图示圆截面杆.
- 格式:doc
- 大小:2.72 MB
- 文档页数:124
2011年课程考试复习题及参考答案工程力学计算题:1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。
2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。
已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件校核梁的强度。
3.传动轴如图所示。
已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。
试求:①力偶M的大小;②作AB轴各基本变形的内力图。
③用第三强度理论设计轴AB的直径d。
4.图示外伸梁由铸铁制成,截面形状如图示。
已知I z=4500cm4,y1=7.14cm,y2=12.86cm,材料许用压应力[σc]=120MPa,许用拉应力[σt]=35MPa,a=1m。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
5.如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。
试求:①作AB轴各基本变形的内力图。
②计算AB轴危险点的第三强度理论相当应力。
6.图所示结构,载荷P=50KkN,AB杆的直径d=40mm,长度l=1000mm,两端铰支。
已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=2.0,[σ]=140MPa。
试校核AB杆是否安全。
7.铸铁梁如图5,单位为mm,已知I z=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa,试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
8.图所示直径d=100mm的圆轴受轴向力F=700kN与力偶M=6kN·m的作用。
中国民航学院2005-2006学年第一学期《材料力学(I )》考试试卷一、回答下列问题。
(20分)1、 形截面悬臂梁受力如图所示,梁的材料为铸铁,试判断下图中(a )、(b )哪种放置比较合理。
(21y y >)(5分)2、一中心受压的钢杆,两端为球铰支座,截面为矩形h b ⨯(b h >),长度为l 弹性模量为E ,试求此杆的弹性临界载荷。
(5分)3.已知图示(a )梁B 截面的挠度为EI ql 84,转角为EIql 66,试求图(b )梁C 截面的转角。
(两梁各段的刚度相等)(5分)4、试画出下面矩形截面悬臂梁中性轴上A 点的应力状态。
(5分)二、矩形截面木梁如图示。
已知h /b =,[?]=10MPa ,a =1.2m ,P =10KN ,试设计梁的截面尺寸。
(15分)三、图示桁架结构构成的简易起重设备,各杆的材料相同、横截面积相等。
其屈服应力为700MPa ,弹性模量为210GPa 。
若起吊重量为34kN ,安全系数为3。
问: (1) 杆的横截面积应为多少?(2) 若各杆的横截面积取上面计算的值,起吊后B 点的垂直位移是多少?(15分)四、求图示应力状态的三个主应力、最大剪应力和它们的作用面方位,并画在单元体上。
(15分)M=Pa五、实心轴AB 两端固定,材料的扭转弹性模量G =28GPa 。
AC 段直径40mm ,BC 段直径20mm ,其它参数如图。
求固定端的扭矩为多少? (15分)六、一轴上装有两个圆轮,P 、Q 两力分别作用在两轮上并处于平衡状态。
圆轴直径d =110mm ,C 轮半径0.5m ,D 轮半径1m ,材料的[σ]=60MPa ,试用第四强度理论确定许用载荷。
(15分)七、求图示梁C 截面的挠度,已知弯曲刚度为EI 。
(5分)A中国民航学院2005-2006学年第二学期期末考试试卷《材料力学(Ⅰ)》一、本题包括5个小题,每小题8分,共40分。
1.下面单元体上作用的应力如图示,(单位为MPa ),试画出下面单元体的三向应力圆,并求出三个主应力和最大切应力。
第七章 杆类构件的应力分析与强度计算习 题7.1 图示阶梯形圆截面杆AC ,承受轴向载荷1200 kNF =与2100 kN F =, AB 段的直径mm 401=d 。
如欲使BC 与AB 段的正应力相同,试求BC 段的直径。
