第一章 信号及其描述练习作业答案
- 格式:ppt
- 大小:1.49 MB
- 文档页数:21
信号与系统课后习题与解答第⼀章1-1 分别判断图1-1所⽰各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解信号分类如下:--???--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所⽰信号分别为(a )连续信号(模拟信号);(b )连续(量化)信号;(c )离散信号,数字信号;(d )离散信号;(e )离散信号,数字信号;(f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所⽰问)(1))sin(t e at ω-;(2)nT e -;(3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221。
解由1-1题的分析可知:(1)连续信号;(2)离散信号;(3)离散信号,数字信号;(4)离散信号;(5)离散信号。
1-3 分别求下列各周期信号的周期T :(1))30t (cos )10t (cos -;(2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解判断⼀个包含有多个不同频率分量的复合信号是否为⼀个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为⾮周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最⼩公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
(3)因为[])16t (cos 2252252)16t (cos 125)8t (5sin 2-=-?=所以周期8162T ππ==。
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t(7))t=(kf kε(2)(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f(5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
1-1分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:图1-1所示信号分别为⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21(a )连续信号(模拟信号);(b )连续(量化)信号;(c )离散信号,数字信号;(d )离散信号;(e )离散信号,数字信号;(f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问)(1);)sin(t e at ω-(2);nT e -(3);)cos(πn (4);为任意值)(00)sin(ωωn (5)。
221⎪⎭⎫ ⎝⎛解由1-1题的分析可知:(1)连续信号;(2)离散信号;(3)离散信号,数字信号;(4)离散信号;(5)离散信号。
1-3 分别求下列各周期信号的周期T :(1);)30t (cos )10t (cos -(2);j10t e (3);2)]8t (5sin [(4)。
[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期;对于分量cos (30t ),其周期。
由于5T 1π=15T 2π=为的最小公倍数,所以此信号的周期。
5π21T T 、5T π=(2)由欧拉公式)t (jsin )t (cos e t j ωωω+=即)10t (jsin )10t (cos e j10t +=得周期。
5102T ππ==(3)因为[])16t (cos 2252252)16t (cos 125)8t (5sin 2-=-⨯=所以周期。
第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图〔a 〕、〔c 〕、〔d 〕; ② 离散信号:图〔b 〕; ③ 周期信号:图〔d 〕; ④ 非周期信号:图〔a 〕、〔b 〕、〔c 〕; ⑤有始信号:图〔a 〕、〔b 〕、〔c 〕。
1-2 某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。
解: 设T 为此系统的运算子,由条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。
① 线性1〕可加性不失一般性,设f(t)=f 1(t)+f 2(t),那么y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而|f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)|即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。
由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。
2〕齐次性由条件,y(t)=T[f(t)]=|f(t)|,那么T[af(t)]=|af(t)|≠a|f(t)|=ay(t) 〔其中a 为任一常数〕即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。
② 时不变特性由条件y(t)=T[f(t)]=|f(t)|,那么y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|,即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。
依据上述①、②两点,可判定此系统为一非线性时不变系统。
第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图(a )、(c )、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d );④ 非周期信号:图(a )、(b )、(c ); ⑤有始信号:图(a )、(b )、(c )。
1-2 已知某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。
解: 设T 为此系统的运算子,由已知条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。
① 线性 1)可加性不失一般性,设f(t)=f 1(t)+f 2(t),则y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而 |f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)|即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。
