初三数学上册期中考试试卷及答案
- 格式:doc
- 大小:199.00 KB
- 文档页数:6
九年级第一学期期中考试数学试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共10小题,每小题3分,共30分.1.在下列方程中是一元二次方程的是()A.x2-2x y+y2=0B. x2-2x=3C. x(x +3)= x2-1D. x + =02.将二次函数y= x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x- 2)2+1B.y= (x +2)2+1C. (x- 2)2-1D.y= (x +2)2- 13.一元二次方程x2-2x +5=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断4.对于二次函数y= - (x- 2)2-3,下列说法正确的是()B A.当x >0时,y随x的增大而增大 B.当x =2时,y有最大值- 3C.图象的顶点坐标为(-2,-7)D.图象与x轴有两个交点5.用配方法解方程x2- 6x- 3=0时,原方程应变形为()A. (x +3)2=3B. (x +3)2=12C. (x- 3)2=3D. (x- 3)2=126.已知函数y=(x- 1)2+2,当函数值y随x的增大而减小时,x的取值范围是()A x <1 B. x >1 C. x >-2 D. - 2< x <47.若x1,x2是一元二次方程2x2- 9x +4=0的两根,则x1+ x2的值是()A. - 2B.2C.D. - 28.二次函数y=ax2+b x+c(a≠0)的图像如图所示,则函数值y>0时,x的取值范围是()A. x <-1B. x >3C. -1< x <3D. x <-1 或x >3第8题图第10题图9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175 亿元,二月、三月平均增长率是多少?若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175B.50+50(1+x)+50(1+x)2=175C.50 (1+x) +50(1+x)2= 175D.50+50(1+x)2=17510.已知二次函数y=ax2+b x+c(a≠0)的图像如图所示,对称轴为直线x=2.则下列结论中正确的是()A a bc>0 B.4a-b=0 C.9a+3b+c<0 D.5a+c>0二、填空题:本大题共5小题,每小题3分,共15分.11.方程x2= x的解是____________12.当k______时,y=( k +3)x2- k x+2是关于x的二次函数.13.抛物线y=2(x +1)2-3,的顶点坐标为________,对称轴为直线______14.已知x=1是方程x2+ax-b=0的一个根,则a-b+2023=_____15如图,一段抛物线:y=-x(x -2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C6,若P(11,m)在第6段抛物线C6上,则m的值为=____三、解答题(一):本大题共3小题,第16 题10分,第17、18题7分,共24分.16.计算:用适当方法解方程:(1)(x +1)2=5x+5 (2)x2- 4x- 5=017.某次聚会上,同学们互相送照片,每人给每个同学一张照片,一共送出90张照片,问一共有多少位同学参加了聚会?18.已知抛物线y= x2- 2x- 3.(1)求抛物线与两坐标轴的交点坐标(2)求它的顶点坐标。
2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版九年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 若 a > b,则 a c 与 b c的大小关系是()A. a c > b cB. a c < b cC. a c = b cD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sinA = 1/2,cosB = √3/2,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°4. 一辆汽车以每小时60公里的速度行驶,行驶了2小时后,汽车行驶的路程是()A. 120公里B. 120千米C. 120米D. 无法确定5. 下列数列中,等差数列是()A. 1, 3, 5, 7, 9B. 1, 3, 6, 10, 15C. 1, 2, 4, 8, 16D. 1, 2, 4, 7, 11二、判断题:每题1分,共5分1. 任何两个奇数的和都是偶数。
()2. 两条平行线的斜率相等。
()3. 任何数乘以0都等于0。
()4. 三角形的内角和等于180°。
()5. 两个负数相乘的结果是正数。
()三、填空题:每题1分,共5分1. 一个正方形的边长是4,它的面积是______。
2. 若 a = 3,b = 2,则 a b = ______。
3. 2的平方根是______。
4. 已知sinθ = 1/2,则θ的度数是______。
5. 下列数列的通项公式是 an = ______。
四、简答题:每题2分,共10分1. 简述等差数列和等比数列的定义。
2. 解释正弦函数和余弦函数的定义。
3. 解释勾股定理,并给出一个应用勾股定理的例子。
4. 简述平行线的性质。
5. 解释二次函数的图像特征。
五、应用题:每题2分,共10分1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,汽车行驶的路程是多少?2. 一个等差数列的首项是1,公差是2,求第10项的值。