题7.1图解:如图所示:物体仅受轴力的作用,在有两个作用力的情况下经分析受力情况有:AB 段受力:1NAB F F = BC 段受力:12NBC F F F =+AB 段正应力:1221440.04NAB NAB AB AB F F F A d σππ⨯===⨯ BC 段正应力:()12222244NBC NBC BCBC F F F F A d d σππ+⨯===⨯ 而BC 与AB 段的正应力相同 即,BC AB σσ= 解出:249d mm ==7.2 图示轴向受拉等截面杆,横截面面积2500 mm A =,载荷50 kN F =。
试求图示斜截面()o30=α m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
mm题7.2图解:拉杆横截面上的正应力605000010050010N F F Pa MPa A A σ︒-====⨯ 应用斜截面上的正应力和剪应力公式:2300cos σσα︒︒= 030sin 22στα︒︒=有图示斜截面m-m 上的正应力与切应力为:3075MPa σ︒= 3043.3MPa τ︒=当0=α时,正应力达到最大,其值为max 0100MPa σσ︒== 即:拉压杆的最大正应力发生在横截面上,其值为100MPa 。
当45=α时,切应力最大,其值为0max 502MPa στ︒==即拉压杆的最大切应力发生在与杆轴成45的斜截面上,其值为50MPa 。
7.3图示结构中AC 为钢杆,横截面面积21200 mm A =,许用应力[]1160 Mpa σ=;BC 为铜杆,横截面面积22300 mmA =,许用应力[]2100 Mpa σ=。
α α(a) α(b) 第一章 绪论是非判断题1.材料力学是研究构件承载能力的一门学科。
( ) 2.材料力学的任务是尽可能使构件安全地工作。
( ) 3.材料力学主要研究弹性范围内的小变形情况。
( )4.因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
( ) 5.材料力学研究的内力是构件各部分间的相互作用力。
( )6.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
( ) 7.压强是构件表面的正应力。
( ) 8.应力是横截面上的平均内力。
( )9.材料力学只研究因构件变形引起的位移。
( ) 10.构件内一点处各方向线应变均相等。
( )11.切应变是变形后构件中任意两根微线段夹角角度的变化量。
( ) 12.构件上的某一点,若任何方向都无应变,则该点无位移。
( ) 13.材料力学只限于研究等截面直杆。
( )14.杆件的基本变形只是拉(压)、剪、扭、和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。
( )填空题15.图中所示两个微元体受力变形后如虚线所示,图(a)、(b)所示微元体的切应变分别是=a γ______;=b γ_______。
16.构件的承载能力包括____________、___________和____________三个方面;根据材料的主要性能作如下三个基本假设___________、___________、____________。
17.构件的强度是指___________________________________________________________;刚度是指_________________________________________________________________________;稳定性是指_______________________________________________________________________。
材料⼒学习题材料⼒学试卷⼀⼀、图⽰桁架,材料为Q235钢,已知:σs =240MPa ,σb =350MPa ,杆⼦直径d =50mm ,安全系数n =3,试确定外⼒P 的最⼤允许值。
(14%)⼆、空⼼圆轴,内径d=60mm ,外径D=80mm ,⼒偶矩m=4kN ·m ,[τ]=80MPa ,试校核轴的强度。
(14%)三、画梁的剪⼒图和弯矩图。
A 、B ⽀座反⼒为R A =R B =qa /2。
(15%)2四、铸铁梁,截⾯惯性矩I Z=538cm4,y1=92mm,y2=42mm, P=5kN,l=2m,许⽤拉应⼒ [σt]=40MPa,许⽤压应⼒[σC]=90MPa,校核梁的弯曲正应⼒强度。
五、已知:载荷P,梁长a,梁的抗弯刚度为EI,试⽤积分法求梁的挠度⽅程,并求B 点挠度。