由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。
2)齐次性由已知条件,y(t)=T[f(t)]=|f(t)|,则T[af(t)]=|af(t)|≠a|f(t)|=ay(t) (其中a 为任一常数)即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。
② 时不变特性由已知条件y(t)=T[f(t)]=|f(t)|,则y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|,即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。
第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 信号 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 时间 为独立变量;而信号的频域描述,以 频率 为独立变量。
3、 周期信号的频谱具有三个特点: 离散性 , 谐波性 , 收敛性 。
4、 非周期信号包括 准周期 信号和 瞬变周期 信号。
5、 描述随机信号的时域特征参数有 均值 、 均方值 、 方差 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 关于Y 轴 (偶) 对称,虚频谱(相频谱)总是 关于原点(奇) 对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( √ )2、 信号的时域描述与频域描述包含相同的信息量。
( √ )3、 非周期信号的频谱一定是连续的。
( × )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( × )5、 随机信号的频域描述为功率谱。
( √ )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。
2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。
4、求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。
5、求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。
第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、 试求传递函数分别为5.05.35.1+s 和2224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。
第一章 绪 论1.试判断系统()()r t e t =-是否是时不变系统?(给出检验步骤)解:由()()r t e t =-,得到输入为()e t 时,对应的输出为()r t :()()r t e t =-再由()()r t e t =-,得到输入为()e t τ-时,对应的输出为()e t τ--。
假设()()r t e t =-是一个时不变系统,则对应的()()r t e t ττ-=-+显然()()()r t e t e t τττ-=-+≠--假设不成立,这是一个时变系统。
2.已知信号1(/2)f t 和2()f t 的波形如图所示,画出11()(1)()y t f t u t =+-和22()(53)y t f t =-的波形。
图1解:根据一展二反三平移的步骤来做,对于第一个图,第一步将1(/2)f t 展成1()f t第二步将1()f t 平移成1(1)f t +第三步将1(1)f t +乘上()u t -得到11()(1)()y t f t u t =+-对于第二个图,先写出其表达式2()9(1)f t t δ=+则22()(53)9(531)y t f t t δ=-=-+9(63)9(36)3(2)t t t δδδ=-=-=-于是得到2()y t 的图形为3.系统如图2所示,画出1()f t ,2()f t 和3()f t 的图形,并注明坐标刻度。
图2解:由系统图可以得到1()()()f t t t T δδ=--它的图形为(设T>0)21()()[()()]ttf t f t dt t t T dt δδ-∞-∞==--⎰⎰它的图形为(设T>0)32()(2)()f t t T f t δ=-+它的图形为(设T>0)4.确定下列系统是因果还是非因果的,时变还是非时变的,并证明你的结论。
1()(5)cos ()y t t x t ⎛⎫=+ ⎪⎝⎭解:令0t =,则1(0)5cos (0)y x ⎛⎫= ⎪⎝⎭,故是因果系统。
1-1分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:图1-1所示信号分别为⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21(a )连续信号(模拟信号);(b )连续(量化)信号;(c )离散信号,数字信号;(d )离散信号;(e )离散信号,数字信号;(f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问)(1);)sin(t e at ω-(2);nT e -(3);)cos(πn (4);为任意值)(00)sin(ωωn (5)。
221⎪⎭⎫ ⎝⎛解由1-1题的分析可知:(1)连续信号;(2)离散信号;(3)离散信号,数字信号;(4)离散信号;(5)离散信号。
1-3 分别求下列各周期信号的周期T :(1);)30t (cos )10t (cos -(2);j10t e (3);2)]8t (5sin [(4)。
[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期;对于分量cos (30t ),其周期。
由于5T 1π=15T 2π=为的最小公倍数,所以此信号的周期。
5π21T T 、5T π=(2)由欧拉公式)t (jsin )t (cos e t j ωωω+=即)10t (jsin )10t (cos e j10t +=得周期。
5102T ππ==(3)因为[])16t (cos 2252252)16t (cos 125)8t (5sin 2-=-⨯=所以周期。
一、填空(每空1份,共20分)1.测试技术的基本任务是获取有用的信息2.从时域看,系统的输出是其输入与该系统脉冲响应函数的卷积。
3.信号的时域描述,以时间(t) 为独立变量;而信号的频域描述,以频率f 或)(ω为独立变量。
4.如果一个信号的最高频率为50Hz,为了防止在时域采样过程中出现混叠现象,采样频率应该大于 100Hz。
