课时13平面直角坐标系与函数的概念
- 格式:doc
- 大小:549.50 KB
- 文档页数:2
专题四 函数第一节 平面直角坐标系与函数的概念一【知识梳理】1.平面直角坐标系如图所示:注意:坐标原点、x 轴、y 轴不属于任何象限。
2.点的坐标的意义:平面中,点的坐标是由一个“有序实数对”组成,如(-2,3),横坐标是-2,纵坐标是-3,横坐标表示点在平 面内的左右位置,纵坐标表示点的上下位置。
3.各个象限内和坐标轴的点的坐标的符号规律①各个象限内的点的符号规律如下表。
说明:由上表可知x 轴的点可记为(x , 0) ,y 轴上的点可记做(0 , y )。
⒋ 对称点的坐标特征:点P (y x ,)①关于x 轴对称的点P 1(y x -,);②关于y 轴对称的点P 2(y x ,-);③关于原点对称的点P 3(y x --,)。
5.坐标平面内的点和“有序实数对” (x , y)建立了___________关系。
6.第一、三象限角平分线上的点到_____轴、_____轴的距离相等,可以用直线___________表示;第二、四象限角平线线上的点到_____轴、_____轴的距离也相等,可以用直线___________表示。
7.函数基础知识(1) 函数: 如果在一个变化过程中,有两个变量x 、y ,对于x 的 ,y 都有与之对应,此时称y是x的,其中x是自变量,y 是.(2)自变量的取值范围:①使函数关系式有意义;②在实际问题的函数式中,要使实际问题有意义。
(3)常量:在某变化过程中的量。
变量:在某变化过程中的量。
(4) 函数的表示方法:①;②;③。
能力培养:从图像中获取信息的能力;用函数来描述实际问题的数学建模能力。
二【巩固练习】1. 点P(3,-4)关于y轴的对称点坐标为_______,它关于x轴的对称点坐标为_______.它关于原点的对称点坐标为_____.2.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡起觉来.乌龟一直在坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程S随时间t变化情况的是( ).3.如图,所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4.如果点M(a+b,ab)在第二象限,那么点N(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限5.图中的三角形是有规律地从里到外逐层排列的.设y为第n层(n为正整数)三角形的个数,则下列函数关系式中正确的是().A、y=4n-4B、y=4nC、y=4n+4D、y=n26.函数13xyx+=-中自变量x的取值范围是()A.x≥1-B.x≠3 C.x≥1-且x≠3 D.1x<-7.如图,方格纸上一圆经过(2,5),(-2,l),(2,-3),( 6,1)四点,则该圆的圆心的坐标为()A.(2,-1)B.(2,2)C.(2,1) D.(3,l)8.右图是韩老师早晨出门散步时,离家的距离y与时间x的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()图3相帅炮9.已知M(3a -9,1-a)在第三象限,且它的坐标都是整数,则a 等于( )A .1B .2C .3D .010.如图, △ABC 绕点C 顺时针旋转90○后得到△A ′B ′C ′, 则A 点的对应点A ′点的坐标是( )A .(-3,-2);B .(2,2);C .(3,0);D .(2,l )11.在平面直角坐标系中,点(34)P -,到x 轴的距离为( )A.3 B.3- C.4 D.4-12.线段CD 是由线段AB 平移得到的。
平面直角坐标系的认识与应用平面直角坐标系是数学中常用的一种工具,用于描述平面上的点的位置。
通过平面直角坐标系,我们可以准确地表示和计算点的坐标和距离,从而实现对平面上各种几何问题的分析和解决。
本文将介绍平面直角坐标系的基本概念、表示方法以及在数学与几何问题中的应用。
一、平面直角坐标系的基本概念平面直角坐标系由两个相互垂直的坐标轴组成,通常称为x轴和y 轴。
在平面上选择一个点作为原点O,并确定x轴与y轴的正方向,可以得到一个完整的平面直角坐标系。
在这个坐标系中,任意一点P可以用一个有序数对(x, y)来表示,其中x表示点P在x轴上的坐标,y表示点P在y轴上的坐标。
二、平面直角坐标系的表示方法为了清晰地表示平面直角坐标系,我们通常使用网格线来表示x轴和y轴,并在网格线上标注坐标值。
在x轴和y轴上,我们可以选择一个单位长度,通常用1表示,从而得到其他点的坐标。
例如,点A坐标为(2, 3),表示点A在x轴上的坐标为2,y轴上的坐标为3。
三、平面直角坐标系的应用平面直角坐标系在数学与几何问题中有着广泛的应用,具体如下所示:1. 点的位置关系:通过比较点的坐标值,我们可以准确地确定点的相对位置。
例如,若点A的坐标为(2, 3),而点B的坐标为(4, 5),我们可以判断出点A在点B的左下方。
2. 距离的计算:在平面直角坐标系中,我们可以根据两点的坐标值计算它们之间的距离。
例如,若点A的坐标为(2, 3),而点B的坐标为(4, 5),则点A和点B之间的距离为√[(4-2)² + (5-3)²] = √5。