(14%)五、P=10kN,D=500mm,a=600mm,[σ]=90 MPa,试⽤第三强度理论设计B材料⼒学试卷⼆⼀、如图所⽰的圆截⾯杆,d =50mm ,在杆⼦的表⾯沿45°⽅向粘贴应变⽚,现测得应变ε=-400×10-6,材料常数E=210GPa ,µ=0.28,求外⼒偶矩m 的⼤⼩。
(20分)⼆、画剪⼒图和弯矩图。
已知⽀反⼒(22分)三、简⽀梁由两根No18号槽钢和上下盖板焊接⽽成,盖板材料与槽钢相同,σp =200MPa ,σs =235MPa ,σb =390MPa 。
盖板尺⼨为b =320mm ,t =16mm 。
已知P =140kN ,a =2m (。
, 2qa R qa R B A ==四、已知:杆⼦⾯积A =200 mm 2,长l =2m ,δ=1mm ,受外⼒P =60kN ,材料的弹性模量E =200GPa ,试画出杆⼦的轴⼒图。
(22分)五、钢制圆截⾯杆,直径d =80mm , P=3kN ,m =4kN ·m ,a =1m ,试按第三强度理论,计算危险点的相当应⼒。
一、填空题(22分)11个1.1作用在刚体上的两个力,使刚体保持平衡的充分必要条件是 ;1.2作用在刚体上的两个力等效的条件是 。
1.3对非自由体的某些位移起限制作用的周围物体称为 。
约束反力的方向必与该约束所能阻碍的位移方向相反;2.1平面汇交力系平衡的几何条件是 ;平衡的解析条件是 。
2.2同平面内的两个力偶等效的条件是 。
2.3合力对于平面内任一点之力矩等于 。
3.1可以把作用在刚体上点A 的力平移到任一点B ,但必须同时附加一力偶,这个附加的力偶的矩等于 。
3.2平面任意力系中所有各力的矢量和称为该力系的 ;而这些力对于任选简化中心的力矩的代数和称为该力系对简化中心的 前者与简化中心 ;后者一般与简化中心 。
3.3在平面问题中,固定端处的约束反力可以简化为 。
5.1构件的强度是 ;刚度是 ;稳定性是5.8螺栓受拉力F 作用,尺寸如图。
若螺栓材料的拉伸许用应力为][σ,许用切应力为][τ,按拉伸与剪切等强度设计,螺栓杆直径d 与螺栓头高度h 的比值d/h = 。
6.1根据平面假设,圆轴扭转变形后,横截面 ,其形状、大小与横截面间的距离 ,而且半径 。
6.2圆轴扭转时,根据 ,其纵截面上也存在切应力。
7.1最大弯矩可能发生的横截面有 ; ; 。
7.2 梁在集中力作用的截面处,它的剪力图 ,弯矩图 。
7.3梁在集中力偶作用的截面处,它的剪力图 ,弯矩图 。
7.4梁在某一段内作用有向下的均布载荷,则其剪力图是一条 ,弯矩图是。
8.1梁在对称弯曲时,截面的中性轴是 与横截面的交线,必通过截面的 。
8.2应用公式zM y I σ=时,必须满足的两个条件是 和 。
8.3横力弯曲时,梁横截面上的最大正应力发生在 ;矩形、圆形和工字形界面梁最大切应力发生在 。
9.1用积分法求梁的挠曲线方程,积分常数由梁位移的 条件和 条件来确定。
9.2用叠加法计算梁变形的条件是 。
9.3 提高梁的刚度的主要措施为 ; ; 。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
轴力图01234-5-4-3-2-101234567N(F/4)x(a)第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。
设2F 作用点为C ,F 作用点为D ,则:B BD R N =F R N B CD +=F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EAa N EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45F R B -=(实际方向与假设方向相反,即:↑) 故:45F N BD-= 445F F F N CD-=+-= 47345F F F N AC=+-= 轴力图如图所示。
[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。
试求各杆的轴力。
解:以节点A 为研究对象,其受力图如图所示。
∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232= 223311233EA l N EA l N EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。
第一章绪论第1题第2题第3题第4题1-1图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