九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)有下列关于x的方程是一元二次方程的是()A.3x(x﹣4)=0 B.x2+y﹣3=0 C. +x=2 D.x3﹣3x+8=02.(3分)方程3x2﹣8x﹣10=0的二次项系数和一次项系数分别为()A.3和8 B.3和﹣8 C.3和﹣10 D.3和103.(3分)下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.5.(3分)抛物线y=x2﹣4x﹣5的顶点在第()象限.A.一B.二C.三D.四6.(3分)一元二次方程x2+x+=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)若α、β是方程x2+2x﹣2017=0的两个实数根,则α•β的值为()A.2017 B.2 C.﹣2 D.﹣20178.(3分)二次函数y=(x+1)2+2的最小值是()A.2 B.1 C.﹣3 D.9.(3分)方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=010.(3分)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共18分)11.(3分)将方程化为一般形式:2x2﹣3x=3x﹣5是.12.(3分)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为.13.(3分)已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1y2.(用>、<、=填空).14.(3分)如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15.(3分)方程x2﹣2x﹣1=0根的判别式等于.16.(3分)关于x的一元二次方程x2+mx﹣3=0的一个根是1,则另一根为.三、解答题.(共52分)17.(10分)解方程.(1)x2﹣3x﹣4=0(2)(x﹣3)2=3x(x﹣3)18.(8分)在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.19.(9分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C (0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)求出抛物线的顶点坐标,对称轴及二次函数的最大值.20.(9分)已知关于x的一元二次方程x2﹣mx﹣2=0.(1)对于任意实数m,判断此方程根的情况,并说明理由;(2)当m=2时,求方程的根.21.(8分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,求原正方形空地的边长.22.(8分)某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)有下列关于x的方程是一元二次方程的是()A.3x(x﹣4)=0 B.x2+y﹣3=0 C. +x=2 D.x3﹣3x+8=0【解答】解:A、是一元二次方程,故此选项正确;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:A.2.(3分)方程3x2﹣8x﹣10=0的二次项系数和一次项系数分别为()A.3和8 B.3和﹣8 C.3和﹣10 D.3和10【解答】解:3x2﹣8x﹣10=0的二次项系数和一次项系数分别为3,﹣8,故选:B.3.(3分)下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:A.4.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.【解答】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.5.(3分)抛物线y=x2﹣4x﹣5的顶点在第()象限.A.一B.二C.三D.四【解答】解:抛物线y=x2﹣4x﹣5的顶点坐标为:x=﹣=2,y==﹣9,即(2,﹣9),∵2>0,﹣9<0,∴顶点在第四象限.故选:D.6.(3分)一元二次方程x2+x+=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定【解答】解:∵△=b2﹣4ac=12﹣4•1•=0,∴原方程有两个相等的实数根.故选:B.7.(3分)若α、β是方程x2+2x﹣2017=0的两个实数根,则α•β的值为()A.2017 B.2 C.﹣2 D.﹣2017【解答】解:∵α、β是方程x2+2x﹣2017=0的两个实数根,∴α•β=﹣2017.故选:D.8.(3分)二次函数y=(x+1)2+2的最小值是()A.2 B.1 C.﹣3 D.【解答】解:由二次函数的解析式可知此函数的最小值是2.故选:A.9.(3分)方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=0【解答】解:x2=x,移项得x2﹣x=0,提公因式得x(x﹣1)=0,解得x1=1,x2=0.故选:D.10.(3分)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个 B.2个 C.3个 D.4个【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选:C.二、填空题(每小题3分,共18分)11.(3分)将方程化为一般形式:2x2﹣3x=3x﹣5是2x2﹣6x+5=0.【解答】解:2x2﹣3x=3x﹣5是一般形式是2x2﹣6x+5=0,故答案为:2x2﹣6x+5=0.12.(3分)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为﹣3.【解答】解:将x=1代入得:1+2+m=0,解得:m=﹣3.故答案为:﹣3.13.(3分)已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1>y2.(用>、<、=填空).【解答】解:∵二次函数y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大,∵点A(﹣7,y1),B(﹣8,y2)是二次函数y=﹣x2﹣2x+3的图象上的两点,﹣7>﹣8,∴y1>y2.故答案为:>.14.(3分)如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是x1=0,x2=2.