3. 图形的绘制:通过使用平面直角坐标系,我们可以准确地绘制各种图形,如直线、曲线和多边形等。
利用坐标轴上的点和线段,我们可以将抽象的数学概念具象化,并进行图形的分析和推理。
4. 函数的表示:在数学中,函数可以用平面直角坐标系表示。
将函数的自变量作为x轴坐标,函数的值作为y轴坐标,我们可以绘制函数的图像,并通过分析图像来研究函数的性质。
平面直角坐标系与函数的概念一、知识点:1. 坐标平面内的点与______________一一对应.2. 根据点所在位置填表(图)3. x 0.4. P (x,y)关于x 轴对称的点坐标为_______,关于y 轴对称的点坐标为______,关于原点对称的点坐标为__________.5. 描点法画函数图象的一般步骤是________、__________、__________.6. 函数的三种表示方法分别是__________、__________、__________.7. x y =有意义,则自变量x 的取值范围是 . xy 1=有意义,则自变量x 的取值范围是 . 二、知识点解析题型一 坐标平面内点的坐标特征 不同位置点的坐标特征例1(2010浙江省喜嘉兴市)在直角坐标系中,点(2,1)在( )A .第一象限B .第二象限C .第三象限D .第四象限例2:(2009年陕西省)如果点P(m ,1-2m)在第四象限,那么m 的取值范围是( )A .210<<mB .021<<-mC .0<mD .21>m 例3:(2009年郴州市)点(35)p ,-关于x 轴对称的点的坐标为()A .(3,5)--B . (5,3)C .(3,5)-D . (3,5)例4:(2009襄樊市)如图3,在边长为1的正方形网格中,将ABC △向右平移两个单位长度得到A B C '''△,则与点B '关于x 轴对称的点的坐标是( ) A .()01-, B .()11, C .()21-,D .()11-,【零距离训练】1.(2009钦州)点P (-2,1)关于 y 轴对称的点的坐标为()A .(-2,-1)B 。
(2,1)C .(2,-1)D .(-2,1)2.(2009肇庆)11.在平面直角坐标系中,点(23)P -,关于原点对称点P '的坐标是 3.(09年新疆乌鲁木齐市)在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 4.(2010年湖北十堰市)如图,在平面直角坐标系中,点A 的坐标为(1,4),将线段O A 绕点O 顺时针旋转90°得到线段OA′,则点A′的坐标是5.(2010年山西省)如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 .6.(2010年常德市)如图2,△ABC 向右平移4个单位后得到△A ′B ′C ′,则A ′点的坐标是图2题型二 自变量取值范围例4:(09包头)函数y =x 的取值范围是( )A .2x >-B .2x -≥ C .2x ≠-D .2x -≤例5:(2010 黑龙江大兴安岭)函数1-=x x y 中,自变量x 的取值范围是 【零距离训练】1(2010成都)在函数131y x =-中,自变量x 的取值范围是( )(A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x > 2.(2010年济宁市)在函数31-=x y 中,自变量x 的取值范围是( )A 、x ≠0 B 、x >3 C 、x ≠ -3 D 、x ≠3 题型三 函数图象例6:(09湖南邵阳)在平面直角坐标系中,函数1y x =-+的图象经过( )A .一、二、三象限B .二、三、四象限C .一、三、四象限D .一、二、四象限例7:(2010重庆市)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
平面直角坐标系中的曲线与函数一、曲线与函数的概念在平面直角坐标系中,曲线是由一组点构成的集合,这些点在坐标系中的位置满足特定的条件。
而函数则是一种特定的关系,它将一个自变量的取值映射到一个因变量的取值。
二、曲线的表示方式1. 隐式表示法隐式表示法是指通过方程的形式来表示曲线。
例如,二次曲线的方程可以是Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E、F为常数。
2. 参数表示法参数表示法是指通过参数方程的形式来表示曲线。
例如,对于圆的参数方程可以是x = rcosθ,y = rsinθ,其中r为半径,θ为参数。
3. 显式表示法显式表示法是指通过解出其中一个变量,将曲线表示为一个变量关于另一个变量的函数。
例如,直线的显式表示法可以是y = kx + b,其中k和b为常数。
三、函数的性质与图像1. 定义域与值域函数的定义域是指自变量的取值范围,而值域是指函数的所有可能取值范围。
2. 奇偶性函数的奇偶性描述了函数的对称性。
若对于任意x,有f(-x) = f(x),则函数称为偶函数;若对于任意x,有f(-x) = -f(x),则函数称为奇函数。
3. 单调性函数的单调性描述了函数图像的上升或下降趋势。
若对于任意x1 <x2,有f(x1) < f(x2),则函数称为严格增函数;若对于任意x1 < x2,有f(x1) > f(x2),则函数称为严格减函数。
