意这个办法吗?为什么?4.分别标有:“1”、“2”、“3”、“4”、“5”的五张卡片,任选两张,求: (1)两张的号数之和为5的概率;(2)它们互质(没有大于1的公因数)的概率; (3)它们乘积超过5的概率; (4)它们乘积超过10的概率.参考答案一、选择题 1.B 2.A 3.B 二、填空题1.1 2.0 3.(1)1 (2)0 (3)<,< 4.31三、解答题1.(1)不确定事件 (2)不可能事件 (3)不确定事件 (4)必然事件 (5)不确定事件 (6)不确定事件2.61,61,61,61,61,61,21 3.不同意.理由是指针指向3的可能性为3162 ,指向2的可能性为61,所以小丽赢的可能性大,游戏不公平.要想公平可以将一个3改为6或将1改为2.(改法不惟一)4.(1)51 (2)109 (3)53 (4)103。
6.2 频率的稳定性(含答案)一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1.下列说法正确的是()①不可能事件的可能性为0;②确定事件的可能性不是0就是1;③必然事件的可能性为1;④不确定事件的可能性大于0而小于1;A.1个 B.2个 C.3个 D.4个2.关于频率与概率的关系,下列说法正确的是()A.频率等于概率 B.当试验次数很多时,频率稳定在概率附近C.当试验次数很多时,概率稳定在频率附近 D.试验得到的频率与概率不可能相等3.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是()A.0.8 B.0.9 C.0.95 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.65.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱;通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A. 12 B.9 C. 4 D. 36.某单位要在两名射击队员中推出一名参加比赛,已知同等条件下,甲射中某物的可能性大于乙,则所推出的人中应()A.选甲B.选乙C.都可以D.不能确定7.下列说法正确的是( )A.如果一件事情发生的可能性达到99.9999%,说明这件事必然发生;B.如果一事件不是不可能事件,说明此事件是不确定事件;C.可能性的大小与不确定事件有关;D.如果一事件发生的可能性为百万分之一,那么这事件是不可能事件..8. 一个口袋里有5个红球,3个黄球,2个绿球,任意摸一个,摸到()的可能性最小;A.红球B.黄球C.绿球D.以上都不对9. 从一副扑克牌中则下列事件中可能性最大的是( )A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q的牌10. 一个不透明口袋中有9个球,其中4个红球,3个蓝球,2个白球,在下列事件中,发生的可能性为1的是()A.从口袋中拿一个球恰为红球 B. 从口袋中拿出2个球都是白球C. 拿出6个球中至少有一个球是红球D. 从口袋中拿出的5个球恰为3红2白二.填空题:(将正确答案填在题目的横线上)11.在一个不透明的袋中,红色、白色、黄色的球共有40个,这些球除颜色外其它完全相同,通过摸球实验后发现,其中摸到红球、白球的频率分别稳定在15%和45%附近,则袋中黄色球的个数约为________个;12.目前,我国农村人口A与非农村人口B的比例如图所示,当转盘停止转动时,指针停在_______区域的可能性较大;13.掷一枚质地均匀的硬币,正面朝上的概率是12,如果前5次出现反面朝上,那么第6次出现正面朝上的概率是__________;14.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个;15.掷一枚质地均匀的骰子,会出现的可能结果是____________________;掷出的点数为1与掷出点数为2的可能性_______;掷出的点数大于3与掷出点数小于3的可能性________;(填“相同”或“不相同”)三.解答题:(写出必要的说明过程,解答步骤)16. 已知一个不透明的袋中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个;从中任取1个球,取得红球、黑球、白球的可能性相同吗?为什么?17.某商场设了一个可以自由转动的转盘如图,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(2)请估计,当n很大时,频率将会接近多少?18.在一个不透明的口袋里装有黑、白两色的球共20个,这些球除颜色外其它都相同,将球搅匀后从中随机摸出一个球,记下颜色,再放回袋中,不断重复;下表是一组(1)由此估计,当n很大时,摸到白球的频率会接近__________;(2)现在摸一次球,摸到白球的概率是_________,摸到黑球的概率是________;(3)试估算袋中的白球、黑球各有多少个?19. 下表是某篮球运动员在进行定点罚球的记录:(1)根据上表,估计该运动员罚球命中的概率;(2)根据上表,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),大约能得多少分?6.2 频率的稳定性参考答案:1~10 DBCCA ACCDC11.16; 12.A; 13.12; 14.8; 15.点数为1,2,3,4,5,6;相同;不相同;16. 从中任取1个球,取得红球、黑球、白球的可能性不相同,因为三种球的个数不相等;17.(1)(2)∵落在钢笔上的频率为:(0.680.740.680.690.7050.701)60.70+++++÷≈∴当n很大时,频率将会接近0.7;18.(1)当n很大时,摸到白球的频率会接近(0.580.640.580.590.6050.601)60.60+++++÷≈(2)摸到白球的概率是0.60,摸到黑球的概率是1-0.60=0.40;(3)白球有20×0.6=12(个),黑球有20-12=8(个);19.(1)由题可知,罚球命中的频率从左到右分别为:0.7,0.8,0.8,0.8,0.82,0.8;当罚球次数增多时,频率稳定在0.8附近;由此估计该运动员罚球命中的概率为0.8;(2)由10×2×0. 8=16,∴该运动员此次比赛罚球大约能得16分;掌握的三个数学答题方法树枝答题法关注数学题的解题过程2014年上海市中考状元徐瑜卿认为,数学是一门思维学科,并不是平时做题多就一定会拿高分。
北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷一.选择题(共22小题)1.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个2.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12B.15C.18D.213.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.244.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率5.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为()A.4B.6C.8D.126.在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是()A.10B.14C.16D.407.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率8.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个9.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率10.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚11.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是()发芽频率A.0.8B.0.9C.0.95D.112.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等13.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24B.18C.16D.614.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被2整除的概率D.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率15.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次硬币,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.5 16.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③17.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是418.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20B.24C.28D.3019.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A.①B.②C.①②D.①③20.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个21.下列说法中正确的个数是()①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.422.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个二.填空题(共18小题)23.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.24.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.25.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.26.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).27.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是,则袋中红球约为个.28.在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有个.29.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:根据表中数据,估计在男性中,男性患色盲的概率为(结果精确到0.01)30.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球个.31.“六•一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是个.32.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.33.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a 个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值约为.34.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.35.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是m2.36.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.37.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是.38.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有个.39.某种油菜籽在相同条件下发芽试验的结果如表:发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).40.黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.三.解答题(共10小题)41.一直不透明的口袋中放有若干只红球和白球,这两种球除了颜色以外没有任何其他区别,将袋中的球摇均匀.每次从口袋中取出一只球记录颜色后放回再摇均匀,经过大量的实验,得到取出红球的频率是,求:(1)取出白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?42.4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?43.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸到黑球的频率(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.44.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?45.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸到白球的频率(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)=;(3)试验估算这个不透明的盒子里黑球有多少只?46.在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1)请估计:当n很大时,摸到白球的概率将会接近(精确到0.01),假如你摸一次,你摸到白球的概率为;(2)试估算盒子里白、黑两种颜色的球各有多少个?(3)在(2)条件下如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?47.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.48.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸到白球的频率(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少只?49.如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(3)根据(2),若0<x<y,试求出x与y的值.50.某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷参考答案与试题解析一.