返回1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa返回1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m返回1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:返回第二章轴向拉压应力第1题第2题第3题第4题第5题第6题第7题2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN返回2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
如欲使BC与AB段的正应力相同,试求BC段的直径。
解:因BC与AB段的正应力相同,故返回2-3 图示轴向受拉等截面杆,横截面面积A=500 mm2,载荷F=50 kN。
试求图示斜截面m-m上的正应力与切应力,以及杆内的最大正应力与最大切应力。
解:返回2-4(2-11)图示桁架,由圆截面杆1与杆2组成,并在节点A承受载荷F=80kN作用。
杆1、杆2的直径分别为d1=30mm和d2=20mm,两杆的材料相同,屈服极限σs=320MPa,安全因数n s=2.0。
试校核桁架的强度。
解:由A点的平衡方程可求得1、2两杆的轴力分别为由此可见,桁架满足强度条件。
返回2-5(2-14)图示桁架,承受载荷F作用。
试计算该载荷的许用值[F]。
设各杆的横截面面积均为A,许用应力均为[σ]。
解:由C点的平衡条件由B点的平衡条件1杆轴力为最大,由其强度条件返回2-6(2-17)图示圆截面杆件,承受轴向拉力F作用。
设拉杆的直径为d,端部墩头的直径为D,高度为h,试从强度方面考虑,建立三者间的合理比值。
已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤压应力[σbs]=240MPa。
解:由正应力强度条件由切应力强度条件由挤压强度条件式(1):式(3)得式(1):式(2)得故D:h:d=1.225:0.333:1返回2-7(2-18)图示摇臂,承受载荷F1与F2作用。
试确定轴销B的直径d。
已知载荷F1=50kN,F2=35.4kN,许用切应力[τ]=100MPa,许用挤压应力[σbs]=240MPa。
解:摇臂ABC受F1、F2及B点支座反力F B三力作用,根据三力平衡汇交定理知F B的方向如图(b)所示。
由平衡条件由切应力强度条件由挤压强度条件故轴销B的直径返回第三章轴向拉压变形第1题第2题第3题第4题第5题第6题第7题第8题第9题第10题第11题第12题第13题3-1 图示硬铝试样,厚度δ=2mm,试验段板宽b=20mm,标距l=70mm。
在轴向拉F=6kN 的作用下,测得试验段伸长Δl=0.15mm,板宽缩短Δb=0.014mm。
试计算硬铝的弹性模量E与泊松比μ。
解:由胡克定律返回3-2(3-5)图示桁架,在节点A处承受载荷F作用。
从试验中测得杆1与杆2的纵向正应变分别为ε1=4.0×10-4与ε2=2.0×10-4。
试确定载荷F及其方位角θ之值。
已知杆1与杆2的横截面面积A1=A2=200mm2,弹性模量E1=E2=200GPa。
解:杆1与杆2的轴力(拉力)分别为由A点的平衡条件(1)2+(2)2并开根,便得式(1):式(2)得返回3-3(3-6) 图示变宽度平板,承受轴向载荷F作用。
试计算板的轴向变形。
已知板的厚度为δ,长为l,左、右端的宽度分别为b1与b2,弹性模量为E。
解:返回3-4(3-11) 图示刚性横梁AB,由钢丝绳并经无摩擦滑轮所支持。
设钢丝绳的轴向刚度(即产生单位轴向变形所需之力)为k,试求当载荷F作用时端点B的铅垂位移。
解:设钢丝绳的拉力为T,则由横梁AB的平衡条件钢丝绳伸长量由图(b)可以看出,C点铅垂位移为Δl/3,D点铅垂位移为2Δl/3,则B点铅垂位移为Δl,即返回3-5(3-12) 试计算图示桁架节点A的水平与铅垂位移。
设各杆各截面的拉压刚度均为EA。
解:(a) 各杆轴力及伸长(缩短量)分别为因为3杆不变形,故A点水平位移为零,铅垂位移等于B点铅垂位移加2杆的伸长量,即(b) 各杆轴力及伸长分别为A点的水平与铅垂位移分别为(注意AC杆轴力虽然为零,但对A位移有约束)返回3-6(3-14) 图a所示桁架,材料的应力-应变关系可用方程σn=Bε表示(图b),其中n和B 为由实验测定的已知常数。
试求节点C的铅垂位移。
设各杆的横截面面积均为A。