4. 极值与拐点函数的极值是指函数在某一区间内取得的最大值或最小值,而拐点则是函数图像由凹变凸或由凸变凹的转折点。
5. 对称轴与零点对称轴是函数图像的对称轴线,它使得函数图像关于该轴对称。
零点是函数在坐标系中与x轴相交的点,即函数取值为0的点。
四、曲线与函数的应用1. 曲线的面积与弧长曲线的面积是指曲线与x轴之间的面积,可以通过定积分计算得到。
曲线的弧长是指曲线在坐标系中的弯曲长度,可以通过定积分或参数方程计算得到。
第三章函数第1讲函数概念与平面直角坐标系考纲要求2017年命题趋势1.会画平面直角坐标系,并能根据点的坐标描出点的位置,由点的位置写出点的坐标.2.掌握坐标平面内点的坐标特征.3.了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析.4.能确定函数自变量的取值范围,并会求函数值.根据往年命题情况,选择题多为压轴题,复习时重点关注函数自变量的取值范围和实际背景下的函数图像的判断.课前回顾(要点基础知识梳理)一、平面直角坐标系与点的坐标特征1.平面直角坐标系如图,在平面内,两条互相的数轴的交点O称为,水平的数轴叫,竖直的数轴叫,整个坐标平面被x轴、y轴分割成四个象限.2.各象限内点的坐标的符号特征(如上图)3.坐标轴上的点的坐标特征点P(x,y)在x轴上⇔y=;点P(x,y)在y轴上⇔x=;点P(x,y)在坐标原点⇔x=,y= .(+ ,+)(,)(,)(,)二、特殊点的坐标特征1.和坐标轴平行的直线上点的坐标的特征:①平行于x 轴 相同;②平行于y 轴 相同. 2.点P(a ,b)对称点的坐标其关于x 轴的对称点P 1的坐标为( , );其关于y 轴的对称点P 2的坐标为( , );其关于原点的对称点P 3的坐标为( , ).3.点的平移 将点P(x ,y)向右(或向左)平移a 个单位,可以得到对应点( , )[或( , )];将点P(x ,y)向上(或向下)平移b 个单位,可以得到对应点( , )[或( , )].三、点与点、点与线之间的距离.1.点M (a ,b )到x 轴的距离为 .2.点M (a ,b )到y 轴的距离为 .3.点M 1(x 1,0)M 2(x 2,0)之间的距离为 .点M 1(x 1,y ),M 2(x 2,y )之间的距离为4.点 M 1(0,y 1),M 2 (0,y 2)之间的距离为 .点M 1(x ,y 1),M 2(x ,y 2)之间的距离为 .四.函数.(1)概念:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有 的值与其对应,那么就称x 是自变量,y 是x 的函数.(2)确定函数自变量的取值范围:① 使函数关系式 的自变量的取值的全体; ②一般原则为:整式为全体实数;分式的分母不为零;零次幂底数不为零;开偶次方的被开方数为非负数;使实际问题有意义.(3)函数的表示法:、 、 .⇔⇔考点1: 平面直角坐标系中点的坐标特征1.(2016 年广东)在平面直角坐标系中,点 P (-2,-3)所在的象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.(2016 年湖北武汉)已知点 A (a,1)与点 A ′(5,b )关于坐标原点对称,则实数 a ,b 的值是( )A.a =5,b =1B.a =-5,b =1C.a =5,b =-1D.a =-5,b =-13.(2016 年山东菏泽)如图,A ,B 的坐标为(2,0),(0,1),若将线段 AB 平移至 A 1B 1,则 a +b 的值为( )考点2:确定函数自变量的取值范围5.如图 ,数轴上表示的是某个函数自变量的取值范围则这个函数解析式为( )考点3:函数与图像的关系6.(2013·佛山)某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是( ) A B C D4.函数y =x x -3-(x -2)0中,自变量x 的取值范围是 A.y =x +2 B.y =x 2+2 C.y =x +2 D.y =1x +2巩固提升1.(2016 年湖北荆门)在平面直角坐标系中,若点 A (a ,-b )在第一象限内,则点 B (a ,b )所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限当x=3时,函数值为3.(2016 年广东)如图,在正方形 ABCD 中,点 P 从点A 出发,沿着正方形的边顺时针方向运动一周,则△APC 的面积 y 与点 P 运动的路程 x 之间形成的函数关系的图象大致是( )A B C D 归纳总结:本节课你收获了什么?思考如图 ,弹性小球从点 P (0,3)出发,沿所示方向运动,每当小球碰到矩形 OABC 的边时反弹,反弹时反射角等于入射角.当小球第 1次碰到矩形的边时的点为 P 1,第 2 次碰到矩形的边时的点为P 2,…,第n 次碰到矩形的边时的点为P n .则点P 3的坐标是__________,点 P 2014 的坐标是________.2.在函数y =x +1x 中,自变量x的取值范围是___________.。