选择题(共22小题)1.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:设红球有x个,根据题意得,4:(4+x)=1:5,解得x=16.故选:A.【点评】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.2.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12B.15C.18D.21【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,×100%=20%,解得,a=15.故选:B.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.3.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.4.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.5.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为()A.4B.6C.8D.12【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得:,解得:x=8,故选:C.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.6.在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是()A.10B.14C.16D.40【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,∴=0.4,解得:n=10.故选:A.【点评】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.7.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:=≈0.33;故此选项正确;C、掷一枚硬币,出现正面朝上的概率为,故此选项错误;D、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.8.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【解答】解:设袋中有黄球x个,由题意得=0.3,解得x=15,则白球可能有50﹣15=35个.故选:D.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.关键是利用黄球的概率公式列方程求解得到黄球的个数.9.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()。
北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷一.选择题(共10小题)1.通过大量重复抛掷两枚均匀硬币的试验,出现两个反面的成功率大约稳定在()A.25%B.50%C.75%D.100%2.如图显示了用计算机模拟随机投掷一枚图钉的实验结果.随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是()A.0.620B.0.618C.0.610D.10003.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个4.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率5.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A.2.4m2B.3.2m2C.4.8m2D.7.2m26.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8B.12C.16D.207.以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是D.下表记录了一名球员在罚球线上罚篮的结果:由此频率表可知,这名球员投篮一次,投中的概率约是0.68.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率9.在综合实践活动中,小明、小亮、小颖、小静四位同学用投掷图钉的方法估计针尖朝上的概率,他们的实验次数分别为20次、50次、150次、200次.其中哪位同学的实验相对科学()A.小明B.小亮C.小颖D.小静10.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.18二.填空题(共10小题)11.在一个不透明的盒子里有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后,发现摸到红球的频率稳定在0.4,由此估计袋中红球的个数为.12.如图是一个可以自由转动的转盘,如表是一次活动中的一组统计数据:转动转盘一次,落在“铅笔”的概率约是(结果保留小数点后一位).13.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是.14.一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球个.15.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为.16.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有个.17.在一个不透明的小盒中装有m张除颜色外其它完全相同的卡片,这m张卡片中两面均为红色的只有3张.搅匀后,从小盒中任意抽出一张卡片记下颜色,再放回小盒中.通过大量重复抽取卡片实验,发现抽到两面均为红色卡片的频率稳定在0.3附近,可推算出m的值约为.18.在一个不透明的口袋中装有3个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.19.一个布袋中装有只有颜色不同的a(a>12)个小球,分别是2个白球、4个黑球,6个红球和b个黄球,从中任意摸出一个球,记下颜色后放回,经过多次重复实验,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).根据题中给出的信息,布袋中黄球的个数为.20.把一袋黑豆中放入100粒黄豆,搅匀后取出100粒豆子,其中有黄豆4粒,则该袋中约有黑豆.三.解答题(共30小题)21.一个不透明袋子中有1个红球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到红球的频率稳定于0.25,求n的值.(2)在(1)的条件下,从袋中随机摸出两个球,求两个球颜色不同的概率.22.一个不透明的袋中放进若干个白球,现在想要知道这些白球的数目,小明用了如下的方法:将20个与袋中白球大小、质量相同均相同的红球放入袋中,将红球与袋中的白球充分搅匀后,再从袋中随机摸球,每次共摸10个球放回,共摸20次,求出红球与10的比值,然后计算出平均值,得到摸到红球的概率是8%,求原来袋中约有多少个白球.23.某商场购进一批某名牌衬衫,要求一等品的件数为12850件左右,请问该商场应购进多少这样的衬衫?下面是该部门经理随机抽查一些衬衫后,统计得到的一等品的变化表:(1)把表补充完整(结果保留两位小数);(2)任意抽取1件衬衫,抽得1等品的概率约为多少?(3)你能求得商场应购进多少这样的衬衫吗?24.小晨和小冰两位同学在学习“概率”时做投掷骰子(质地均匀的正方体)实验,他们共做了100次试验,实验结果如下:(1)计算“2点朝上”的频率和“3点朝上”的频率;(2)小晨说:“根据实验,一次实验出现4点朝上的概率是”;小晨的这一说法正确吗?为什么?25.检查某产品,合格产品数随抽查的产品总数的变化情况如表:数之比()(1)求出表中空白处的各频率;(2)从该产品中任抽取一件,抽到的合格产品的概率是多少?(3)如果任抽取2000件,其中不合格产品约有多少件?26.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中摸出一个球,记下颜色再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球,请你估计这个口袋中红球和白球的数量.27.一个口袋中有10个黑球和若干个白球若干个,从口袋中随机摸出一球,记下其颜色,再把它放回摇均,重复上述过程,共实验100次,其中75次摸到白球,于是可以估计袋中共有多少球?28.3张扑克牌中只有一张黑桃,三位同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?请同学们通过实验,试着用频率估计每个同学抽到黑桃的概率.29.将一枚硬币的一面贴上号码1,另一面贴上号码2,掷硬币两次,观察掷出的两个号码的积.设A=“积是2”.对160次实验数据进行整理的结果如下:(1)用计算器计算A发生的频率,并填表.(2)根据表中数据绘制折线统计图.(3)随着实验次数的增大,频率稳定到什么数附近?(4)根据频率估计“积是2”发生的概率.(5)直接计算“积是1”“积是2”和“积是4”的概率.30.在一个不透明的布袋子中有2个红球和2个白球,判断下面三位同学对摸球活动的不同说法的对错:甲:摸到哪个球是随机事件,结果难以预测,就算摸500次,有可能摸到红球200次,也有可能摸到红球400次,没有什么规律.乙:布袋子中有2个红球和2个白球,红球和白球的数量相等,所以摸到哪个球的概率都是50%,如果你摸500次.摸到红球一定是250次.丙:可以用频率估计概率,如果摸50次.摸到红球是30次.那么摸到红球的概率就是60%.31.检查某工厂产品,其结果如下:检查产品件数分别为:10,20,50,100,200,400,800,1600.其中次品数分别为:0,3,6,9,18,41,79,160.问:(1)次品的频率分别是多少?(2)估计该工厂产品出现次品的概率是多少?32.根据表格完成问题.(1)将表格填写完整.(2)估计播种1粒该麦种,其发芽的概率约是多少?(3)若实际需要15000棵麦苗,则需要多少粒麦种?33.某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(结果保留小数点后两位).(2)这些频率具有怎样的稳定性?(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(结果保留小数点后一位).34.某商场设立了一个可以自由转动的转盘,并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)a=(2)我们知道,当n足够大时,频率将会接近一个常数p,则p约为(精确到十分位).(3)假如你去转动转盘一次,你获得玩具车的概率大约是多少?35.某水果公司以2元/千克的成本新进了10000千克柑橘,销售人员首先从所有的柑橘中随机抽取若干柑橘,进行了“柑橘损坏率”统计,结果如下:(1)该10000千克柑橘中,估计柑橘的损坏概率为(2)如果公司希望浙西额柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?36.对下列说法谈谈你的看法:(1)某彩票的中奖机会是2%,如果我买10000张彩票一定有200张会中奖;(2)我和同学玩飞行棋游戏,我掷了20次骰子还没掷得“6点”,说明我掷得“6点”的机会比其他同学掷得“6点”的机会小;(3)我们知道,抛掷一枚普通硬币得到正面和反面的机会各为50%,出就是说,虽然没人能保证抛掷1000次会得到500次正面和500次反面,但是,我敢保证得到正面的次数会非常接近得到反面的次数.37.篮球运动员在最近几场大赛中投篮的结果如下表所:计算表中的频率:如果这位运动员投篮一次,请你估计他进球的概率是多少?38.下列说法正确的是.①″对角线相等的四边形是矩形″是随机事件;②选出某校短跑最快的学生参加全市比赛适宜用全面调查;③随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是;④一名球员记录了在罚球线上投蓝的次数是1500,投中的次数是780,则判断投中的概率是0.52.39.调查全班50个人生日相同的概率,记录其中有无2个人的生日相同,每选取50个被调查人的生日为一次试验,重复尽可能多次试验,并将数据记录表中:(1)补充完整如表;(2)根据上表中的数据,估计“50个人中有2个人生日相同”的概率.40.某运动员对自己进行篮球定点投球测试,如表是他的测试成绩及相关数据.(1)请将数据表补充完整(保留到小数点后两位);(2)在比赛中该运动员因对手犯规获罚投篮一次,你能估计这次他能罚中的概率是多少吗?41.某位篮球运动员在同样的条件下进行投篮练习,结果如下表:)(1)将上表补充完整;(2)这位运动员投篮一次,进球的概率约是多少?(3)若这位运动员投篮10次,必定会投进8次吗?为什么?42.对某电视机厂生产的电视机进行抽样检测的数据如下据此估计该厂生产的电视机合格率是多少?43.在一个暗箱里放有12个除颜色外其他都相同的球,每次将求搅拌均匀后,任意摸出一个球,记下颜色再放回暗箱,通过大量重复摸球试验后发现,摸到红球的频率稳定在25%左右,你能估计出袋中的红球的个数大约是多少吗?44.在对某次试验数据整理过程中,某个事件出现的频率随试验次数变化的折线图如图所示,(1)这个图形中折线的变化特点是;(2)这个事件发生的概率为.45.下表是中国人民银行公布的中国人寿保险经验生命表(2000﹣2003)女性表的部分摘录,根据下表估算下列概率(结果精确到0.0001).(1)一名女性79岁当年死亡的概率;(2)一名61岁的女性活到80岁的概率.46.某篮球队教练记录了该队一名主力前锋练习罚篮的结果如下:(1)填表求该前锋罚篮命中的频率(保留三个有效数字);(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是什么吗?47.在一个不透明的口袋中,装有30个外形大小一样的球,颜色有红、黄两种,设计一套方案,估算两种颜色的球各多少?48.某商场有一个可以自由转动的转盘(如图),规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)计算并完成上述表格.(2)转动该转盘一次,获得铅笔的概率约是多少?49.一个不透明的袋子中装有若干个白球和红球,这些球除颜色外都相同,某课外学习小组做摸球试验,将求搅均匀后从张任意摸出一个球,记下颜色后放回,搅匀,不断重复,获得数据如下摸到白球的频率(1)计算并填写表中摸到白球的频率;(2)当摸球次数很大时,摸到的白球的频率估计值是多少?(3)若已知袋中有白球24个,试估计袋中红球的个数.50.收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:观察表格,l和f之间存在怎样的规律?波长l越大,频率f将怎样变化?北师大新版七年级下学期《6.2 频率的稳定性》2019年同步练习卷参考答案与试题解析一.