5.在桥式测量电路中,根据其激励电压(或工作电压或桥压或电源)的性质,可将其分为直流电桥与交流电桥。
6.金属电阻应变片与半导体应变片的主要区别在于:前者利用导体机械形变引起的电阻变化,后者利用半导体电阻率的(或半导体压阻效应)变化引起的电阻变化。
7.压电式传感器是利用某些物质的压电效应而工作的。
8.带通滤波器的上下限截止频率为fc2、fc1,其带宽B =12ccff-;若其带宽为1/3倍频程则fc2= 32 fc1。
9.属于能量控制型的传感器有电阻式传感器、涡电流传感器电容式传感器、电感式传感器等。
10. 根据载波受调制的参数不同,调制可分为调幅、调频、调相。
11. 相关滤波的工作原理是同频相关不同频不相关/同频检测原理12 测试装置的动态特性可以用传递函数、频率响应函数和脉冲响应函数进行数学描述。
二、选择题(把正确答案前的字母填在空格上,每题1分,共10分)1.不能用确定的数学公式表达的信号是 D 信号。
A 复杂周期B 非周期C 瞬态D 随机2.平稳随机过程必须 B 。
A 连续 B统计特征与时间无关 C 各态历经 D 统计特征等于时间平均3.一阶系统的动态特性参数是 C 。
A 固有频率B 阻尼比C 时间常数D 灵敏度4.系统在全量程内,输入量由小到大及由大到小时,对于同一个输入量所得到的两个数值不同的输出量之间的最大差值称为 A 。
A 回程误差B 绝对误差C 相对误差D 非线性误差5.电阻应变片的输入为 B 。
A 力B 应变C 速度D 加速度6. D 用于评价系统的输出信号和输入信号之间的因果性。
机械⼯程测试技术基础(第三版)课后习题答案第⼀章信号及其描述1-1 求周期⽅波(见图1-4)的傅⾥叶级数(复指数函数形式),划出|c n |–ω和φn –ω图,并与表1-1对⽐。
解答:在⼀个周期的表达式为00 (0)2() (0)2T A t x t T A t ?--≤积分区间取(-T/2,T/2)0000000022020002111()d =d +d =(cos -1) (=0, 1, 2, 3, )T T jn t jn tjn t T T n c x t e t Ae t Ae tT T T Aj n n n ωωωππ-----=-±±±?所以复指数函数形式的傅⾥叶级数为001()(1cos )jn tjn tnn n Ax t c e=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±。
(1cos ) (=0, 1, 2, 3, )0nI nR A c n n n c ?=--?±±±?=ππ2221,3,,(1cos )00,2,4,6,n nR nI An A c c c n n n n ?=±±±?=+=-=??=±±±πππ1,3,5,2arctan1,3,5,200,2,4,6,nI n nRπn c πφn c n ?-=+++===---??=±±±??图1-4 周期⽅波信号波形图0 tx (t ) T 02-T 020T -没有偶次谐波。
其频谱图如下图所⽰。
1-3 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。
解答:(2)22022(2)()()(2)2(2)a j f tj f tat j f te A A a jf X f x t edt Ae edt Aa j f a j f a f -+∞∞---∞-∞-=====-+++??πππππππ22()(2)k X f a f π=+Im ()2()arctanarctan Re ()X f ff X f a==-π?π/2 -π/2 ωωω0ω0 3ω05ω03ω05ω02A/π2A/3π 2A/5π幅频图相频图周期⽅波复指数函数形式频谱图2A/5π 2A/3π 2A/π -ω0-3ω0-5ω0-ω0 -3ω0-5ω0 单边指数衰减信号频谱图f|X (f )A /aφ(f )fπ/-π/2a)符号函数的频谱10()sgn()10t x t t t +>?==?-t =0处可不予定义,或规定sgn(0)=0。
第一章信号及其描述自测题1-2-1、描述周期信号的数学工具是______B .傅氏级数1-2-2、时域信号持续时间压缩,则频域中低频成分_______B .增加1-2-3、模拟信号的特征是_________B、独立变量和幅值都连续的信号1-2-4、非电量电测法的优点有_________A . 易检测B . 易传输C. 易处理1-2-5、瞬态信号的频谱具有_______C. 连续性1-2-6、下列哪些是描述各态历经随机信号的主要特征参数_______B .方差D. 概率密度函数1-2-7、相关函数和功率谱密度函数分别是从域上来描述随机信号B、时间和频率1-2-81-2-9、下列哪些说法是正确的_________。
A、连续信号的特征是变量的取值是连续的D、模拟信号肯定是一个连续信号1-2-10、关于信号的描述哪些是正确的_________。
A、信号是信息的表达形式,也是信息的载体B、信号是一个个具体的物理量D、信号是确定被测物属性的一种量值1-2-11、一12位A/D转换器输入电压的范围为0~10V,其输出电平值(数字量)为2048,问对应的实际电压值为___________。
5 V1-2-12、下列哪些是描述各态历经随机信号的主要特征参数_______B .方差D. 概率密度函数1-2-13、对于余弦信号,按采样定理,采样时间间隔应____________,才能保证信号不失真。
C、小于10ms1-2-14、下列哪些是傅里叶变换具有的持性A 比例性B 时移特性C 时间尺度改变性1-2-15、一个完整的A/D转换过程包括____________四个过程B、采样、保持、量化、编码1-2-16、对随机信号描述正确的是_________。
A、随机信号必须用概率和统计的办法来描述B、其任何一次观察值的变动服从统计规律D、其概率密度函数表示幅值落在指定区间内的概率1-2-17、信号预处理主要是把信号变成适于数字处理的形式,主要包括_________。
各章节习题(后附答案)第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。
3、 周期信号的频谱具有三个特点: , , 。
4、 非周期信号包括 信号和 信号。
5、 描述随机信号的时域特征参数有 、 、 。
6、 对信号的双边谱而b ,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( )2、 信号的时域描述与频域描述包含相同的信息量。
( )3、 非周期信号的频谱一定是连续的。
( )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( )5、 随机信号的频域描述为功率谱。
( )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。
2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at的频谱。