第三模块函数3.1平面直角坐标系与函数及图像考点一、平面直角坐标系内点的坐标1.有序数对(1)平面内的点可以用一对有序实数来表示.例如点A在平面内可表示为A(a,b),其中a表示点A的横坐标,b表示点A的纵坐标.(2)平面内的点和有序实数对是一一对应的关系,即平面内的任何一个点可以用一对有序实数来表示;反过来每一对有序实数都表示平面内的一个点.(3)有序实数对表示这一对实数是有顺序的,即(1,2)和(2,1)表示两个不同的点.2.平面内点的坐标规律(1)各象限内点的坐标的特征点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上的点的坐标的特征点P(x,y)在x轴上⇔y=0,x为任意实数;点P(x,y)在y轴上⇔x=0,y为任意实数;点P(x,y)在坐标原点⇔x=0,y=0.【例1】在平面直角坐标系中,点P(m,m-2)在第一象限,则m的取值范围是________.解析:由第一象限内点的坐标的特点可得:m>0,m-2>0,解得m>2.方法点拨:此类问题的一般方法是根据点在坐标系中的符号特征,建立不等式组或者方程(组),把点的问题转化为不等式组或方程(组)来解决.考点二、平面直角坐标系内特殊点的坐标特征1.平行于坐标轴的直线上的点的坐标特征(1)平行于x 轴(或垂直于y 轴)的直线上点的纵坐标相同,横坐标为不相等的实数.(2)平行于y 轴(或垂直于x 轴)的直线上点的横坐标相同,纵坐标为不相等的实数.2.平面直角坐标系各象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点,横、纵坐标相等.(2)第二、四象限角平分线上的点,横、纵坐标互为相反数.3.平面直角坐标系对称点的坐标特征点P (x ,y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称点P 2的坐标为(-x ,y );关于原点的对称点P 3的坐标为(-x ,-y ). 以上特征可归纳为:(1)关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.(2)关于y 轴对称的两点,横坐标互为相反数,纵坐标相同.(3)关于原点对称的两点,横、纵坐标均互为相反数.【例2】已知点M(1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是 ( )解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m ,1-m ).∵M (1-2m ,m -1)关于x 轴的对称点在第一象限, ∴⎩⎨⎧1-2m >0,1-m >0,解得⎩⎨⎧m <12,m <1.考点三、确定物体位置的方位1.平面内点的位置用一对有序实数来确定.2.方法 (1)平面直角坐标法(2)方向角和距离定位法用方向角和距离确定物体位置,方向角是表示方向的角,距离是物体与观测点的距离.用方向角和距离定位法确定平面内点的位置时,要注意中心点的位置,中心点变化了,则方向角与距离也随之变化.考点四、点到坐标轴的距离考点五、平面直角坐标系中的平移与对称点的坐标-4,-1),C(2,0),将△ABC 平移至△A1B1C1的位置,点A、B、C的对应点分别是A1、B1、C1,若点A1的坐标为(3,1),则点C1的坐标为________.解析:由A(-2,3)平移后点A1的坐标为(3,1),可知A点横坐标加5,纵坐标减2,则点C的坐标变化与A点的坐标变化相同,故C1(2+5,0-2),即(7,-2).方法点拨:求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质;二是利用图形的全等关系;三是确定变换前后点所在的象限.考点六、函数及其图象1.函数的概念(1)在一个变化过程中,我们称数值发生变化的量为变量,有些数值是始终不变的,称它们为常量.(2)函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x在其取值范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说,x是自变量,y是x的函数.函数值:对于一个函数,如果当自变量x =a 时,因变量y =b ,那么b 叫做自变量的值为a 时的函数值注:函数不是数,它是指某一变化过程中的两个变量之间的关系(3)用来表示函数关系的数学式子,叫做函数解析式或函数关系式.2.函数的表示法及自变量的取值范围(1)函数有三种表示方法:解析法,列表法,图象法,这三种方法有时可以互相转化.(表示函数时,要根据具体情况选择适当的方法,有时为了全面认识问题,可同时使用几种方法)(2)当函数解析式表示实际问题或几何问题时,其自变量的取值范围必须符合实际意义或几何意义.3.函数的图象:对于一个函数,把自变量x 和函数y 的每对对应值分别作为点的横坐标与纵坐标在平面内描出相应的点,组成这些点的图形叫这个函数的图象.(1)画函数图象,一般按下列步骤进行:列表、描点、连线.(2)图象上任一点的坐标是解析式方程的一个解;反之以解析式方程的任意一个解为坐标的点一定在函数图象上.温馨提示:画图象时要注意自变量的取值范围,当图象有端点时,要注意端点是否有等号,有等号时画实心点,无等号时画空心圆圈.【例4】函数y =1x +x 的图象在( ) A .第一象限 B .第一、三象限C .第二象限D .第二、四象限解析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.⎩⎨⎧2x<3(x -3)+1,①3x +24>x +a.