选择题(共10小题)1.通过大量重复抛掷两枚均匀硬币的试验,出现两个反面的成功率大约稳定在()A.25%B.50%C.75%D.100%【分析】抛掷两枚均匀的硬币,可能会出现四种情况,而出现出现两个反面的机会为四分之一.【解答】解:抛掷两枚均匀的硬币,可能出现的情况为:正正,反反,正反,反正,∴出现两个反面的概率为,∴抛掷多次以后,出现两个反面的成功率大约稳定在25%.故选:A.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.2.如图显示了用计算机模拟随机投掷一枚图钉的实验结果.随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是()A.0.620B.0.618C.0.610D.1000【分析】结合给出的图形以及在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,解答即可.【解答】解:由图象可知随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故选:B.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.3.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个【分析】利用频率估计概率得到摸到黄球的概率为0.3,然后根据概率公式计算即可.【解答】解:设袋子中黄球有x个,根据题意,得:=0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率【分析】根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.【解答】解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选:B.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.5.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A.2.4m2B.3.2m2C.4.8m2D.7.2m2【分析】利用频率估计概率得到估计骰子落在世界杯图案中的概率为0.4,然后根据几何概率的计算方法计算世界杯图案的面积.【解答】解:∵骰子落在世界杯图案中的频率稳定在常数0.4左右,∴估计骰子落在世界杯图案中的概率为0.4,∴估计宜传画上世界杯图案的面积=0.4×(4×2)=3.2(m2).故选:B.【点评】本题考查了频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.6.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8B.12C.16D.20【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【解答】解:根据题意得,=,解得,m=20.故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.7.以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是D.下表记录了一名球员在罚球线上罚篮的结果:由此频率表可知,这名球员投篮一次,投中的概率约是0.6【分析】利用频率与概率的意义对A、B进行判断;根据概率公式对C进行判断;根据频率估计概率对D进行判断.【解答】解:A、小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的频率是,所以A选项的说法错误;B、某彩票的中奖概率是5%,那么买100张彩票不一定中奖,所以B选项的说法错误;C、某运动员射击一次只有两种可能的结果:中靶与不中靶,它们发生的可能性不等,所以C选项的说法错误;D、由此频率表可知,这名球员投篮一次,投中的概率约是0.6,所以D选项的说法正确.故选:D.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.8.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为,故此选项错误;C、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:=≈0.33;故此选项正确;D、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:C.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.9.在综合实践活动中,小明、小亮、小颖、小静四位同学用投掷图钉的方法估计针尖朝上的概率,他们的实验次数分别为20次、50次、150次、200次.其中哪位同学的实验相对科学()。
2019-2019学年北师大版七年级下册数学6.2频率的稳定性同步测试一、单选题(共10题;共20分)1.有40个数据,共分成6组,第1~4组的频数分别为10,5,7,6,第5组的频率是0.1,则第6组的频数是()A. 8B. 28C. 32D. 402.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率给出的统计图如图所示,则符合这一结果的实验可能是()A. 掷一枚正六面体的骰子,出现5点的概率B. 掷一枚硬币,出现正面朝上的概率C. 任意写出一个整数,能被2整除的概率D. 一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率3.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班B型血的人数是()A. 16B. 14C. 4D. 64.已知一组数据:18 21 29 23 18 20 22 19 23 24 21 19 24 22 17 22 23 19 21 17 对这些数据适当分组,其中17~19这一组的频数和频率分别为()A. 5,25%B. 6,30%C. 8,40%D. 7,35%5.下列6个数中,负数出现的频率是()﹣6.1,,﹣(﹣1),(﹣2)2,(﹣2)3,﹣[﹣(﹣3)].A. 83.3%B. 66.7%C. 50%D. 33.3%6.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则分组后频率为0.2的一组是()A. 6~7B. 8~9C. 10~11D. 12~137.某同学本学期共参加了十次数学测试,其中90分以上有8次,那么,该同学在这十次考试中,出现90分以上的频率是()。
A. 0.20B. 0.80C. 0.90D. 88.一年中,31号出现的频数是()A. 7B. 6C. 5D. 129.在一个不透明的口袋中放入除颜色外其余都相同的6个红球和若干个绿球,小颖从中随机摸出一球,记下颜色后,放回,共试验60次,其中记有20个红球,估计袋中有绿球个数为()A. 12B. 18C. 24D. 4010.袋子里有10个红球和若干个蓝球,小明从袋子里有放回地任意摸球,共摸100次,其中摸到红球次数是25次,则袋子里蓝球大约有()A. 20B. 30C. 40D. 50二、填空题(共6题;共6分)11.)在一个不透明的布袋中装有黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则摸到白球的概率为 ________.12.八年级(1)班共有50名学生,若有36名学生推荐李明为学习委员,则李明得票的频率是________ .13.在1000个数据中,用适当的方法抽取50个作为样本进行统计,在频数分布表中,54.5~57.5这一组的频率是0.12,那么估计总体数据落在54.5~57.5之间的约有________个.14.国庆节期间,小红的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小红将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.3,由此可以估计纸箱内红球的个数约是 ________个.15.如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为________.16.(2019•贵港)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是 ________.三、解答题(共3题;共15分)17.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40000人次,公园游戏场发放的福娃玩具为10000个.(1)求参加一次这种游戏活动得到福娃玩具的概率;(2)请你估计袋中白球接近多少个?18.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:求出封闭图形ABC的面积.19.下表是根据对初一(1)班的50名同学平时最爱吃的食物的种类进行的问卷调查绘制成的统计表,请填满缺少的项并回答后面的问题.(1)选择适当的统计图表示男生平时最爱吃的食物的种类情况;(2)就给出的初一(1)班的同学平时最爱吃的食物的种类情况,请你结合自己的年龄特点简略谈谈自己的看法.四、综合题(共1题;共11分)20.为了了解学校开展“孝敬父母,从家务事做起”活动的实施情况,该校抽取八年级5名学生调查他们一周(按7天计算)做家务所用时间(单位:小时,调查结果保留一位小数),得到一组数据,并绘制成统计表,请根据表完成下列各题:(1)填写频率分布表中末完成的部分.(2)由以上信息判断,每周做家务的时间不超过1.55h的学生所占的百分比是________.(3)针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.答案解析部分一、单选题1.【答案】A【解析】【解答】解:∵有40个数据,共分成6组,第5组的频率是0.1,∴第5组的频数为40×0.1=4;又∵第1~4组的频数分别为10,5,7,6,∴第6组的频数为40﹣(10+5+7+6+4)=8.故选A.【分析】先求出第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.2.【答案】D【解析】【解答】解:A、掷一枚正六面体的骰子,出现5点的概率为,故本选项错误;B、掷一枚硬币,出现正面朝上的概率为,故本选项错误;C、任意写出一个整数,能被2整除的概率为,故本选项错误;D、一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为≈0.33,故本选项正确.故选D.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.3.【答案】B【解析】【解答】解:本班B型血的人数=40×0.35=14.故选B.【分析】根据人数=总人数×频率求解即可.4.【答案】C【解析】【分析】首先正确数出在17~19这组的数据;再根据频率、频数的关系:频率=频数÷数据总和,进行计算。
2 频率的稳定性1.某人在抛硬币(质地均匀)试验中,抛掷n 次,正面朝上有m 次⎝⎛⎭⎪⎫正面朝上的频率是m n,则下列说法正确的是( )A .正面朝上的频率一定等于12B .正面朝上的频率一定不等于12C .多投一次,正面朝上的频率更接近12D .随着抛掷次数逐渐增加,正面朝上的频率稳定在12附近2.在抛一个瓶盖的试验中,某小组做了1000次试验,得到出现盖口向下的频率为69.5%,则出现盖口向下的频数为( )A .695B .700C .305D .不能确定3.2018·吉林模拟 在一个不透明的口袋中,装有红色、黑色、白色的玻璃球共有40个,它们除颜色外其他均相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( )A .6B .16C .18D .244.一个暗箱里放有a 个除颜色外其他均相同的球,这a 个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色后再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a 的值大约是________.5.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( ) A .抽10次奖必有一次抽到一等奖 B .抽1次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽1次肯定抽到一等奖 6.连续抛掷一枚质地均匀的一元硬币100次出现了100次正面朝上,则第101次抛掷该硬币出现正面朝上的概率是________.7.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率8.如图6-2-1显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.图6-2-1下面有三个推断:①当投掷次数是500时,计算机记录“钉尖朝上”的次数是308,所以“钉尖朝上”的概率是0.616;②随着试验次数的增加,“钉尖朝上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖朝上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖朝上”的频率一定是0.620.其中合理的是( )A.① B.②C.①② D.①③由此估计这种幼树在此条件下移植成活的概率约是________.(精确到0.1)10.甲、乙两名同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,并绘出如图6-2-2所示的统计图,则符合这一结果的试验可能是( )图6-2-2A.掷一枚正六面体的骰子,出现1点朝上的概率B.从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率C.抛一枚质地均匀的硬币,正面朝上的概率D.任意写一个整数,它能被2整除的概率11.一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向盒子中放入8个黑球(这些球除颜色外其余均相同),摇匀后从中随机摸出1个球记下颜色,再把它放回盒中,不断重复操作,共摸球400次,其中88次摸到黑球,估计盒子中有白球________个.12.在一个不透明的布袋中装有黄、白两种颜色的球共40个,这些球除颜色外其余均相同.小红按如下规则做摸球试验:将这些球搅匀后从中随机摸出1个球,记下颜色后再把球放回布袋中,不断重复上述过程.下表是试验得到的一组统计数据:(1)对试验得到的数据,选用“扇形统计图”“条形统计图”或“折线统计图”中的________(填一种),能使我们更好地观察摸到黄球的频率的变化情况.(2)请估计:①当摸球次数很大时,摸到黄球的频率将会接近________(精确到0.1);②若从布袋中随机摸出1个球,则摸到白球的概率为________(精确到0.1).