【解答】解:把A(﹣1,0),B(3,0)代入y=ax2+bx+3得,解得,代入ax2+bx=0得,﹣x2+2x=0,解得x1=0,x2=2.故答案为:x1=0,x2=2.15.(3分)方程x2﹣2x﹣1=0根的判别式等于8.【解答】解:由题意得:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8,故答案为:8.16.(3分)关于x的一元二次方程x2+mx﹣3=0的一个根是1,则另一根为﹣3.【解答】解:根据题意可得x1+x2=﹣=﹣m,x1x2==﹣3,∵x1=1,∴1+x2=﹣m,x2=﹣3,∴m=2.故答案为:﹣3三、解答题.(共52分)17.(10分)解方程.(1)x2﹣3x﹣4=0(2)(x﹣3)2=3x(x﹣3)【解答】解:(1)x2﹣3x﹣4=0,(x﹣4)(x+1)=0,x﹣4=0,x+1=0,x1=4,x2=﹣1;(2)(x﹣3)2=3x(x﹣3),(x﹣3)2﹣3x(x﹣3)=0,(x﹣3)(x﹣3﹣3x)=0,x﹣3=0,x﹣3﹣3x=0,x1=3,x2=﹣1.5.18.(8分)在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.【解答】解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得:(x+2)2﹣25=0,(x+2)2=25,x+2=±5,x+2=5或x+2=﹣5,解得:x1=3,x2=﹣7.19.(9分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C (0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)求出抛物线的顶点坐标,对称轴及二次函数的最大值.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,3)代入得a•1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,所以抛物线的顶点坐标为(1,4),对称轴为:直线x=1,二次函数的最大值是4.20.(9分)已知关于x的一元二次方程x2﹣mx﹣2=0.(1)对于任意实数m,判断此方程根的情况,并说明理由;(2)当m=2时,求方程的根.【解答】解:(1)对于任意实数m,方程总有两个不相等的实数根,利用如下:∵△=(﹣m)2﹣4×1×(﹣2)=m2+8>0,∴对于任意实数m,方程总有两个不相等的实数根.(2)当m=2时,原方程为x2﹣2x﹣2=0,此时△=m2+8=12,∴x1=1﹣,x2=1+.21.(8分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,求原正方形空地的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=2,x2=3.经检验,x=2不符合题意,舍去答:原正方形的边长3m.22.(8分)某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?【解答】解:设房价为(180+10x)元,则定价增加了10x元,此时空闲的房间为x,由题意得,y=(180+10x)(50﹣x)﹣(50﹣x)×20=﹣10x2+340x+8000=﹣10(x ﹣17)2+10890故可得当x=17,即房间定价为180+170=350元的时候利润最大.答:房间定价为350元时,利润最大.11。
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在平面直角坐标系中,点A(3,2),点B(3,2),那么线段AB的中点坐标是()。
A.(0,0)B.(0,1)C.(0,1)D.(1,0)二、判断题(每题1分,共5分)1. 直角三角形的两个锐角互余。
()2. 在同一平面内,垂直于同一直线的两条直线互相平行。
()3. 一元二次方程的根一定是实数。
()4. 圆的周长与半径成正比。
()5. 一组数据的方差越大,说明这组数据的波动越小。
()三、填空题(每题1分,共5分)1. 在等腰三角形中,若底边长为10,腰长为13,则这个等腰三角形的周长是______。
2. 在平面直角坐标系中,点P(m,n)关于原点的对称点坐标是______。
3. 已知一元二次方程ax^2+bx+c=0(a≠0),若方程有两个相等的实数根,则判别式△=______。
4. 在等差数列{an}中,若a1=3,d=2,则第10项a10=______。
5. 在平面直角坐标系中,点A(m,n),点B(m,n),则线段AB的长度是______。
四、简答题(每题2分,共10分)1. 请简述一元二次方程的根的判别式。
2. 请简述圆的性质。
3. 请简述等差数列的性质。
4. 请简述三角形的内角和定理。
5. 请简述平行线的性质。
五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为8,腰长为5,求这个等腰三角形的周长。
2024年最新人教版初三数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最大的数是()A. 3B. 0C. 1D. 22. 一个等边三角形的周长是15cm,那么它的边长是()A. 3cmB. 5cmC. 7.5cmD. 10cm3. 下列哪一个数是有理数()A. √3B. πC. 1/2D. √14. 下列哪一个图形是正方体()A. 长方体B. 球体C. 圆柱体D. 正方体5. 下列哪一个数是无理数()A. 1/3B. √4C. 0.333D. √2二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 任何两个实数的积都是实数。
()3. 0是正数。
()4. 1是质数。
()5. 任何两个奇数的和都是偶数。
()三、填空题5道(每题1分,共5分)1. 一个等差数列的第1项是1,公差是2,第10项是______。
2. 一个等比数列的第1项是2,公比是3,第4项是______。
3. 下列数列的前5项是2, 4, 8, 16, 32,下一个数是______。
4. 下列数列的前5项是1, 3, 5, 7, 9,下一个数是______。