② 由①得x >8,由②得x <2-4a ,其解集为8<x <2-4a.因不等式组有四个整数解,为9,10,11,12,则⎩⎨⎧2-4a>12,2-4a≤13,解得-114≤a<-52. 故选B.【例5】[2013·苏州] 在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直到铁块完全露出水面一定高度.下图能反映弹簧秤的度数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是 ( )解析:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选C.方法点拨:观察图象时,首先弄清横轴和纵轴所表示的意义,弄清哪个是自变量,哪个是因变量;然后分析图象的变化趋势,结合实际问题的意义进行判断.考点七、自变量取值范围的确定方法求函数自变量的取值范围时,首先要考虑自变量的取值必须使解析式有意义.1.自变量以整式形式出现,它的取值范围是全体实数.2.自变量以分式形式出现,它的取值范围是使分母不为零的实数.3.当自变量以偶次方根形式出现,它的取值范围是使被开方数为非负数;以奇次方根出现时,它的取值范围为全体实数.4.当自变量出现在零次幂或负整数幂的底数中,它的取值范围是使底数不为零的数5.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.【例6】(1)(2010·遵义)函数y =1x -2的自变量x 的取值范围是________. (2)(2010·济宁)在函数y =x +4中,自变量x 的取值范围是________.(3)(2010·黄冈)函数y =x -3x +1的自变量x 的取值范围是________. (4)(2010·玉溪)函数y =x x +1中自变量x 的取值范围是________. 【解答】(1)由x -2≠0得x≠2.(2)由x +4≥0,得x≥-4.(3)由⎩⎨⎧ x -3≥0,x +1≠0,得x≥3. (4)由x +1>0,得x >-1.。
平面直角坐标系中的曲线与函数定理曲线与函数是数学中重要的概念,它们在平面直角坐标系中有着重要的应用与定理。
本文将探讨平面直角坐标系中曲线与函数的基本概念,并介绍与之相关的定理。
一、曲线与函数基本概念在平面直角坐标系中,我们可以通过曲线来描述两个变量之间的关系。
而函数,作为数学中的一种基本对象,可以看作是曲线的数学表示。
下面分别介绍曲线和函数的基本概念。
1. 曲线的定义曲线是指平面上的一些点的集合,这些点之间存在特定的关系。
例如,直线就是一种特殊的曲线,它由无数个相互平行的点构成。
而圆则是由到某一点距离相等的所有点组成的曲线。
2. 函数的定义函数是一个映射关系,它将一个集合中的元素映射到另一个集合中的元素。
在平面直角坐标系中,我们通常用y=f(x)来表示函数,其中x 表示自变量,y表示因变量,f(x)表示函数关系。
二、函数的图像与曲线的性质在平面直角坐标系中,函数的图像对应于曲线。
函数图像可以通过画出函数的各个点来获得,而曲线则是这些点的集合。
下面介绍函数图像与曲线的一些性质。
1. 函数的图像函数的图像是函数在坐标系中的点的集合,它展示了函数的变化规律。
通过函数图像,我们可以观察函数的增减性、最值以及其他关键特征。
2. 曲线的性质曲线有许多特点和性质,例如曲率、凹凸性等。
这些性质可以通过曲线的图像来观察和判断。
例如,凹凸性可以通过观察曲线的曲率变化来确定。
三、曲线与函数的定理在平面直角坐标系中,曲线与函数有许多经典的定理与性质。
下面介绍几个常见的定理。
1. 零点定理零点定理指出,如果函数f(x)在点a与点b之间连续,并且f(a)与f(b)异号,那么在a和b之间至少存在一个零点。
2. 导数与曲线斜率导数是函数变化率的表示,也是曲线在某一点的斜率。
对于满足一定条件的连续函数,其导数在某点的值等于曲线在该点切线的斜率。
3. 积分与曲线面积积分是函数的反导函数,也可以用来求曲线下的面积。
对于连续函数f(x),其在[a, b]区间上的积分值等于曲线f(x)与x轴之间的面积。
平面直角坐标系与函数方程的关系在数学中,平面直角坐标系是一种常用的工具,用于描述平面上的点的位置。
而函数方程则是用来描述数学关系的方程。
本文将探讨平面直角坐标系与函数方程之间的关系,以及如何利用函数方程在平面直角坐标系中进行图像的表示与分析。
一、平面直角坐标系与坐标表示平面直角坐标系由两条互相垂直的坐标轴组成,通常称为x轴和y 轴。
这两条坐标轴的交点被称为原点,用O表示。
x轴和y轴将平面分成四个象限,依次为第一象限、第二象限、第三象限和第四象限。
在平面直角坐标系中,每个点的位置可以通过两个坐标值来表示,分别是水平方向的x坐标和垂直方向的y坐标。
对于任意一个点P(x, y),x表示该点到y轴的水平距离,正值表示在y轴右侧,负值表示在y轴左侧;y表示该点到x轴的垂直距离,正值表示在x轴上方,负值表示在x轴下方。
二、函数方程的概念与表示函数方程是用来描述自变量和因变量之间关系的方程。
在平面直角坐标系中,函数方程一般表示为y = f(x),其中y表示因变量,x表示自变量。
函数方程可以通过不同的数学表达式来表示,如线性函数、二次函数、指数函数等。