(3)试估计布袋中黄球的个数.13.小南发现操场中有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内画出了一个半径为1米的圆,在不远处向图形ABC内掷石子,若石子落在图形ABC以外,则图6-2-3根据以上的数据,小南得到了封闭图形ABC的面积.请根据以上信息,回答下列问题:(1)估计石子落在阴影内的概率;(2)估计封闭图形ABC的面积.北师大版七年级数学下册6.2频率的稳定性练习题教师详解详析1.D2.A [解析] 1000×69.5%=695.故选A .3.B [解析] 由摸到红色、黑色球的频率稳定在15%和45%,估计摸到白色球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是40×40%=16.4.15 [解析] 由题意可得3a ×100%=20%,解得a =15.5.C6.12 [解析] 抛掷一枚质地均匀的一元硬币有两种结果:正面朝上和反面朝上,每种结果都可能出现,故所求概率为12.故答案为12.7.D [解析] 因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以A ,B ,C 错误,D 正确.故选D .8.B [解析] 当投掷次数是500时,计算机记录“钉尖朝上”的次数是308,所以此时“钉尖朝上”的频率是308÷500=0.616,但“钉尖朝上”的概率不一定是0.616,故①错误;随着试验次数的增加,“钉尖朝上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖朝上”的概率是0.618,故②正确;若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖朝上”的频率可能是0.620,但不一定是0.620,故③错误.故选B .9.0.9 [解析] 大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即试验次数越多频率越接近于概率,所以这种幼树在此条件下移植成活的概率约是0.9. 故答案为0.9.10.B [解析] 根据统计图可知,试验结果在0.33附近波动,即其概率P ≈0.33,计算四个选项的概率,约为0.33者即为正确答案.11.2812.解:(1)折线统计图 (2)①0.6 ②0.4(3)40×0.6=24(个),所以估计布袋中黄球的个数为24个.13.解:(1)观察表格得:随着投掷次数的增大,石子落在阴影内的频率稳定在23,所以估计石子落在阴影内的概率是23.(2)由(1)得石子落在圆内(含圆上)的概率是13.设封闭图形ABC 的面积为a 平方米,根据题意,得πa =13,解得a =3π,则封闭图形ABC 的面积为3π平方米.。
北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷一.选择题(共7小题)1.某学习小组做“用频率估计概率的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚正六面体的骰子,出现1点朝上B.任意写一个整数,它能被2整除C.不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球D.先后两次掷一枚质地均匀的硬币,两次都出现反面2.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率3.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图的折线图,那么符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C.掷一枚质地均匀的硬币,落地时结果是“正面向上”D.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球4.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是()A.任意买一张电影票,座位号是2的倍数的概率B.一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正方体骰子,落下后朝上的而点数是3D.一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球5.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9 6.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球7.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③二.填空题(共7小题)8.如图是一个可以自由转动的转盘,如表是一次活动中的一组统计数据:转动转盘一次,落在“铅笔”的概率约是(结果保留小数点后一位).9.下表显示了同学们用计算机模拟随机投针实验的某次实验的结果.下面有三个推断:①投掷1000次时,针与直线相交的次数是454,针与直线相交的概率是0.454;②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477;③若再次用计算机模拟此实验,则当投掷次数为10000时,针与直线相交的频率一定是0.4769.其中合理的推断的序号是:.10.做重复实验:抛掷同一枚啤酒瓶盖1000次,经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率为.11.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为.12.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和2个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.2左右,则a的值约为.13.某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽,下表记录的是在相同的条件下移栽某种幼树的棵树与成活棵树:依此估计这种幼树成活的概率是.(结果用小数表示,精确到0.1)14.“六⋅一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法:①当n很大时,估计指针落在“铅笔”区域的频率大约是0.70②假如你去转动转盘一次,获得铅笔的概率大约是0.70;③如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次;④转动转盘10次,一定有3次获得文具盒其中正确的是三.解答题(共2小题)15.某林业部门对某种幼树在一定条件下的移植成活率进行了统计,结果如下表所示:(1)该种幼树移植成活的概率约是多少(结果保留小数点后一位);(2)若这批树苗移植后要有18万棵成活,试估计需要移植多少棵树苗较为合适.16.“2018年西安女子半程马拉松”的赛事有两项:A“女子半程马拉松”;B、“5公里女子健康跑”.小明对部分参赛选手作了如下调查:(1)计算表中a,b的值;(2)在图中,画出参赛选手参加“5公里女子健康跑“的频率的折线统计图;(3)从参赛选手中任选一人,估计该参赛选手参加“5公里女子健康跑”的概率(精确到0.1).北师大新版七年级下学期《6.2 频率的稳定性》2019年同步练习卷参考答案与试题解析一.选择题(共7小题)1.某学习小组做“用频率估计概率的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚正六面体的骰子,出现1点朝上B.任意写一个整数,它能被2整除C.不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球D.先后两次掷一枚质地均匀的硬币,两次都出现反面【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一个质地均匀的正六面体骰子,出现1点朝上的概率为≈0.17,不符合题意;B、任意写一个整数,它能2被整除的概率为,不符合题意;C、不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球的概率=≈0.33,符合题意;D、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率是,不符合题意;故选:C.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.2.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为,故此选项错误;C、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:=≈0.33;故此选项正确;D、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:C.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.3.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图的折线图,那么符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C.掷一枚质地均匀的硬币,落地时结果是“正面向上”D.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,故本选项错误;B、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为≈0.17,故本选项正确.C、掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率是,故本选项错误;D、袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率为,故本选项错误;故选:B.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.4.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是()A.任意买一张电影票,座位号是2的倍数的概率B.一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正方体骰子,落下后朝上的而点数是3D.一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球【分析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【解答】解:A、任意买一张电影票,座位号是2的倍数的概率不确定,但不一定是0.17,故此选项错误.B、一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃的概率是,故此选项错误.C、抛一个质地均匀的正方体骰子,朝上的面点数是3的概率是≈0.17,故此选项正确.D、一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球的概率为,故此选项错误;故选:C.【点评】考查了利用频率估计概率的知识,解题的关键是能够分别求得每个选项的概率,然后求解,难度不大.5.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意;故选:D.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.6.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【解答】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.7.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.二.填空题(共7小题)8.如图是一个可以自由转动的转盘,如表是一次活动中的一组统计数据:转动转盘一次,落在“铅笔”的概率约是0.7(结果保留小数点后一位).【分析】用n=1000次对应的m的值可估计落在“铅笔”的概率.【解答】解:转动转盘一次,落在“铅笔”的概率约是0.7.故答案为0.7.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.9.下表显示了同学们用计算机模拟随机投针实验的某次实验的结果.下面有三个推断:①投掷1000次时,针与直线相交的次数是454,针与直线相交的概率是0.454;②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477;③若再次用计算机模拟此实验,则当投掷次数为10000时,针与直线相交的频率一定是0.4769.其中合理的推断的序号是:②.【分析】根据图表和各个小题的说法可以判断是否正确,从而可以解答本题.【解答】解:①投掷1000次时,针与直线相交的次数是454,可以估计针与直线相交的概率是0.454,错误;②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477,正确;③若再次用计算机模拟此实验,则当投掷次数为10000时,可以估计针与直线相交的频率是0.4769,错误;故答案为:②【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.10.做重复实验:抛掷同一枚啤酒瓶盖1000次,经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率为0.56.【分析】由于事件“凸面向上”和“凹面向上”是对立事件,根据对立事件的概率和为1计算即可.【解答】解:瓶盖只有两面,“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为1﹣0.44=0.56,故答案为:0.56.【点评】本题主要考查概率的意义、等可能事件的概率,解答此题关键是要明白瓶盖只有两面,即凸面和凹面.11.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为.【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【解答】解:设草鱼有x条,根据题意得:=0.5,解得:x=350,由题意可得,捞到鲤鱼的概率为=,故答案为:.【点评】本题考查用样本估计总体,解题的关键是明确题意,由草鱼的数量和出现的频率可以计算出鱼的数量.12.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和2个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.2左右,则a的值约为8.