5. 下列数列的前5项是1, 4, 9, 16, 25,下一个数是______。
四、简答题5道(每题2分,共10分)1. 解释什么是等差数列?2. 解释什么是等比数列?3. 解释什么是无理数?4. 解释什么是函数?5. 解释什么是几何图形?五、应用题:5道(每题2分,共10分)1. 一个等差数列的第1项是3,公差是2,求第10项。
2. 一个等比数列的第1项是2,公比是3,求第6项。
3. 下列数列的前5项是2, 4, 8, 16, 32,求下一个数。
4. 下列数列的前5项是1, 3, 5, 7, 9,求下一个数。
5. 下列数列的前5项是1, 4, 9, 16, 25,求下一个数。
六、分析题:2道(每题5分,共10分)1. 给出一个等差数列的前5项,然后给出一个等比数列的前5项,比较它们的特点。
九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。
2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。
3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。
4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。
5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。
6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。
7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。
九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。
人教版九年级上学期期中考试数学试卷(一)满分 120 分,考试时间 120 分钟。
一、精心选一选(每小题 3 分,共 30 分,将答案填在相应的括号内) 1. 下列方程中不一定是一元二次方程的是 ()A.(a-3)x =8 (a≠3)B.ax +bx+c=02 2 3C.(x+3)(x-2)=x+5D. 32 2 0 x x 572.关于 的一元二次方程 1 1 0的一个根是 0,则 值为( )x a x x a 2a 2 12 A. 1 B. 1 C.1 或1D.y x 3.在抛物线 =- +1 上的一个点是 ( )2A .(1,0)B .(0,0)C .(0,-1)D .(1,1)y x x4.抛物线 = -2 +1 的顶点坐标是 ( ) 2 A .(1,0) B .(-1,0) C .(-2,1)D .(2,-1) 5.已知方程2 2,则下列说中,正确的是 ()x x A. 方程两根和是 1 B. 方程两根积是 2 C. 方程两根和是1D.方程两根积比两根和大 26.某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如 果平均每月增长率为 x,则由题意列方程应为( )A.200(1+x) =10002B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x) ]=100027. 若点(2,5),(4,5)在抛物线 y =ax +bx +c 上,则它的对称轴是 ()2b A . B .x =1 C .x =2 D .x =3xa8.用 10 米长的铝材制成一个矩形窗框,使它的面积为 6 平方米.若设它的一条 边长为 x 米,则根据题意可列出关于 x 的方程为( )A.x(5+x)=6B. x(5-x)=6C. x(10-x)=6D. x(10-2x)=6ht9.一小球被抛出后,距离地面的高度 (米)和飞行时间 (秒)满足下面函数关系 ht式: =-5( -1)2+6,则小球距离地面的最大高度是 ( )A .1 米B .5 米C .6 米D .7 米10.二次函数 y=x +bx+c ,若 b+c=0,则它的图象一定过点( )2A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)二、细心填一填(每小题 4 分,共 32 分) 11. 方程 x +x=0 的根是2.12.请你写出以 2 和-2 为根的一元二次方程 个即可).(只写一.13. 抛物线 y =-x +3 的对称轴是2,顶点坐标是14.函数 y=x +x-2 的图象与 y 轴的交点坐标是2.x x bx b15.已知 =-1 是方程 + -5=0 的一个根,则 =________,方程的另一根 2 为________.16.若 x 、x 是方程 x +4x-6=0 的两根,则 x +x =2.2 2 1212 x 2x m,若其顶点在 x 轴上,则 m=_________.2 x x k三、解答题(要求:写出必要的解题步骤和说理过程). x -2x-3 2 19.(满分 9 分)请画出二次函数y的图象,并结合所画图象回答问题:(1) 当 x 取何值时,y=0; (2) 当 x 取何值时,y <0.a ba b a a b20.(满分 6 分)现定义运算“★”,对于任意实数 、 ,都有 ★ = ﹣3 + .2 x x如:3★5=3 ﹣3×3+5,若 ★2=6,试求实数 的值.221. (满分 8 分)已知△ABC 的一条边 BC 的长为 5,另两边 AB 、AC 的长是关于 x 的一元二次方程 2 3 3 2 0 的两个实数根.x 2 k x k 2 k k(1)求证:无论 为何值时,方程总有两个不相等的实数根.k(2) 当 为何值时,△ABC 是以 BC 为斜边的直角三角形.y ax bx c a22. (满分 9 分)已知二次函数 =+ + ( ≠0)的图象如图所示,请结合图2 象,abc; a b c a b c判断下列各式的符号. ①;②b -4ac. ③ + + ;④ ﹣ + .2y ax bx c23.(满分 6 分)已知二次函数 = + + 的图象如图所示. 2 ①求这个二次函数的表达式; ②当 x 为何值时,y=3.24.(满分 7 分)如图所示,在宽为 20m ,长为 32m 的矩形耕地上,修筑同样宽 的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的 面积为 570m ,道路应为多宽?225.