对于线性函数y = kx + b,k表示斜率,决定了函数图像的倾斜程度;b表示截距,决定了函数图像与y轴的交点位置。
对于二次函数y = ax^2 + bx + c,a、b和c分别表示二次项、一次项和常数项的系数,决定了函数图像的开口方向、顶点位置以及与x轴的交点位置。
对于指数函数y = a^x,a表示底数,决定了函数图像的增长速度和开口方向。
三、函数方程与平面直角坐标系的关系在平面直角坐标系中,函数方程的图像可以直观地表示出来,有助于我们对函数关系进行分析和理解。
通过对函数方程中的自变量赋予不同的取值,可以得到对应的因变量值。
将这些点在平面直角坐标系中绘制出来,就可以得到函数的图像。
例如,对于线性函数y = 2x + 1,在平面直角坐标系中选择几个x值(如-2、0和2),代入函数方程求得对应的y值,然后将这些点连接起来,就得到了一条直线。
平面直角坐标系与函数定义域平面直角坐标系是数学中常用的坐标系,它由两个相互垂直的坐标轴组成,分别称为x轴和y轴。
这种坐标系广泛应用于几何学、物理学和经济学等领域中。
在本文中,我们将重点探讨平面直角坐标系与函数定义域的关系及其应用。
在平面直角坐标系中,x轴和y轴的交点称为原点,坐标轴上的点可以表示为(x, y)的形式,其中x表示横坐标,y表示纵坐标。
横坐标x表示一个点在x轴上的位置,纵坐标y表示一个点在y轴上的位置。
通过这种方式,我们可以唯一地确定平面上的每一个点。
函数是数学中常见的概念,它描述了一个变量如何根据另一个变量的取值而变化。
在平面直角坐标系中,函数可以用来描述一个曲线或者图形。
函数的定义域是指所有使函数有意义的输入值的集合。
在其他词语中,定义域是所有使得函数有定义的自变量的取值范围。
定义域可以被看作是函数在坐标轴上的投影。
通过观察函数的图形,我们可以确定定义域的范围。
例如,对于一条直线函数,其定义域为整个实数集;对于一个平方函数,其定义域为实数集;对于一个有理函数,其定义域可能需要排除使得分母为零的值等等。
理解函数的定义域对于解决实际问题非常重要。
在物理学中,函数的定义域可以告诉我们物体在时间和空间上的范围。
在经济学中,函数的定义域可以帮助我们找到一种最优化策略。
在计算机科学中,函数的定义域可以帮助我们优化算法的运行时间。
为了确定函数的定义域,我们需要考虑多个因素,包括函数的解析表达式、分数的定义以及根号中的参数。
对于多项式函数,定义域通常是整个实数集,因为多项式函数在整个实数范围内都有定义。
对于有理函数,我们需要注意分母不能为零。
对于根号函数,我们需要确保根号中的参数为非负数。
此外,我们还可以通过函数的图形来确定其定义域。
对于一个闭合曲线,其定义域通常是曲线所覆盖的区域。
对于一个开放曲线,其定义域通常是无限延伸的。
总的来说,了解平面直角坐标系与函数定义域的关系非常重要。
它可以帮助我们更好地理解函数的特性,并应用于解决各种实际问题。
平面直角坐标系与坐标计算一、引言在数学中,平面直角坐标系是一种常用的坐标系形式,用于描述平面上点的位置。
坐标计算则是通过坐标系中的点的位置关系,进行一系列的数学运算与计算的过程。
本文将介绍平面直角坐标系的基本概念及其在坐标计算中的运用。
二、平面直角坐标系的基本概念1. 符号表示在平面直角坐标系中,通常用两个互相垂直的坐标轴来表示,水平轴称为x轴,垂直轴称为y轴。
点的位置通过x轴和y轴上的数值来表示,称为坐标。
坐标通常使用有序数对(x, y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
2. 坐标原点平面直角坐标系中的坐标原点是x轴和y轴的交点,表示为O。
坐标原点的坐标为(0, 0)。
3. 坐标轴方向在平面直角坐标系中,x轴向右延伸为正方向,y轴向上延伸为正方向。
4. 坐标轴单位长度使用单位长度来表示坐标轴上的长度,可以是任意单位,如米、公里、毫米等。
三、坐标计算的基本运算1. 点的距离公式在平面直角坐标系中,可以使用勾股定理求解两点之间的距离。
设A(x1, y1)和B(x2, y2)为平面上的两点,则点A和点B之间的距离为:d = √[(x2 - x1)² + (y2 - y1)²]2. 点的中点公式在平面直角坐标系中,可以使用两点的平均值来确定两点之间的中点。
设A(x1, y1)和B(x2, y2)为平面上的两点,则点A和点B的中点为:M[(x1 + x2)/2, (y1 + y2)/2]3. 点的对称公式在平面直角坐标系中,可以通过对点进行对称操作,得到其对称点的坐标。
设A(x, y)为平面上的点,过A点作坐标轴的一条垂直线,则A点和其对称点S的坐标满足:S(2p - x, y) 或 S(x, 2q - y)四、坐标计算的应用实例1. 线段长度计算已知平面直角坐标系中两点A(x1, y1)和B(x2, y2)的坐标,可以利用点的距离公式计算线段AB的长度。
2. 几何图形的性质证明通过坐标计算,可以对几何图形的性质进行证明。
平面直角坐标系的基本概念与应用在数学中,平面直角坐标系是研究平面几何和代数的基础工具之一。
它由两条相互垂直的坐标轴组成,通常称为x轴和y轴。
本文将介绍平面直角坐标系的概念、性质,并探讨其在代数和几何中的应用。
一、平面直角坐标系的概念平面直角坐标系使用数轴上的实数,将平面上的每一个点都与一个有序数对(x,y)相对应。
这里,x轴上的数值表示点在水平方向上的位置,y轴上的数值表示点在垂直方向上的位置。