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在0.2左右得到比例关系,列出方程求解即可.【解答】解:根据题意得=0.2,解得:a=8,经检验:a=8是分式方程的解,故答案为:8.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.13.某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽,下表记录的是在相同的条件下移栽某种幼树的棵树与成活棵树:依此估计这种幼树成活的概率是0.9.(结果用小数表示,精确到0.1)【分析】首先计算出总的成活树的数量,再计算出总数,然后利用成活的树的数量÷总数即可.【解答】解:(89+910+9008+18004)÷(100+1000+10000+20000)=28011÷31100≈0.9,依此估计这种幼树成活的概率是0.9,故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.“六⋅一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法:①当n很大时,估计指针落在“铅笔”区域的频率大约是0.70②假如你去转动转盘一次,获得铅笔的概率大约是0.70;③如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次;④转动转盘10次,一定有3次获得文具盒其中正确的是①②③【分析】根据图表可求得指针落在铅笔区域的概率,另外概率是多次实验的结果,因此不能说转动转盘10次,一定有3次获得文具盒.【解答】解:①当n很大时,估计指针落在“铅笔”区域的频率大约是0.70,正确;②假如你去转动转盘一次,获得铅笔的概率大约是0.70,正确;③如果转动转盘2000次,指针落在“文具盒”区域的次数大约有2000×(1﹣0.7)=600次,正确;④转动转盘10次,可能有3次获得文具盒,错误;故答案为:①②③.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.三.解答题(共2小题)15.某林业部门对某种幼树在一定条件下的移植成活率进行了统计,结果如下表所示:(1)该种幼树移植成活的概率约是多少(结果保留小数点后一位);(2)若这批树苗移植后要有18万棵成活,试估计需要移植多少棵树苗较为合适. 【分析】(1)概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.(2)利用表格中数据估算这种幼树移植成活率的概率即可.然后用样本概率估计总体概率即可确定答案.【解答】解:(1)概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率 ∴这种幼树移植成活率的概率约为0.9.(2)由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定. 当移植总数为14000时,成活率为0.902,于是可以估计树苗移植成活率为0.9, 则该林业部门需要购买的树苗数量约为18÷0.9=20万棵.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.16.“2018年西安女子半程马拉松”的赛事有两项:A“女子半程马拉松”;B 、“5公里女子健康跑”.小明对部分参赛选手作了如下调查:(1)计算表中a ,b 的值;(2)在图中,画出参赛选手参加“5公里女子健康跑“的频率的折线统计图; (3)从参赛选手中任选一人,估计该参赛选手参加“5公里女子健康跑”的概率(精确到0.1).【分析】(1)根据“频率=频数÷总数”可得a、b的值;(2)描点、连线即可得;(3)利用表格中数据进而估计出参加“5公里女子健康跑”人数的概率.【解答】解:(1)a=45÷100=0.45、b=500×0.4=200;(2)折线图如下:(3)估计该参赛选手参加“5公里女子健康跑”的概率为0.40.【点评】此题主要考查了利用频率估计概率,正确理解频率与概率之间的关系是解题关键.。
北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷一.解答题(共50小题)1.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40000人次,公园游戏场发放的福娃玩具为10000个.(1)求参加一次这种游戏活动得到福娃玩具的概率;(2)请你估计袋中白球接近多少个?2.在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).3.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?4.某射手在相同条件下进行射击训练,结果如下表所示:(1)计算并填写表中击中靶心的频率;(2)试根据该表,估计这名射手射击一次,击中靶心的概率约为多少?并说明理由.5.如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.表是活动进行中的一组统计数据:(1)计算并完成表格:落在“铅笔”的频率(2)请估计,当n很大时,频率将会接近多少?(3)假如你去转动转盘一次,你获得可乐的概率是多少?6.某位射击运动员在同一条件下进行射击,结果如下表:击中靶心频率((1)计算并填写表格中击中靶心的频率;(2)该运动员射击一次,击中靶心的概率近似值是多少?并说明理由.7.亮亮和晶晶掷一枚均匀的硬币,硬币落下后会出现两种情况,他们把结果制成表格:率率(1)完成表格;(2)根据表格,画出正面朝上的概率的折线统计图;(3)观察你画出的折线统计图,你发现了什么规律?8.方方与圆圆在学习“频率与概率”时,做掷普通骰子的试验,她们共掷了54次,出现向上点数的次数如下表:(1)请计算出现向上点数为3的频率及出现向上点数为5的频率;(2)判断方方与圆圆说法的对错,并说明你的理由:方方说:“根据试验,一次试验中出现向上点数为5的概率最大”;圆圆说:“如果掷510次,那么出现向上点数为6的次数正好是100”.9.解应用题:(1)若一个多边形的每个内角都相等,而且每个内角与其相邻的外角之比为8:1,求此多边形的边数.(2)甲、乙两人赛跑,若让乙先跑2秒钟,则甲需6秒才能追上乙;若让乙先跑16米,则甲需8秒才能追上乙,求甲、乙两人的速度.(3)某学生做了一个小实验:把分别标有数字1~32的32个乒乓球放入一个暗箱中,从中任意摸出一个,记录号码,再放入;然后再从中任意摸出一个,记录号码,再放入,…,如此重复;便得出了下表的结果:(表1)由上表可知摸出的号码是4的倍数出现的频率是:完成如下表2;(2分)从上表2中的数据,你可以推测:摸出的号码是4的倍数的频率会稳定在什么值?这说明了什么?10.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球多少个?11.某批篮球质量检验结果如下:(1)填写表中优等品的频率;(2)这批篮球优等品的概率估计值是多少?12.某批乒乓球产品质量检验结果如下:优等品频率(1)填写表中空格;(2)画出这批乒乓球“优等品”频率的折线统计图;(3)这批乒乓球“优等品”频率的估计值是多少?13.小军和小刚两位同学在学习”概率“时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次试验,实验的结果如下:(1)计算“2点朝上”的频率和“5点朝上”的频率.(2)小军说:“根据实验,一次实验中出现3点朝上的概率是”;小军的这一说法正确吗?为什么?(3)小刚说:“如果掷600次,那么出现6点朝上的次数正好是100次.”小刚的这一说法正确吗?为什么?14.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图说明理由;如果x的值不可以取7,请写出一个符合要求的x值.15.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:求出封闭图形ABC的面积.16.投掷一枚质地均匀的正方体骰子.(1)下列说法中正确的有.(填序号)①向上一面点数为1点和3点的可能性一样大;②投掷6次,向上一面点数为1点的一定会出现1次;③连续投掷2次,向上一面的点数之和不可能等于13.(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是.你同意他的说法吗?说说你的理由.(3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同.(友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)17.通常,选择题有4个选择支,其中只有1个选择支是正确的.现有20道选择题,小明认为只要在每道题中任选1个选择支,其中必有5题的选择结果是正确的.你认为小明的推断正确吗?说说你的理由.18.小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:①填空:此次实验中,“1点朝上”的频率是;②小亮说:“根据试验,出现1点朝上的概率最大.”他的说法正确吗?为什么?(2)小明也做了大量的同一试验,并统计了“1点朝上”的次数,获得的数据如下表:“1点朝上”的概率的估计值是.19.下表是一名同学在罚球线上投篮的实验结果,根据表中数据,回答问题:(1)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)?(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?20.在一个已经装有10个黑色玻璃球的不透明布袋中再装入30个红色、白色玻璃球,这些球除颜色外其他完全相同.小花做摸球实验,她将袋子里面的球充分搅均匀后从中随机摸出一个球记下颜色,再把它放回袋子里,不断重复上述过程,下表是实验中的一组统计数据:摸到白球的频率(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P白=;(3)从中选出12个玻璃球设计摸球游戏,使摸到红球的概率和摸到白球的概率相等.21.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在20%和40%,则布袋中白色球的个数很可能是个.22.一颗木质的中国象棋子“帅”,它的正面雕刻一个“帅”字,它的反面是平的,将它从一定高度掷下,落地反弹后可能是“帅”字面朝上,也可能是“帅”字面朝下,由于棋子的两面不均匀,为了估计“帅”字面朝上的概率,七年级某实验小组做了掷棋子的试验,试验数据如下表:(1)请将上数据表补充完整;(2)根据上表,画出“帅”字面朝上的频率的折线统计图;(3)如将试验继续进行下去,根据上表的数据,这个试验的频率将稳定在它的概率附近,请你估计这个概率是多少?23.某公司在过去几年内使用某种型号的节能灯1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率.24.对某蓝球运动员进行3分球投蓝测试结果如下:(1)计算表中投蓝50次、100次、150次相应的命中率;(2)这个运动员投蓝3分球命中率约是多少?(3)估计这个运动员3分球投蓝15次约能得多少分?25.某商场设立一个可以自由转动的转盘,并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:落在“三等奖”的频率(1)计算并完成表格;(2)画出获得“三等奖”频率的折线统计图;(3)假如你去转动该转盘一次,根据这次实验的结果,我们可以估计出现“三等奖”的概率大约是.26.某射手在同一条件下进行射击,结果如下表所示:(1)计算并填写表中击中靶心的频率;(结果保留三位小数)(2)这个射手射击一次,击中靶心的概率估计值是多少?(结果保留两位小数) 27.一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实验数据整理如下:(1)请将表中数据补充完整,并画出折线统计图中剩余部分.(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的机会,请估计这个机会约是多少?28.一只不透明的袋子中装有3个质地、大小均相同的小球,这些小球分别标有数字3、4、x .甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是 ; (2)若本题中的x=6,求“和为9”的概率.29.猜数字游戏:小明手里有分别标有正整数的四张卡片,小明将四张卡片洗匀后,背面朝上放在桌上,由小刚蒙眼每次抽取两张,并由小明将数字和记录下来后放回,然后重复上面的游戏.当所有可能的数字和都已出现后,小刚猜出了卡片上的数字.如表是小明记录数字和出现的次数统计表:(1)在表中,数字和为8出现的频率是多少? (2)猜猜卡片上的数字有哪些? (3)求数字和为偶数的概率.30.某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为 ,柑橘完好的概率估计值为 ; (2)估计这批柑橘完好的质量为 千克;(3)如果公司希望销售这些柑橘能够获得25000元的利润,那么在出售(已去掉损坏的柑橘)时,每千克柑橘大约定价为多少元比较合适?31.在一个不透明的口袋中,装有x 颗黑棋子,y 颗白棋子,经过反复实验,发现取出一颗黑棋子的频率稳定在.(1)求y与x的关系式;(2)若再往口袋中放入8颗白棋子,经过反复实验,发现取出一颗黑棋子的频率稳定在,求y与x的值.32.一只箱子中装有红、黑两种圆珠笔共8000支,为了估计出其中红色圆珠笔的数量,随机抽出20支圆珠笔,记下其中红色圆珠笔的数量再放回,作为一次试验,重复上述试验多次,发现平均每20支圆珠笔中有5支红色圆珠笔,请你由此估计箱子中红色圆珠笔的数量.33.均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:(1)计算上述试验中“4朝下”的频率是多少?(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是”的说法正确吗?为什么?34.某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.35.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.36.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:的频率(1)请估计:当次数s很大时,摸到白球的频率将会接近;假如你去摸一次,你摸到红球的概率是(精确到0.1).(2)试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.37.七年级(1)班同学做抛硬币的试验,每人10次,其5人,10人,15人,…,50人的试验数据及部分频率见下表:(1)计算上表中的频率a1=a2=a3=a4=;(2)在下表中画出正面朝上的频率折线统计图;(3)出现正面朝上的概率估计值是.38.