(满分 13 分)在平面直角坐标系 xOy 中,顶点为 M 的抛物线是由抛物线 y=x 2﹣3 向右平移 1 个单位后得到的,它与 y 轴负半轴交于点 A ,点 B 在该抛物线上, 且横坐标为 3.(1)求点 M 、A 、B 坐标;(2)若顶点为 M 的抛物线与 x 轴的两个交点为 B 、C ,试求线段 BC 的长.参考答案及评分标准一、选择题(每小题 3 分,共 3 0 分) 1-5 小题 BBAAC6-10 小题 DDBCD二、填空题(每小题 4 分,共 32 分) 11. 0 或-112.答案不唯一,如 x -4=0 等.213. 直线 x=0(或 y 轴) (0,3) 14. (0,-2) 15. -4, 5 16. 2817. -118. 1 19.用描点法正确画出函数图象 得3分;(1)因为抛物线与 x 轴交于(-1,0)、(3,0),所以当 x=-1 或 3 时,y=0;…………(3 分) (2) 由图象知,当-1<x <3 时,y <0; …………(6 分) …………(4 分) ………… (6 分)20. x -3x+2=62解得:x=﹣1 或 421. (1)证明:∵ △= (2 3) 4( 3 2) 1 0k 2 k 2 k k∴ 无论 为何值方程总有两个不相等的实数根。
九年级(上)期中数学试卷一、选择题(本题10小题,每小题3分,共30分.)1.(3分)方程x2﹣4=0的解是()A.4 B.±2 C.2 D.﹣22.(3分)在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣2,﹣3)3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=65.(3分)由二次函数y=2(x﹣3)2+1,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1 D.当x<3时,y随x的增大而增大6.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°7.(3分)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°8.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°9.(3分)抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3 10.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=度.12.(4分)圣诞节时,一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为.13.(4分)将一个正六边形绕着其中心,至少旋转度可以和原来的图形重合.14.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.15.(4分)如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.16.(4分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是m.三、解答题(本大题3小题,每小题6分,共18分)17.(6分)解方程:x2﹣x﹣12=0.18.(6分)如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.19.(6分)如图,已知点A、B、C的坐标分别为(0,0),(4,0),(5,2)将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.(1)画出△AB′C′;(2)求点C′的坐标.四、解答题(本大题3小题,每小题7分,共21分)20.(7分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:△BCE≌△B1CF;(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.22.(7分)如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?五、解答题(本大题3小题,每小题9分,共27分)23.(9分)已知,如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.24.(9分)如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200m2,求鸡场平行于墙的一边长.(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案,如果不能,请说明理由.25.(9分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分.)1.(3分)方程x2﹣4=0的解是()A.4 B.±2 C.2 D.﹣2【解答】解:x2﹣4=0,∴x2=4,开平方得:x=±2.故选:B.2.(3分)在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣2,﹣3)【解答】解:根据中心对称的性质,得点P(﹣2,3)关于原点对称点P′的坐标是(2,﹣3).故选:A.3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,也是轴对称图形;D、是中心对称图形,也是轴对称图形.故选:B.4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.5.(3分)由二次函数y=2(x﹣3)2+1,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1 D.当x<3时,y随x的增大而增大【解答】解:由二次函数y=2(x﹣3)2+1,可知:A:∵a>0,其图象的开口向上,故此选项错误;B.∵其图象的对称轴为直线x=3,故此选项错误;C.其最小值为1,故此选项正确;D.