两个轴的交点称为原点,用O表示。
二、平面直角坐标系的性质1. 坐标轴相互垂直:x轴和y轴在原点处相交,且彼此垂直。
2. 坐标方向:x轴自原点向右延伸为正方向,向左延伸为负方向;y轴自原点向上延伸为正方向,向下延伸为负方向。
3. 轴的单位长度:x轴和y轴在同一张纸上通常有相同的单位长度,但在实际应用中可以根据需要进行调整。
4. 正负坐标:平面直角坐标系将平面上的每个点表示为(x,y)的形式。
若x为正值,表示点在x轴的正方向上;若x为负值,则表示点在x轴的负方向上。
同理,若y为正值,表示点在y轴的正方向上;若y为负值,则表示点在y轴的负方向上。
三、平面直角坐标系在代数中的应用平面直角坐标系在代数中有广泛的应用,尤其是在方程和函数的研究中。
1. 点的坐标:通过平面直角坐标系,我们可以将每个点表示为一个有序数对的形式。
这使得我们可以准确地描述点的位置,进行计算和推理。
2. 线段长度:利用坐标系上两点的坐标,可以计算出两点之间的距离,进而得到线段的长度。
这是平面几何中常见的计算问题。
3. 方程表示:平面直角坐标系可用于表示和解决方程。
通过将方程转化为坐标系上的图形,我们可以更直观地理解方程的性质和解的情况。
4. 函数图像:坐标系可以用于绘制函数的图像。
函数图像是将自变量的取值与函数值相对应的点所组成的集合,通过观察图像,我们可以研究函数的性质和变化趋势。
四、平面直角坐标系在几何中的应用平面直角坐标系在几何中也扮演着重要的角色,使得我们可以通过代数方法和几何方法相互转化,进而解决各种几何问题。
位置的确定一、 在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;x 轴和y 轴统称坐标轴。
它们的公共原点O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念对于平面内任意一点P,过点P 分别x 轴、y 轴向作垂线,垂足在上x 轴、y 轴对应的数a ,b 分别叫做点P 的横坐标、纵坐标,有序数对(a ,b )叫做点P 的坐标。
点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x (2)、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)即原点 (3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x )上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 (4)、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。
平面直角坐标系与函数教案引言在数学的世界中,平面直角坐标系是一种重要的工具,用于描述和研究各种数学对象的性质。
函数则是数学中常见的概念,用于表达变量之间的依赖关系。
本教案旨在介绍平面直角坐标系的基本概念和函数的概念,帮助学生建立起对它们的理解和应用能力。
一、平面直角坐标系的基本概念1. 坐标轴平面直角坐标系由两条相互垂直的坐标轴构成,通常用x轴和y轴表示。
x轴和y轴的交点称为原点O。
2. 坐标在平面直角坐标系中,每个点都可以用有序数对(x, y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
这个数对就是点的坐标。
3. 轴与象限x轴将平面分为两个部分,称为第一象限和第四象限;y轴将平面分为两个部分,称为第一象限和第二象限。
第一象限是x轴和y轴所在的那个象限。
二、函数的基本概念1. 函数的定义函数是一种将自变量映射到因变量的关系。
通常用f(x)来表示函数,其中x是自变量,f(x)是因变量。
函数可以看作是一个“输入-输出”的机器。
2. 定义域和值域函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。
函数的定义域和值域决定了函数的有效输入和输出范围。
3. 图像与性质函数的图像是把自变量和因变量的所有可能值对应起来,形成的平面上的点集。
函数的图像可以用来研究函数的性质,如单调性、奇偶性和周期性等。
三、函数的表示与操作1. 函数的表示函数可以通过函数表达式、函数图像和函数的解析式等方式来表示。
函数表达式是最常见的表示形式,如f(x) = 2x + 1。
2. 函数的运算函数之间可以进行加减乘除等基本数学运算。
如果两个函数都在同一定义域上有定义,则它们的和、差、积和商也都在该定义域上有定义。
3. 复合函数复合函数是将函数作为另一个函数的自变量或因变量,形成新的函数。
复合函数在实际问题中常常被用来描述多个变量之间的复杂关系。
四、平面直角坐标系与函数的关系1. 函数的图像与直角坐标系函数的图像可以在直角坐标系中表示出来。
平面直角坐标系与函数像的关系直角坐标系是数学中常用的一种坐标系,我们可以利用它来描述平面上的各种几何图形和数学函数。
在这种坐标系中,平面被划分为四个象限,每个象限由两个互相垂直的轴,即x轴和y轴所确定。
x轴和y轴的交点称为原点,它的坐标为(0, 0)。
在直角坐标系中,我们可以通过给定的x坐标和y坐标,来确定平面上的一个点。
这个点的坐标表示为(x, y),其中x表示点在x轴上的位置,y表示点在y轴上的位置。