在一个不透明的盒子里装有除颜色外完全相同的黑、白两种球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)将数据表补充完整;(2)请你估计:随着实验次数的增加,摸到白球的频率特点是,这个频率将会接近(精确到0.1);(3)假如你摸一次,你摸到白球的机会是;(4)试估算盒子里黑、白两种颜色的球各有多少个?39.一只不透明的口袋中放有若干只红球和白球,这两种球除了颜色以外没有任何其他区别,将袋中的球摇均匀.每次从口袋中取出一只球记录颜色后放回再摇均匀,经过大量的实验,得到取出红球的频率是,求:(1)取出白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?40.如图是一个涂有红、黄两种颜色的旋转转盘,在实验中,一些数据统计表如图所示.1)请将表填完整;2)请你估计:当n很大时,频率将会接近%(保留两个有效数字).41.一只不透明的袋子中装有4个相同小球,分别标有不等的自然数2、3、4、x,小丽每次从袋中同时摸出2个小球,并计算摸出的这2个小球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,出现“和为7”的频率将稳定在它的概率附近.试估计出现“和为7”的概率;(2)根据(1)中结论,求出自然数x的值.42.在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据(1)请你估计,当n 很大时,摸到白球的频率将会接近(精确到0.1). (2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 . (3)试估算口袋中黑、白两种颜色的球有多少只.43.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P (一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P (一正一反)=. (1) 的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?44.某少儿活动中心在“六•﹣”活动中,举行了一次转盘摇奖活动,是一个可以自由转动的转盘.如图,当转动停止时,指针落在哪一个区域就可以获得相应的奖品(落在分界线上时重新摇奖).下表是活动进行中统计的有关数据. (1)计算并完成表格:落在“铅笔”区域中的频率(2)当转动转盘的次数n 很大时,概率将会接近多少?45.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近 ;(精确到0.1) (2)假如你摸一次,你摸到白球的概率为 ; (3)求不透明的盒子里黑、白两种颜色的球各有多少只?46.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如表:(1)请填空:根据以上数据可以估计:该玉米种子发芽的概率为 (精确到0.1) (2)若有8000粒种子,试根据(1)问的结果,估计能发芽的种子粒数,并说明理由. 47.研究“掷一个图钉,钉尖朝上“的概率,两个小组用同一个图钉做实验进行比较,他们的统计数据如下:(1)请你估计第一小组和第二小组所得的概率分别是多少?(2)你认为哪一个小组的结果更准确?为什么?48.儿童节期间,某公园游戏场举行一场活动.有一种游戏的规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个世博会吉祥物海宝玩具,已知参加这种游戏的儿童有40000人次.公园游戏场发放海宝玩具8000个.(1)求参加此次活动得到海宝玩具的频率?(2)请你估计袋中白球的数量接近多少个?49.为了估计某鱼塘中的鱼数,养鱼者首先从鱼塘中捕获100条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,经过一段时间后,再从鱼塘中打捞出若干条,分别数出标有记号的条数.进行重复试验,试验数据如下表:(1)根据表中的数据,频率的值稳定在哪个常数附近?(结果用小数表示,精确到0.01)(2)请你估算出这个鱼塘中鱼数有多少条?50.某水果公司以1.2元∕千克的成本进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,(1)补出表中空缺并完成表后的填空.柑橘损坏率统计如下表:从表中发现,柑橘损坏的频率在左右摆动,并且随统计数据的增加,这种规律愈加明显,所以估计柑橘损坏的概率为.(2)在出售柑橘(以去掉损坏的柑橘)时,每千克大约定价为多少元合适?北师大新版七年级下学期《6.2 频率的稳定性》2019年同步练习卷参考答案与试题解析一.解答题(共50小题)1.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40000人次,公园游戏场发放的福娃玩具为10000个.(1)求参加一次这种游戏活动得到福娃玩具的概率;(2)请你估计袋中白球接近多少个?【分析】(1)根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小;(2)用(1)中求得的概率和概率公式列出有关白球个数的方程即可求解.【解答】解:(1)10000÷40000=,故参加一次这种活动得到的福娃玩具的频率为;(2)∵试验次数很大,大数次试验时,频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率为.设袋中白球有x个,根据题意得=解得x=18,经检x=18是方程的解∴估计袋中白球接近18个.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2.在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).【分析】(1)根据频率估计概率,可得到摸到红球的概率为20%,然后利用概率公式计算a的值;(2)根据概率公式分别计算出摸出一个球是红球或白球或蓝球的概率,然后根据概率的大小判断这三个事件发生的可能性的大小.【解答】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率==50%;该球是蓝球的概率==30%,所以可能性从小到大排序为:①③②.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.3.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?【分析】(1)根据概率的公式计算“3点朝上”的频率和“5点朝上”的频率;(2)根据随机事件的性质回答.。
6.2频率的稳定性同步检测题1.在抛掷一枚硬币的实验中,某小组做了1000次实验,最后出现正面的频率为49.6%,此时出现正面的频数为( )A.496 B.500 C.516 D.不能确定2.小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的频率约是( )A.38% B.60% C.63% D.无法确定3. 在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…,如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A.①②③B.①②C.①③D.②③4. 某种彩票的中奖机会是1%,下列说法正确的是( )A.买1张这种彩票一定不会中奖B.买1张这种彩票一定会中奖C.买100张这种彩票一定会中奖D.当购买彩票的数量很大时,中奖的频率稳定在1%5. 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6. 小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多次实验后,发现某种“状况”出现的概率约为50%,则这种状况可能是( )A.两次摸到红色球B.两次摸到白色球C.两次摸到不同颜色的球D.先摸到红色球,后摸到白色球7. 在一个不透明的袋子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将袋中的球摇匀,随机摸出一个球记下颜色后再放回袋中,通过大量重复摸球试验后发现,摸出红球的频率稳定于0.2,那么可以推算出n大约是.8. 某中学有500名学生参加会考,考试成绩在60分~70分之间的共有120人,则任意抽取一名考生的成绩在这个分数段的概率为.9. 某同学做抛硬币实验,共抛10次,结果为3正7反,若再进行大量的同一实验,则出现正面朝上的频率将会接近于.10.“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是个.11. 在n次重复试验中,不确定事件A发生了m次,比值称为事件A发生的频率.12. 当试验次数很大时,某一事件的频率会在一个附近摆动,称为频率的稳定性.13. 如表记录了一名球员在罚球线上投篮的结果,那么,这名球员投篮一次,投中的概率约为(精确到0.1).14. 小明抛硬币的过程(每枚硬币只有正面朝上和反面朝上两种情况)见下表,阅读并回答问题:(1)得到次反面,反面出现的频率是;(2)当他抛完5000次时,反面出现的次数是,反面出现的频率是;(3)通过上表我们可以知道,正面出现的频数和反面出现的频数之和等于,正面出现的频率和反面出现的频率之和等于.15. 学习了概率的稳定性,请你说说下列观点是否正确,若不正确,请说明理由:(1)小明买彩票,前99张都没有中奖,则第100张也不可能中奖;(2)小明投掷硬币,前9次都是正面朝上,则第10次正面也朝上;(3)若a=b,则a+c=b+c发生的概率为0.999.16. 如图,广宇购物中心设立了一个可以自由转动的转盘,并规定:顾客购物满20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得牙膏的概率是多少?17. 如图,均匀的正四面体的各面依次有1,2,3,4四个数字,小明做了60次投掷试验,结果统计如下:(1)计算上述试验中“4(2)“根据试验结果,投掷一次正四面体,出现数字2朝下的概率是13”,这种说法正确吗?为什么?参考答案1---6 ACBDD C 7. 10 8. 0.24 9. 0.5 10. 200 11.m n12. 常数 13. 0.514. (1) 7 70% (2) 2502 50.04% (3) 抛掷总次数15. 解:(1)不正确,第100张可能中奖; (2)不正确,第10次反面也可能朝上;(3)不正确,若a =b ,则a +c =b +c 发生的概率为1. 16. 解:(1)0.32,0.29,0.298,0.3; (2)当n 很大时,频率接近0.3; (3)获得牙膏的概率是0.3. 17. 解:(1)1060=16(2)这种说法错误,在60次试验中,“2朝下”的频率为13,并不能说明“2朝下”这一事件发生的概率为13,因为只能当实验的总次数很大时,事件发生的频率才会稳定在相应的概率附近.。
北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷一.解答题(共30小题)1.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由2.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“书画作品”区域的频率(1)完成上述表格:a=;b=;(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“书画作品”的概率约是;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?3.在一个不透明的盒子里装有颜色不同的黑、白两种球共60个,它们除颜色不同外,其余都相同,王颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中搅匀,经过大量重复上述摸球的过程,发现摸到白球的频率定于0.25(1)请估计摸到白球的概率将会接近;(2)计算盒子里白、黑两种颜色的球各有多少个?(3)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?4.某超市要进一批鸡蛋进行销售,有A,B两家农场可供货.为了解两家提供的鸡蛋单个大小,超市分别对A,B两农场的鸡蛋进行抽样检测,通过分析数据确定鸡蛋的供货商.(1)下列抽样方式中比较合理的是哪一种?①分别从A,B两家提供的一箱鸡蛋中拿出最上面的两层(共40枚)鸡蛋分别称出其每个鸡蛋的质量;②分别从A,B两家提供的一箱鸡蛋中每一层随机抽4枚(共40枚)鸡蛋分别称出其每个鸡蛋的质量.(2)在用合理的方法抽出两家提供的鸡蛋各40枚后,分别称出每个鸡蛋的质量,结果如下表(单位:g,数据包括左端点不包括右端点):①如果从这两家农场提供的鸡蛋中随机拿一个,分别估计两家鸡蛋质量在50±3 (单位:g)范围内的概率;②如果你是超市经营者,请你通过数据分析,确定选择哪家农场提供的鸡蛋.5.小明做投掷骰子(质地均匀的正方体)实验,共做了100次实验,实验的结果如下:(1)计算“4点朝上”的频率.(2)小明说:“根据实验,一次实验中出现3点朝上的概率最大”.他的说法正确吗?为什么?(3)小明投掷一枚骰子,计算投掷点数小于3的概率.6.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共30只,某小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少只?7.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有8个黄球.(1)若先从盒子里拿走m个黄球,这时从盒子里随机摸出一个球是黄球的事件为“随机事件”,则m的最大值为;(2)若在盒子中再加入2个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,问n的值大约是多少?8.在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(1)按表格数据格式,表中的a=;b=;(2)请估计:当次数s很大时,摸到白球的频率将会接近(精确到0.1);(3)请推算:摸到红球的概率是(精确到0.1);(4)试估算:这一个不透明的口袋中红球有只.9.小亮投掷一枚质地均匀的正方体骰子.(1)下列说法中正确的有(填序号).①向上一面点数为2点和4点的可能性一样大;②投掷6次,向上一面点数为1点的一定会出现1次;③连续投掷2次,向上一面的点数之和不可能等于13.(2)为了估计投掷正方体骰子出现5点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、蓝两种颜色,转动转盘,当转盘停止转动后,使得指针落在红色区域的概率与投掷正方体骰子出现3点朝上的概率相同.(友情提醒:在转盘上用文字“红色”或“蓝色”注明颜色,并标明较小的一个扇形圆心角的度数.)10.