当x<3时,y随x的增大而减小,故此选项错误.故选:C.6.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.7.(3分)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°【解答】解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选:A.8.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.9.(3分)抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3【解答】解:由“左加右减”的原则可知,抛物线y=x2向右平移1个单位所得抛物线的解析式为:y=(x﹣1)2;由“上加下减”的原则可知,抛物线y=(x﹣1)2向上平移3个单位所得抛物线的解析式为:y=(x﹣1)2+3.故选:D.10.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.【解答】解:根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2﹣x;故△AEG、△BEF、△CFG三个三角形全等.在△AEG中,AE=x,AG=2﹣x.则S△AEG=AE×AG×sinA=x(2﹣x);故y=S△ABC ﹣3S△AEG=﹣3×x(2﹣x)=(3x2﹣6x+4).故可得其大致图象应类似于抛物线,且抛物线开口方向向上;故选:D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=35度.【解答】解:∵∠AOB=70°,∴∠C=∠AOB=35°.故答案为:35.12.(4分)圣诞节时,一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为x(x﹣1)=132.【解答】解:设这个小组有x人,则每人应送出x﹣1张贺卡,由题意得:x(x﹣1)=132,故答案为:x(x﹣1)=132.13.(4分)将一个正六边形绕着其中心,至少旋转60度可以和原来的图形重合.【解答】解:∵正六边形的中心角==60°,∴一个正六边形绕着其中心,至少旋转60°可以和原来的图形重合.故答案60.14.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.15.(4分)如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是x1=﹣3,x2=1.【解答】解:∵由图可知,抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴设抛物线与x轴的另一交点为(x,0),则=﹣1,解得x=1,∴方程ax2+bx+c=0的两根是x1=﹣3,x2=1.故答案为:x1=﹣3,x2=1.16.(4分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是250m.【解答】解:设半径为r,则OD=r﹣CD=r﹣50,∵OC⊥AB,∴AD=BD=AB,在直角三角形AOD中,AO2=AD2+OD2,即r2=(×300)2+(r﹣50)2=22500+r2+2500﹣100r,r=250m.答:这段弯路的半径是250m.三、解答题(本大题3小题,每小题6分,共18分)17.(6分)解方程:x2﹣x﹣12=0.【解答】解:分解因式得:(x+3)(x﹣4)=0,可得x+3=0或x﹣4=0,解得:x1=﹣3,x2=4.18.(6分)如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.【解答】解:过点O作OC⊥AB于点C,连接OB,则AC=BC=AB∵AB=8cm,OC=3cm∴BC=4cm在Rt△BOC中,OB==5cm即⊙O的半径是5cm.19.(6分)如图,已知点A、B、C的坐标分别为(0,0),(4,0),(5,2)将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.(1)画出△AB′C′;(2)求点C′的坐标.【解答】解:(1)如图所示,△AB′C′即为所求;(2)由(1)可知,点C′的坐标为(﹣2,5).四、解答题(本大题3小题,每小题7分,共21分)20.(7分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.【解答】解:设剪去的小正方形的边长为xcm,根据题意得:(20﹣2x)(10﹣2x)=56,整理得:(x﹣3)(x﹣12)=0,解得:x=3或x=12,经检验x=12不合题意,舍去,∴x=3,则剪去小正方形的边长为3cm.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:△BCE≌△B1CF;(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.【解答】(1)证明:由题意得,BC=B1C,∠B=∠B1=60°,又∵∠BCE+∠ECF=90°,∠B1CF+∠ECF=90°,∴∠BCE=∠B1CF,在△BCE和△B1CF中,,∴△BCE≌△B1CF(ASA);(2)当旋转角等于30°时,AB与A1B1垂直.理由如下:证明:∵∠ECF=30°,∴∠BCE=60°,∴△BCE是等边三角形,∴∠BEC=60°,得∠A1EO=60°,又∵∠A1=30°,∴∠A1EO=60°,即AB与A1B1垂直.22.(7分)如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?【解答】解:连接OA、OC,∵由题意知:AB∥CD,OE⊥AB,OF⊥CD,CD=20cm,∴CG=CD=10cm,在Rt△OGC中,由勾股定理得:OC2=CG2+OG2,OC2=102+(OC﹣2)2,解得:OC=26(cm),则OE=26cm﹣2cm﹣2cm=22cm,∵在Rt△OEA中,由勾股定理得:OA2=OE2+AE2,∴262=222+AE2,∴AE=8,∵OE⊥AB,OE过O,∴AB=2AE=16cm.