4、 求被截断的余弦函数⎩⎨⎧≥<=Tt T t t t x ||0||cos )(0ω的傅立叶变换。
5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x atω的频谱。
第二章测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin)(tt x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、 试求传递函数分别为5.05.35.1+s 和2224.141nn n s s ωωω++的两个环节串联后组成的系统的总灵敏度。
3、 为了获得测试信号的频谱,常用的信号分析方法有 、和 。
第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图(a )、(c )、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d ); ④ 非周期信号:图(a )、(b )、(c ); ⑤有始信号:图(a )、(b )、(c )。
1-2 已知某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。
解: 设T 为此系统的运算子,由已知条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。
① 线性1)可加性不失一般性,设f(t)=f 1(t)+f 2(t),则y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而|f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)|即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。
由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。
2)齐次性由已知条件,y(t)=T[f(t)]=|f(t)|,则T[af(t)]=|af(t)|≠a|f(t)|=ay(t) (其中a 为任一常数)即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。
② 时不变特性由已知条件y(t)=T[f(t)]=|f(t)|,则y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|,即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。
依据上述①、②两点,可判定此系统为一非线性时不变系统。
第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图(a)、(c)、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d); ④ 非周期信号:图(a )、(b )、(c); ⑤有始信号:图(a )、(b)、(c ).1-2 已知某系统的输入f (t )与输出y(t )的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。
解: 设T 为此系统的运算子,由已知条件可知: y (t)=T [f (t)]=|f (t)|,以下分别判定此系统的线性和时不变性。
① 线性 1)可加性不失一般性,设f (t )=f 1(t )+f 2(t ),则y 1(t)=T[f 1(t )]=|f 1(t)|,y 2(t )=T [f 2(t)]=|f 2(t )|,y (t )=T [f (t )]=T[f 1(t )+f 2(t )]=|f 1(t )+f 2(t )|,而|f 1(t)|+|f 2(t)|≠|f 1(t )+f 2(t )|即在f 1(t)→y 1(t)、f 2(t)→y 2(t )前提下,不存在f 1(t )+f 2(t )→y 1(t)+y 2(t ),因此系统不具备可加性。
由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。
2)齐次性由已知条件,y(t )=T[f(t)]=|f (t )|,则T [af(t)]=|af(t )|≠a|f(t )|=ay (t ) (其中a 为任一常数)即在f(t )→y(t )前提下,不存在af (t )→ay(t ),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。
② 时不变特性由已知条件y(t )=T [f(t)]=|f (t)|,则y(t-t 0)=T [f (t —t 0)]=|f (t-t 0)|, 即由f (t)→y(t ),可推出f (t —t 0)→y(t —t 0),因此,此系统具备时不变特性。
1-1分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?4321(b)卜f (t)只取1, 2, 3值3i 1 112T 口1_ ______ k0 1 2 3 4 5 6 7 8 t(c)11只取0,卩11值11 1012345678 n"j1f (t)1卜11111卜■0 1 2 3 4 5 6 7 8t(d)'x (n)只取-1,1值11 'c14 568011 2 37n*-1' « 1 111⑴图1-1 J°f (t)、f (t)■0(a)t 0(b)t 只取1, 2, 3, 4值申x(n)图1-2解信号分类如下:模拟:幅值、时间均连 续(例见图1 2( a ))幅值离散,时间连续(例见图12( b ))图1 1所示信号分别为 图1-1所示信号分力别为时间离散,幅值连续(例见图1 2( c ))幅值、时间均离散(例见图1 2(d )) (a) 连续信号(模拟信号); (b) 连续(量化)信号; (c) 离散信号,数字信号; (d) 离散信号;(e) 离散信号,数字信号; (f) 离散信号,数字信号。
1-2分别判断下列各函数式属于何种信号?(重复 1-1题所示问)(1) e at sin( t);(2) e nT ; (3) cos(n );(4) sin(n 0)( 0为任意值);2(5) - o2解由1-1题的分析可知: (1) 连续信号; (2) 离散信号;(3) 离散信号,数字信号; (4) 离散信号; (5) 离散信号。
1-3分别求下列各周期信号的周期T : (1) cos(10t) cos(30t); (2) e j10t ; (3) [5sin(8t)]2 ; (4)( 1)n u(t nT) u(t nT T) (n 为整数)。
n 0解判断一个包含有多个不同频率分量的复合信号是否为一个周期信号, 需要考察各 分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若 不存在,则该复合信号为非周期信号。