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸到白球的频率(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少只?11.4件同型号的产品中,有l件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,不放回,再随机抽取1件进行检测.请用列表法或画树状图的方法,求两次抽到的都是合格品的概率;(解答时可用A表示l件不合格品,用B、C、D分别表示3件合格品)(2)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检侧,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?12.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸到白球的频率请估计:(1)当n很大时,摸到白球的频率将会接近 ;(精确到0.1)(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 ; (3)试估算口袋中黑球有多少只?13.小明和小亮两位同学做投掷骰子(质地均匀的正方体)实验,他们共做了100次实验,实验的结果如下:(1)计算“2点朝上”的频率和“4点朝上”的频率.(2)小明说:“根据实验,一次实验中出现3点朝上的概率最大”.小亮说:“如果投掷1000次,那么出现5点朝上的次数正好是200次.”小明和小亮的说法正确吗?为什么? (3)小明投掷一枚骰子,计算小明投掷点数不小于3的概率.14.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有6个黄球. (1)若先从盒子里拿走m 个黄球,这时从盒子里随机摸出一个球是黄球的事件为“随机事件”,则m 的最大值为 ;(2)若在盒子中再加入2个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,问n 的值大约是多少?15.某中学为了科学建设“学生健康成长工程”,随机抽取了部分学生家庭对其家长进行了主题“周末孩子在家您关心了吗?”的调查问卷,将收回的调查问卷进行了分析整理,得到了如下的样本统计图表和扇形统计图:(1)求m ,n 的值;(2)该校学生家庭总数为500,学校决定按比例在B 、C 、D 类家庭中抽取家长组成培训班,其比例为B 类20%,C 、D 类各取60%,请你估计该培训班的家庭数;(3)若在C 类家庭中只有一个是城镇家庭,其余是农村家庭,请用列举法求出C 类中随机抽出2个家庭进行深度家访,其中有一个是城镇家庭的概率.16.某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为 ,柑橘完好的概率估计值为 ; (2)估计这批柑橘完好的质量为 千克.17.两枚正四面体骰子的各面上分别标有数字1,2,3,4,现在同时投掷这两枚骰子,并分别记录着地的面所得的点数为a 、b .(1)假设两枚正四面体都是质地均匀,各面着地的可能性相同,请你在下面表格内列举出所有情形(例如(1,2),表示a =1,b =2),并求出两次着地的面点数相同的概率.(2)为了验证试验用的正四面体质地是否均匀,小明和他的同学取一枚正四面体进行投掷试验.试验中标号为1的面着地的数据如下:请完成表格(数字精确到0.01),并根据表格中的数据估计“标号1的面着地”的概率是多少?18.某批篮球的质量检验结果如下:优等品频率(1)填写表中的空格;(2)画出优等频率的折线统计图;(3)从这批篮球中,任意抽取的一只篮球是优等品的概率的估计值是多少?19.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:(1)请估计:当实验次数为10000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)=;(3)如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?20.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n很大时,摸到白球的概率约为.(精确到0.1)(2)估算盒子里有白球个.(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,那么可以推测出x最有可能是.21.小红和小明在操场做游戏,如图1,他们先在地上画了半径分别为OB=2m和OA=3m 的同心,圆蒙上眼睛在一定距离外向圈内投掷小石子,若掷中阴影,则小红胜,否则小明胜(未掷中圈内不算)(1)你认为游戏公平吗?为什么?(2)能否利用上面的游戏中用到的“用频率来估算概率”的原理,来估算图2长方形ABCD中的不规则图形的面积?其中AB=2m,BC=3m(说明设计方案的实施步骤和如何估算阴影部分的面积)22.某商场购进一批名牌衬衫,要求一等品的数量12850件左右,请问该商场应购进多少件这样的衬衫?下面是该部门经理随机抽查一些衬衫后,统计得到的一等品的频率变化表:(1)把表格补充完整(结果保留两位小数);(2)任意抽取1件衬衫,抽得一等品的概率约为多少?(3)你能求得商场应购进多少件这样的衬衫吗?23.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盒.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:的频率(1)完成上述表格;(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“卡通玩具”的概率约是;(结果全部精确到0.1)(3)转盘中,表示“饮品”区域的扇形的圆心角约是多少度?24.基础问题:完成下列填空:(1)一个不透明的盒中装有只有颜色不一样的3个红球与7个黄球,将球搅匀,任意摸一个球,摸到红球的概率为.(2)一只小鸟随机落在如图1所示的由阴影方砖和白方砖铺成的底面上,若最终停在阴影方砖上的概率为.发现问题:小红的家里有一块如图2所示的圆形毛绒地毯,一天她不小心把墨水洒在地毯上,在清理墨水的时候,爱学习的她突然想到一个问题:能不能估算墨水污迹的面积呢?解决问题:她在家里找到以下物品:卷尺、游戏用的小沙包、铅笔、白纸、均匀大小的小立方块若干.聪明的同学,你能否运用学过的频率与概率的知识,利用上述找到的物品(不一定全用),帮她设计一种比较便捷的计算墨水污迹面积的方法呢?请写出你的设计方案.25.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个记下颜色,再把它放回口袋中,不断重复,如表是活动进行中的一组数据统计:(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑球有个,白球有个.26.对某羽毛球的质量进行随机抽查,结果如下表所示:优等品率(1)表中a的值为;(2)根据上表,从这批羽毛球中任取一个,为优等品的概率约为;(3)小明认为,从这批羽毛球中抽取10个,优等品的数量至少为8个,他的说法正确吗?为什么?27.某种玉米种子在相同条件下的发芽实验结果如下表:频率(1)计算并完成表格;(2)请估计,当n很大时,频率将接近;(3)这种玉米种子的发芽概率的估计值是?请简要说明理由.28.小晨和小冰两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了100次实验,实验的结果如下:(1)计算“2点朝上”的频率和“3点朝上”的频率;(2)小晨说:“根据实验,一次实验中出现4点朝上的概率是;”小晨的这一说法正确吗?为什么?(3)小冰说:“根据实验,如果掷1000次,那么出现5点朝上的次数是200次.”小冰的这一说法正确吗?为什么?29.如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明在此封闭图形内画出一个半径为1米的圆后,在附近闭上眼睛向封闭图形内掷小石子(可把小石子近似地看成点),记录如下:(1)当投掷的次数很大时,则m:n的值越来越接近;(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在;(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是米2(结果保留π)30.在一个不透明的袋子中装有红、黄两种颜色的球共20个,每个球除颜色外完全相同.某学习兴趣小组做摸球实验,将球搅匀后从中随机摸出1个球,记下颜色后再放回袋中,不断重复.下表是活动进行中的部分统计数据.摸到红球的频率(1)完成上表;(2)“摸到红球”的概率的估计值是(精确到0.1)(3)试估算袋子中红球的个数.北师大新版七年级下学期《6.2 频率的稳定性》2019年同步练习卷参考答案与试题解析一.解答题(共30小题)1.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由【分析】(1)大量重复试验下摸球的频率可以估计摸球的概率,据此求解;(2)画树状图列出所有等可能结果,再找到符合条件的结果数,根据概率公式求解可得.【解答】解:(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为:0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.2.某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“书画作品”区域的频率(1)完成上述表格:a=295;b=0.745;(2)请估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?【分析】(1)根据表格中的数据可以求得a和b的值;(2)根据表格中的数据可以估计频率是多少以及转动该转盘一次,获得“书画作品”的概率;(3)根据扇形统计图和表格中的数据可以估计表示“手工作品”区域的扇形的圆心角至少还要增加的度数.【解答】解:(1)由题意可得,a=500×0.59=295,b=298÷400=0.745,故答案为:295,0.745;(2)由表格中的数据可得,当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6,故答案为:0.6,0.6;(3)由题意可得,要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加:360°×0.5﹣360°×0.4=36°,即要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加36度.【点评】本题考查利用频率估计概率、扇形统计图、可能性大小,解答本题的关键是明确题意,利用数形结合的思想解答本题.3.在一个不透明的盒子里装有颜色不同的黑、白两种球共60个,它们除颜色不同外,其余都相同,王颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中搅匀,经过大量重复上述摸球的过程,发现摸到白球的频率定于0.25(1)请估计摸到白球的概率将会接近0.25;(2)计算盒子里白、黑两种颜色的球各有多少个?(3)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?【分析】(1)根据题意容易得出结果;(2)由60×0.25=15,60﹣15=45,即可得出结果;(3)设需要往盒子里再放入x个白球;根据题意得出方程,解方程即可.【解答】解:(1)根据题意得:当n很大时,摸到白球的概率将会接近0.25;假如你摸一次,你摸到白球的概率为0.25;故答案为:0.25;(2)60×0.25=15,60﹣15=45;答:盒子里白、黑两种颜色的球分别有15个、45个;(3)设需要往盒子里再放入x个白球;根据题意得:,解得:x=15;答:需要往盒子里再放入15个白球.【点评】本题考查了利用频率估计概率、概率公式的运用.大量反复试验下频率稳定值即概率;本题难度适中.4.某超市要进一批鸡蛋进行销售,有A,B两家农场可供货.为了解两家提供的鸡蛋单个大小,超市分别对A,B两农场的鸡蛋进行抽样检测,通过分析数据确定鸡蛋的供货商.(1)下列抽样方式中比较合理的是哪一种?①分别从A,B两家提供的一箱鸡蛋中拿出最上面的两层(共40枚)鸡蛋分别称出其每个鸡蛋的质量;②分别从A,B两家提供的一箱鸡蛋中每一层随机抽4枚(共40枚)鸡蛋分别称出其每个鸡蛋的质量.(2)在用合理的方法抽出两家提供的鸡蛋各40枚后,分别称出每个鸡蛋的质量,结果如下表(单位:g,数据包括左端点不包括右端点):①如果从这两家农场提供的鸡蛋中随机拿一个,分别估计两家鸡蛋质量在50±3 (单位:g)范围内的概率;②如果你是超市经营者,请你通过数据分析,确定选择哪家农场提供的鸡蛋.【分析】(1)根据样本的抽取是否具有随机性,作出判断即可;(2)①根据频率=频数÷总数,即可估计两家鸡蛋质量在50±3 (单位:g)范围内的概率;②根据两种鸡蛋的平均质量以及方差的大小,作出判断;或根据两种鸡蛋质量落在在50±3 (单位:g)范围内的数量的频率的大小关系,作出判断.【解答】解:(1)根据样本的抽取具有随机性,可知抽样方法②比较合理;(2)①根据频率估计概率可得:P A==0.825;P B==0.8;②方法1:计算两种鸡蛋的平均数,得到,故这两种鸡蛋平均每个质量相同;再分别计算方差:=[2(46﹣50.4)2+8(48﹣50.4)2+15(50﹣50.4)2+10(52﹣50.4)2+5(54﹣50.4)2]=4.44;=[4(46﹣50.4)2+6(48﹣50.4)2+12(50﹣50.4)2+14(52﹣50.4)2+4(54﹣50.4)2]=5.04;∴<,根据样本估计总体可知,A农场的鸡蛋大小比较整齐,因此选择A农场提供的鸡蛋.方法2:由①可得,质量落在在50±3 (单位:g)范围内的鸡蛋数量的频率,A农场比B农场高,即A农场的鸡蛋质量在50±3 范围内比较集中,因此选择A农场的鸡蛋.【点评】本题主要考查了利用频率估计概率,用样本估计总体以及方差的计算,解决问题的关键是掌握:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.5.小明做投掷骰子(质地均匀的正方体)实验,共做了100次实验,实验的结果如下:(1)计算“4点朝上”的频率.(2)小明说:“根据实验,一次实验中出现3点朝上的概率最大”.他的说法正确吗?为什么?(3)小明投掷一枚骰子,计算投掷点数小于3的概率.【分析】(1)由共做了100次实验,“4点朝上”的次数为16,即可求得“4点朝上”的频率.(2)由一次实验中的频率不能等于概率,可得这位同学的说法不正确;(3)利用概率公式即可求得答案.【解答】解:(1)“4点朝上”的频率为=0.16;(2)小明的说法错误;因为只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小亮的判断是错误的;因为事件发生具有随机性;(3)P(小于3)==.【点评】本题考查了模拟实验,解题的关键是掌握实验中的概率等于所求情况数与总情况数之比;实际概率是经过多次实验后得到的一个接近值.6.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共30只,某小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近0.60;(2)假如你去摸一次,你摸到白球的概率是0.60,摸到黑球的概率是0.40;(3)试估算口袋中黑、白两种颜色的球各有多少只?【分析】(1)本题需先根据表中的数据,估计出摸到白球的频率.(2)本题根据摸到白球的频率即可求出摸到白球和黑球的概率.(3)根据口袋中黑、白两种颜色的球的概率即可求出口袋中黑、白两种颜色的球有多少只.【解答】答:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球是30×0.6=18个,黑球是30×0.4=12个;故答案为:(1)0.60;(2)0.6,0.4;。