五、解答题(本大题3小题,每小题9分,共27分)23.(9分)已知,如图,抛物线y=ax 2+2ax +c (a >0)与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点B 的坐标为(1,0),OC=3OB . (1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值; (3)若点E 在x 轴上,点P 在抛物线上.是否存在以A ,C ,E ,P 为顶点且以AC 为一边的平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【解答】解:(1)∵OC=3OB ,B (1,0),∴C (0,﹣3).把点B ,C 的坐标代入y=ax 2+2ax +c ,得a=1,c=﹣3,∴抛物线的解析式y=x 2+2x ﹣3.(2)由A (﹣3,0),C (0,﹣3)得直线AC 的解析式为y=﹣x ﹣3,如图1,过点D 作DM ∥y 轴分别交线段AC 和x 轴于点M ,N .设M (m ,﹣m ﹣3)则D (m ,m 2+2m ﹣3), DM=﹣m ﹣3﹣(m 2+2m ﹣3)=﹣m 2﹣3m=﹣(m +)2+,∴﹣1<0,∴当x=时,DM 有最大值,∴S 四边形ABCD =S △ABC +S △ACD =×4×3+×3×DM ,此时四边形A BCD 面积有最大值为6+×=.(3)存在.讨论:①如图2,过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x 轴于点E1,此时四边形ACP1E1为平行四边形.∵C(0,﹣3),令﹣3=x2+2x﹣3∴x1=0,x2=﹣2.∴P1(﹣2,﹣3).②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形,∵C(0,﹣3),∴可令P(x,3),3=x2+2x﹣3,得x2+2x﹣6=0解得x1=﹣1+,x2=﹣1﹣,此时存在点P2(﹣1+,3),P3(﹣1﹣,3),综上所述,存在3个点符合题意,坐标分别是:P1(﹣2,﹣3),P2(﹣1+,3),P3(﹣1﹣,3).24.(9分)如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200m2,求鸡场平行于墙的一边长.(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案,如果不能,请说明理由.【解答】解:(1)设鸡场垂直于墙的一边长为xm,则鸡场平行于墙的一边长为(40﹣2x)m,根据题意得:x(40﹣2x)=200,解得:x1=x2=10,∴40﹣2x=20.答:鸡场平行于墙的一边长为20m.(2)假设能,设鸡场垂直于墙的一边长为ym,则鸡场平行于墙的一边长为(40﹣2y)m,根据题意得:y(40﹣2y)=250,整理得:y2﹣20y+125=0.∵△=(﹣20)2﹣4×1×125=﹣100<0,∴该方程无解,∴假设不成立,即养鸡场面积不能达到250m2.25.(9分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.【解答】解:(1)由旋转的性质知AP′=AP=6,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△P′AP是等边三角形,∴PP′=6;(2)∵P′B=PC=10,PB=8,∴P′B2=P′P2+PB2,∴△P′PB为直角三角形,且∠P′PB=90°,∴∠APB=∠P′PB+∠P′PA=90°+60°=150°.。
2018—2018年学年度第一学期九年级数学期中考试卷卷
一、选择题:(每小题4分,共32分)
1、下列图形中,是中心对称图形的是
2、下列等式成立的是()
A
.9
4
9
4+
=
+B.3
3
27= C.3
3
3
3=
+D.4
)4
(2-
=
-
3、下列各式中是一元二次方程的是()
A.
x
x
1
1
2=
+B.1
)1
)(1
(2+
=
-
-
+x
x
x
x C.1
3
22-
+x
x D.1
2
1
2=
+x
x
4、下列二次根式中属于最简二次根式的是()
A.4
4+
a B.48C.14D.
b
a
5有意义,则x的取值范围是()
A.x≥﹣
2
5
B.x≤
2
5
C. x≥
2
5
D. x≤-
2
5
6、关于关于x的一元二次方程220
x x
+-=的根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断
7、三角形两边的长分别是8和6,第三边的长是方程x²-12x+20=0的一个实数根,则三角形的周长是( )
A. 24
B. 26或16
C. 26
D. 16
8、某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为()
A、2
25(1)64
x
+= B、2
25(1)64
x
-= C
二、填空题(每小题4分,共20分)
9、若点A(a–2,3)与点B(4,–3
10、已知x=‐1是方程x2-ax+6=0的一个根,则
11.若2<x<3,化简x
x-
+
-3
)2
(2
12.如图(11),△ABC绕点A旋转后到达△ADE
∠BAD=30°,则∠DAE=__________,∠CAE=
13、对于任意不相等的两个数a,b,定义一种运算※如下:a※b=
b
a
b
a
-
+
,如3※2=5
2
3
2
3
=
-
+
.那
么12※4=。
三、解答题:(每小题7分,共35分)
14、.计算:10
1
()(
2
π
-
-++︱-6︱
A B D
C
15、计算:482)68
1
(26--
16、解方程:2
450x x +-=
17、解方程:(23)46x x x +=+
18、已知a 、b 、c 满足054)3(2=-+-+-c b a 求:(1)a 、b 、c 的值;
(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
四、解答题(每小题9分,共27分)
19、.当m 为何值时,一元二次方程2
2
2(41)210x m x m -++-=。
① 有两个不相等的实数根? ② 有两个相等的实数根? ③ 没有实数根?