(a) (b)解:2根杆的轴力都为2根杆的伸长量都为则节点C的铅垂位移返回3-7(3-16) 图示结构,梁BD为刚体,杆1、杆2与杆3的横截面面积与材料均相同。
在梁的中点C承受集中载荷F作用。
试计算该点的水平与铅垂位移。
已知载荷F=20kN,各杆的横截面面积均为A=100mm2,弹性模量E=200GPa,梁长l=1000mm。
解:各杆轴力及变形分别为梁BD作刚体平动,其上B、C、D三点位移相等返回3-8(3-17) 图示桁架,在节点B和C作用一对大小相等、方向相反的载荷F。
设各杆各截面的拉压刚度均为EA,试计算节点B和C间的相对位移ΔB/C。
解:根据能量守恒定律,有返回3-9(3-21) 由铝镁合金杆与钢质套管组成一复合杆,杆、管各载面的刚度分别为E1A1与E2A2。
复合杆承受轴向载荷F作用,试计算铝镁合金杆与钢管横载面上的正应力以及杆的轴向变形。
解:设杆、管承受的压力分别为F N1、F N2,则F N1+F N2=F(1)变形协调条件为杆、管伸长量相同,即联立求解方程(1)、(2),得杆、管横截面上的正应力分别为杆的轴向变形返回3-10(3-23) 图示结构,杆1与杆2的弹性模量均为E,横截面面积均为A,梁BC为刚体,载荷F=20kN,许用拉应力[σt]=160MPa,许用压应力[σ]=110MPa。
试确定各杆的横截面面积。
c解:设杆1所受压力为F N1,杆2所受拉力为F N2,则由梁BC的平衡条件得变形协调条件为杆1缩短量等于杆2伸长量,即联立求解方程(1)、(2)得因为杆1、杆2的轴力相等,而许用压应力小于许用拉应力,故由杆1的压应力强度条件得返回3-11(3-25) 图示桁架,杆1、杆2与杆3分别用铸铁、铜和钢制成,许用应力分别为[σ1]=40MPa,[σ2]=60MPa,[σ3]=120MPa,弹性模量分别为E1=160GPa,E2=100GPa,E3=200GPa。
若载荷F=160kN,A1=A2=2A3,试确定各杆的横截面面积。
解:设杆1、杆2、杆3的轴力分别为F N1(压)、F N2(拉)、F N3(拉),则由C点的平衡条件杆1、杆2的变形图如图(b)所示,变形协调条件为C点的垂直位移等于杆3的伸长,即联立求解式(1)、(2)、(3)得由三杆的强度条件注意到条件A1=A2=2A3,取A1=A2=2A3=2448mm2。
返回3-12(3-30) 图示组合杆,由直径为30mm的钢杆套以外径为50mm、内径为30mm的铜管组成,二者由两个直径为10mm的铆钉连接在一起。
铆接后,温度升高40°,试计算铆钉剪切面上的切应力。
钢与铜的弹性模量分别为E s=200GPa与E c=100GPa,线膨胀系数分别为αl=12.5×10-6℃-1与αl c=16×10-6℃-1。
s解:钢杆受拉、铜管受压,其轴力相等,设为F N,变形协调条件为钢杆和铜管的伸长量相等,即铆钉剪切面上的切应力返回3-13(3-32) 图示桁架,三杆的横截面面积、弹性模量与许用应力均相同,并分别为A、E与[σ],试确定该桁架的许用载荷[F]。
为了提高许用载荷之值,现将杆3的设计长度l变为l+Δ。
试问当Δ为何值时许用载荷最大,其值[F max]为何。
解:静力平衡条件为变形协调条件为联立求解式(1)、(2)、(3)得杆3的轴力比杆1、杆2大,由杆3的强度条件若将杆3的设计长度l变为l+Δ,要使许用载荷最大,只有三杆的应力都达到[σ],此时变形协调条件为返回第四章扭转第1题第2题第3题第4题第5题第6题第7题4-1(4-3) 图示空心圆截面轴,外径D=40mm,内径d=20mm,扭矩T=1kN•m。
试计算横截面上的最大、最小扭转切应力,以及A点处(ρA=15mm)的扭转切应力。
解:因为τ与ρ成正比,所以返回4-2(4-10) 实心圆轴与空心圆轴通过牙嵌离合器连接。
已知轴的转速n=100 r/min,传递功率P=10 kW,许用切应力[τ]=80MPa,d1/d2=0.6。
试确定实心轴的直径d,空心轴的内、外径d1和d2。
解:扭矩由实心轴的切应力强度条件由空心轴的切应力强度条件返回4-3(4-12) 某传动轴,转速n=300 r/min,轮1为主动轮,输入功率P1=50kW,轮2、轮3与轮4为从动轮,输出功率分别为P2=10kW,P3=P4=20kW。
(1) 试求轴内的最大扭矩;(2) 若将轮1与轮3的位置对调,试分析对轴的受力是否有利。
解:(1) 轮1、2、3、4作用在轴上扭力矩分别为轴内的最大扭矩若将轮1与轮3的位置对调,则最大扭矩变为最大扭矩变小,当然对轴的受力有利。
返回4-4(4-21) 图示两端固定的圆截面轴,承受扭力矩作用。