北师大版七年级(下)数学6.2.1频率的稳定性同步检测(原创)学校:___________姓名:___________班级:___________考号:___________一、单选题1.小胡将一枚质地均匀的硬币抛掷了10次,正面朝上的情况出现了6次,若用A表示正面朝上这一事件,则事件A发生的()A.频率是0.4B.频率是0.6C.频率是6D.频率接近0.62.小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:则通话时间不超过15 min的频率为()A.0.1B.0.4C.0.5D.0.93.掷一枚质地均匀的正方体骰子(每个面上的点数分别为1、2、3、4、5、6),前5次朝上的点数恰好是1~5(含1和5)中任意一个数,则第6次朝上的点数()A.一定是6B.一定不是6C.是6的可能性大小小于是1~5(含1和5)的任意一个数的可能性D.是6的可能性大小等于是1~5(含1和5)的任意一个数的可能性4.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D.用2,3,4三个数字随机排成一个三位数,排出的数是偶数5.一组数据,在整理频率分布时,将所有频率相加,其和是( )A.0.01B.0.02C.0.1D.16.在一个不透明的盒子里装着若干个白球,小明想估计其中的白球数,于是他放入10个黑球,搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,得到如下数据:估计盒子里白球的个数为()A.8B.40C.80D.无法估计7.在抛掷一枚硬币的实验中,某小组做了1000次实验,最后出现正面的频率为49.6%,此时出现正面的频数为( )A.496B.500C.516D.不能确定8.小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率约是, ,A.38%B.60%C.63%D.无法确定9.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率二、填空题10.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表.(1)10次试验“和为8”出现的频率是_________,20次试验“和为8”出现的频率是______,450次试验“和为8”出现的频率是__________;(2)如果试验继续进行下去,根据上表数据,估计出现“和为8”的频率是_____________. 11.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______。
6.2频率的稳定性一、单选题(共10题;共20分)1. 有40个数据,共分成6组,第1〜4组的频数分别为频数是()A. 82832 4010 , 5,乙6,第5组的频率是0.1,则第6组的B.C.D.2. 甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率给出的统计图如图所示,则符合这一结果的实验可能是()频率A. 掷一枚正六面体的骰子,出现5点的概率B. 掷一枚硬币,出现正面朝上的概率C. 任意写出一个整数,能被2整除的概率D. 一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概3. 王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A .16B.14C .4D 64. 已知一组数据:5. 下列6个数中,负数出现的频率是(D. 33.3% 组后频率为0.2的一组是()B型血的人数18 212923 18 20 22 19 23 24 21 19 24 22 17 22 239 21 17对这些数据适当分组,其中17〜19这一组的频数和频率分别为(A. 5,25%B. 6,30% C. 8,40% D. 7, 35%—6.1 ,」.寸,—(—1),(—2)3(-2) , - [ -(- 3)].A. 83.3%B. 66.7%C. 50%6.已知一组数13,11, 12, 10, 10, 7, 9, 8, 12, 9, 11,12, 9, 10, 11, 则分A. 6~7B.8~9C. 10~11D. 12~137.某同学本学期共参加了十次数学测试,其中90分以上有8次,那么,该同学在这十次考试中,出现90 分以上的频率是()。
A. 0.20.808. 一年中,31号出现的频数是()A. 7B. 6C. 5D. 12B. 0C. 0.90D. 89.在一个不透明的口袋中放入除颜色外其余都相同的6个红球和若干个绿球,小颖从中随机摸出一球,记下颜色后,放回,共试验60次,其中记有20个红球,估计袋中有绿球个数为()A. 1218 24B.C.D. 4010.袋子里有10个红球和若干个蓝球,小明从袋子里有放回地任意摸球,共摸100次,其中摸到红球次数是25次,则袋子里蓝球大约有()A. 2030 40B.C.D. 50二、填空题(共6题;共6分)11. )在一个不透明的布袋中装有黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,贝U摸到白球的概率为 ___________ .12. 八年级(1)班共有50名学生,若有36名学生推荐李明为学习委员,则李明得票的频率是__________13.在1000个数据中,用适当的方法抽取50个作为样本进行统计,在频数分布表中,54.5〜57.5这一组的频率是0.12,那么估计总体数据落在54.5〜57.5之间的约有__________ 个.14. 国庆节期间,小红的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小红将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.3,由此可以估计纸箱内红球的个数约是____________ 个.15. 如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为ICC J C<-S5C LC-CC 5D0C16. (2015?贵港)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8, 9, 12,第五组的频率是0.2,则第六组的频数是____________ 三、解答题(共3题;共15分)17. 六一期间,某公园游戏场举行“迎奥运”活动•有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40000人次,公园游戏场发放的福娃玩具为10000个.(1)求参加一次这种游戏活动得到福娃玩具的概率;(2)请你估计袋中白球接近多少个?18. 小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:求出封闭图形ABC的面积.掷石子次数石子落在的区域50次150次300次石子落在OO内(含OO上)的次数m14439319. 下表是根据对初一(1)班的50名同学平时最爱吃的食物的种类进行的问卷调查绘制成的统计表,请填满缺少的项并回答后面的问题.肉类蔬菜类瓜果类水产类男生2212女生453频率64%14%12%(1)选择适当的统计图表示男生平时最爱吃的食物的种类情况;(2)就给出的初一(1)班的同学平时最爱吃的食物的种类情况,请你结合自己的年龄特点简略谈谈自己的看法.四、综合题(共1题;共11分)20. 为了了解学校开展“孝敬父母,从家务事做起”活动的实施情况,该校抽取八年级5名学生调查他们一周(按7天计算)做家务所用时间(单位:小时,调查结果保留一位小数),得到一组数据,并绘制成统计表,请根据表完成下列各题:分组划记频数频率0.55~1.0正正 (14)0.285(1) 填写频率分布表中末完成的部分.(2) 由以上信息判断,每周做家务的时间不超过 1.55h的学生所占的百分比是(3) 针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.答案解析部分一、单选题1. 【答案】A【解析】【解答】解:•••有40个数据,共分成6组,第5组的频率是0.1 ,•••第5组的频数为40X 0.1=4 ;又•••第1〜4组的频数分别为10, 5, 7, 6,•••第 6 组的频数为40-( 10+5+7+6+4) =8.故选A.【分析】先求出第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.2. 【答案】D【解析】【解答】解:A、掷一枚正六面体的骰子,出现5点的概率为,故本选项错误;B掷一枚硬币,出现正面朝上的概率为,故本选项错误;C任意写出一个整数,能被2整除的概率为,故本选项错误;D —个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为沁0.33,故本选项正确.故选D.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P- 0.33,计算四个选项的概率,约为0.33者即为正确答案.3. 【答案】B【解析】【解答】解:本班B型血的人数=40X 0.35=14 .故选B.【分析】根据人数=总人数X频率求解即可.4. 【答案】C【解析】【分析】首先正确数出在17〜19这组的数据;再根据频率、频数的关系:频率=频数十数据总和, 进行计算。
6.2.1 频率的稳定性
基础训练
1.小胡将一枚质地均匀的硬币抛掷了10次,正面朝上的情况出现了6次,若用A表示正面朝上这一事件,则事件A发生的( )
A.频率是0.4
B.频率是0.6
C.频率是6
D.频率接近0.6
2.小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:
则通话时间不超过15 min的频率为( )
A.0.1
B.0.4
C.0.5
D.0.9
3.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是( )
A.0.1
B.0.2
C.0.3
D.0.4
4.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这
个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.
5.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表.
(1)10次试验“和为8”出现的频率是_____________,20次试验“和为8”出现的频率是_____________,450次试验“和为8”出现的频率是
_____________;
(2)如果试验继续进行下去,根据上表数据,估计出现“和为8”的频率
是_____________.
6.某人在做掷硬币试验时,投掷m次,正面朝上有n次
,则下列说法中正确的是( )
A.P一定等于
B.P一定不等于
C.多投一次,P更接近
D.随投掷次数逐渐增加,P在附近摆动
7.在一个不透明的盒子里装着若干个白球,小明想估计其中的白球数,于是他放入10个黑球,搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,得到如下数据:
的频率
估计盒子里白球的个数为( )
A.8
B.40
C.80
D.无法估计
8.甲、乙两名同学在一次大量重复试验中,统计了某一结果出现的频率,绘制出的统计图如图所示,符合这一结果的试验可能是( )
A.掷一枚质地均匀的骰子,出现1点朝上的频率
B.任意写一个正整数,它能被3整除的频率
C.抛一枚硬币,出现正面朝上的频率
D.从一个装有2个白球和1个红球的袋子中任取一球,取到白球的频率
提升训练
9.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.
(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?
(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该试验,发现摸到绿球的频率稳定于0.25,求n的值.
10.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球.怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次随机摸出一个球,放回盒中,再继续.
活动结果:摸球试验一共做了50次,统计结果如下表:
推测计算.由上述的摸球试验可推算:
(1)盒中红球、黄球各占总球数的百分比是多少?
(2)盒中有红球多少个?
11.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(如图所示).下表是活动进行中的一组统计数据:
区域的频率
(1)计算并完成表格.
(2)请估计,当n很大时,落在“铅笔”区域的频率将会接近多少?
(3)假如你去转动该转盘一次,你获得哪种奖品的机会大?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?
参考答案
1.【答案】B
2.【答案】D
3.【答案】A
4.【答案】15
5.【答案】(1)0.20;0.50;0.33(2)0.33
解:随着试验次数的增加,频率会在某个数据附近摆动.
6.【答案】D
7.【答案】B
解:由表中数据可知摸到白球的频率在0.8附近摆动,设白球有x个,则有0.8(10+x)=x,x=40.所以估计盒子里有40个白球.
8.【答案】B
9.解:(1)当n=1时,袋中红球数量和白球数量相同,故摸到两种颜色的球的可能性相同.
(2)由题意得0.25=,即(2+n)×0.25=1,所以n=2.
10.解:(1)由题意可知,50次摸球试验中,出现红球20次,黄球30次,
所以红球占总球数的百分比约为20÷50=40%,
黄球占总球数的百分比约为30÷50=60%.
所以红球约占40%,黄球约占60%.
(2)由题意可知,50次摸球试验中,出现有记号的球4次,所以总球数约有8÷=100(个).
所以红球约有100×40%=40(个).
11.解:(1)如下表所示:
区域的频率
(2)当n很大时,落在“铅笔”区域的频率将会接近0.7.
(3)获得铅笔的机会大.
(4)扇形的圆心角约是0.7×360°=252°.。