21、如图所示,在一块长为32M ,宽为15M 的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步
的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少M ?
五、解答题(每小题12分,共36分)
22、已知关于x 的方程012)14(2
=-+++k x k x 。
(1)求证此方程一定有两个不相等的实数根。
(2)设1x 、2x 是方程的两个实数根,且(1x -2)(2x -2)=23-k ,求k 的值。
23、某百货大楼服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元。
为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件。
要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?
24、(一位同学拿了两块45三角尺MNK △,ACB △做了一个探究活动:将MNK △ 的直角顶点M 放在ABC △的斜边AB 的中点处,设4AC BC ==.
(1)如图(1),两三角尺的重叠部分为ACM △,则重叠部分的面积为,周长为.
(2)将图(1)中的MNK △绕顶点M 逆时针旋转45,得到图26(2),此时重叠部分的面积为,周长为.
(3)如果将MNK △绕M 旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为.
(4)在图(3)情况下,若1AD =,求出重叠部分图形的周长.
B
图(1)
N
图(2)
N
图(3)
第24题图
9.-210. -7 11. 1 12. 1200 300 13.12
14.解:原式=-2+1+2-6 =-5
15.解:原式=6×1
2
16.解:(x +5)(x-1)=0 ∴x +5=0或x-1=0 ∴x 1=-5,x 2=1
17.解:x(2x+3)-2(2x+3)=0 ∴(2x+3)(x-2)=0 ∴2x +3=0或x-2=0
∴x 1=-3
2
,x 2=2
18、解:(1)
054)3(2=-+-+-c b a 又(a-3)2≥
0,0≥,5c -0≥
∴a-3=0,b-4=0,c-5=0. ∴a=3,b=4,c=5.
(2)能构成三角形,它的周长l=3+4+5=12
四、解答题(本大题共3小题,每小题9分,共27分)
19.解:
a=2,b=-(4m+1),c=2m 2-1
∴∆=b 2-4ac
=()41m -+⎡⎤⎣⎦2-4×2×(2m 2
-1)
=8m+9
∴当8m+9
0,即m>9
8
-时,原方程有两个不相等的实数根;
∴当8m+9=0,即m=9
8
-时,原方程有两个相等的实数根;
∴当8m+9<0,即m<9
8
-时,原方程没有实数根。
21、解:设小路的宽为xM ,依题意得: (32-2x )(15-x)=
7
8
×15×32 整理,得x 2
-31x +30=0
解得x 1=1,x 2=30(不合题意,舍去) 答:小路的宽为1M 。
五、解答题(本大题共3小题,每小题12分,共36分)
22、(1)证明:a=1,b=4k +1,c=2k -1 ∴=b 2-4ac
=(4k +1)2
-4×1×(2k -1)
=16k 2
+5
k 2≥0, ∴16k 2
+5>0, 即>0,∴原方程一定有两个不相等的实数根。
(2)解:依题意得
1212(41),21x x k x x k +=-+=-
又
(1x -2)(2x -2)=23-k ,
∴12122(423x x x x k -++=-)
即 212[(41)]423k k k --⨯-++=-
解得k =—1
23、解:设每件童装应降价x 元,依题意得:
(40(208)12004
x
x -+⨯=)
整理得:
212302000,10,20
x x x x -+===解得
因为商家为了扩大销售量,增加盈利,尽快减少库存,所以10x =不符合题意舍去。
答:每件童装应降价20元。
24、
(1)如图(1),两三角尺的重叠部分为ACM △,则重叠部分的面积为4,周长为
. (2)将图(1)中的MNK △绕顶点M 逆时针旋转45,得到图(2),此时重叠部分的面积为4,周长为8.
(3)如果将MNK △绕M 旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为4.
(4)在图(3)情况下,若1AD =,求出重叠部分图形的周长.
解答:连结CM 证明△AD M ≌△CGM (∠ADM=∠CGM ,∠MCG=∠MAG=450,AM=CM ) 于是AD=CG ,DM=GM 所求
L=CD+DM+MG+GC=AD+CD+2DM=4+2DM
过M 做BC 平行线 交AC 于E 点 即ME 为△ABC 中位线 ME=2 E 为AC 中点 所以
AE=2
B
图(1)
N
图(2) N
图(3)
第24题图
因为AD=1 所以DE=2-1=1 利用勾股定理RT△DME得到所以周长为。