通过这种表示方式,我们可以利用直角坐标系方便地进行平面几何运算和函数分析。
函数是数学中一个非常重要的概念,它描述了两个数集之间的一种关系。
在直角坐标系中,我们可以将函数表示为一条曲线,这条曲线上的每个点都满足函数的定义。
函数的自变量通常表示为x,因变量表示为y,即y = f(x)。
在直角坐标系中,这个函数图像可以看作是平面上的一个图形。
函数的图像在直角坐标系中呈现出各种不同的形状,如直线、曲线、抛物线等。
通过观察这些图像,我们可以得到函数的性质和行为。
例如,当函数图像是一条直线时,函数呈现线性关系,即y与x成正比或反比。
而当函数图像是一条曲线时,函数可能表现出增长或衰减的趋势,或者存在极值点和拐点等。
函数图像在直角坐标系中的属性还包括对称性和周期性。
对称性是指函数图像在某个中心对称轴上呈现对称的特点,例如关于x轴对称、y轴对称或者原点对称。
周期性是指函数图像呈现出一定规律的重复性,即函数在某个区间内的数值与另一个区间内的数值相同。
直角坐标系也为我们提供了一种便利的方式来研究函数的变化趋势和数值特征。
通过观察函数图像在直角坐标系中的行为,我们可以判断函数的增减性、最值、零点以及一些其他的特征。
这些特征对于我们理解函数的性质和应用具有重要意义。
在数学和物理等领域,直角坐标系与函数的关系具有广泛的应用。
例如,我们可以利用直角坐标系来分析物体的运动轨迹、计算物体的速度和加速度,从而更好地理解运动规律。
此外,直角坐标系也为计算机图形学等领域提供了重要的基础,使得我们可以实现平面上的各种图形显示和处理。
课时13. 平面直角坐标系与函数的概念
【课前热身】
1. 函数3-=x y 的自变量x 的取值范围是 .
2. 若点P(2,k-1)在第一象限,则k 的取值范围是 .
3. 点A(-2,1)关于y 轴对称的点的坐标为___________;关于原点对称的点的坐标为________.
4. 如图,葡萄熟了,从葡萄架上落下来,下面图象可以大致反映葡萄下落过程中的速度v 随时间变化情况是( )
5. 在平面直角坐标系中,平行四边形ABCD 顶点
A 、
B 、D 的坐标分别是(0,0),(5,0)(2,3),则
C 点
的坐标是( )
A .(3,7) B.(5,3)
C.(7,3)
D.(8,2)
【考点链接】
1. 坐标平面内的点与______________一一对应.
2.
3. x 0.
4. P (x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________, 关于原点对称的点坐标为___________.
5. 描点法画函数图象的一般步骤是__________、__________、__________.
6. 函数的三种表示方法分别是__________、__________、__________.
7. x y =有意义,则自变量x 的取值范围是 . x
y 1=有意义,则自变量x 的取值范围是 .
【典例精析】
例1 ⑴ 在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-•2,1),B (-3,-1),
C (1,-1).若四边形ABC
D 为平行四边形,那么点D 的坐标是_______.
(2)将点A (3,1)绕原点O 顺时针旋转90°到点B ,则点B•的坐标是_____.
例2 ⑴ 一天,亮亮发烧了,早晨他烧得厉害,吃过药后感觉好多了, 中午时亮亮的体
温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么烫 了. 图中能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是( )
⑵ 汽车由长沙驶往相距400km 的广州. 如果汽车的平均速度是100km/h,那么汽车距广州的路程s(km)与行驶时间t(h)的函数关系用图象表示应为( )
例3 一农民带了若干千克自产的土豆进城出售,为了方便, 他带了一些零钱备用,
按市场价售出一些后,又降价出售, 售出土豆千克数与他手中持有的钱线(含备用零钱)的关系如图所示,结合图象回答下列问题:
(1) 农民自带的零钱是多少?
(2) 降价前他每千克土豆出售的价格是多少?
(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱) 是26
元,问他一共带了多少千克土豆.
【中考演练】
1.函数11
+=x y 中,自变量x 的取值范围是 .
2. 已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为 .
3. 将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .
4. 点P (-2,3)关于x 轴的对称点的坐标是________.
5. 在平面直角坐标系中,点P (-1,2)的位置在 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
6. 学校升旗仪式上,•徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的( )
7. 点A (—3,2)关于y 轴对称的点的坐标是( )
A.(-3,-2)
B.(3,2)
C.(3,-2)
D.(2,-3)。