数据结构上机实验
- 格式:docx
- 大小:349.16 KB
- 文档页数:17
目录第1章绪论——上机实验题1解析实验题1.1求素数实验题1.2求一个正整数的各位数字之和实验题1.3求一个字符串是否为回文第2章线性表——上机实验题2解析实验题2.1实现顺序表各种基本运算的算法/*文件名:algo2-1.cpp*/#include <stdio.h>#include <malloc.h>#define MaxSize 50typedef char ElemType;typedef struct{ElemType elem[MaxSize];int length;} SqList;void InitList(SqList *&L){L=(SqList *)malloc(sizeof(SqList));L->length=0;}void DestroyList(SqList *L){free(L);}int ListEmpty(SqList *L){return(L->length==0);}int ListLength(SqList *L){return(L->length);}void DispList(SqList *L){int i;if (ListEmpty(L)) return;for (i=0;i<L->length;i++)printf("%c",L->elem[i]);printf("\n");}int GetElem(SqList *L,int i,ElemType &e){if (i<1 || i>L->length)return 0;e=L->elem[i-1];return 1;}int LocateElem(SqList *L, ElemType e){int i=0;while (i<L->length && L->elem[i]!=e) i++;if (i>=L->length)return 0;elsereturn i+1;}int ListInsert(SqList *&L,int i,ElemType e){int j;if (i<1 || i>L->length+1)return 0;i--; /*将顺序表位序转化为elem下标*/for (j=L->length;j>i;j--) /*将elem[i]及后面元素后移一个位置*/L->elem[j]=L->elem[j-1];L->elem[i]=e;L->length++; /*顺序表长度增1*/return 1;}int ListDelete(SqList *&L,int i,ElemType &e){int j;if (i<1 || i>L->length)return 0;i--; /*将顺序表位序转化为elem下标*/e=L->elem[i];for (j=i;j<L->length-1;j++)L->elem[j]=L->elem[j+1];L->length--;return 1;}实验题2.2实现单链表各种基本运算的算法*文件名:algo2-2.cpp*/#include <stdio.h>#include <malloc.h>typedef char ElemType;typedef struct LNode /*定义单链表结点类型*/{ElemType data;struct LNode *next;} LinkList;void InitList(LinkList *&L){L=(LinkList *)malloc(sizeof(LinkList)); /*创建头结点*/L->next=NULL;}void DestroyList(LinkList *&L){LinkList *p=L,*q=p->next;while (q!=NULL){free(p);p=q;q=p->next;}free(p);}int ListEmpty(LinkList *L){return(L->next==NULL);}int ListLength(LinkList *L){LinkList *p=L;int i=0;while (p->next!=NULL){i++;p=p->next;}return(i);}void DispList(LinkList *L){LinkList *p=L->next;while (p!=NULL){printf("%c",p->data);p=p->next;}printf("\n");}int GetElem(LinkList *L,int i,ElemType &e) {int j=0;LinkList *p=L;while (j<i && p!=NULL){j++;p=p->next;}if (p==NULL)return 0;else{e=p->data;return 1;}}int LocateElem(LinkList *L,ElemType e){LinkList *p=L->next;int n=1;while (p!=NULL && p->data!=e){p=p->next;n++;}if (p==NULL)return(0);elsereturn(n);}int ListInsert(LinkList *&L,int i,ElemType e)int j=0;LinkList *p=L,*s;while (j<i-1 && p!=NULL){j++;p=p->next;}if (p==NULL) /*未找到第i-1个结点*/return 0;else /*找到第i-1个结点*p*/{s=(LinkList *)malloc(sizeof(LinkList)); /*创建新结点*s*/s->data=e;s->next=p->next; /*将*s插p->next=s;return 1;}}int ListDelete(LinkList *&L,int i,ElemType &e){int j=0;LinkList *p=L,*q;while (j<i-1 && p!=NULL){j++;p=p->next;}if (p==NULL) /*未找到第i-1个结点*/return 0;else /*找到第i-1个结点*p*/{q=p->next; /*q指向要删除的结点*/p->next=q->next; /*从单链表中删除*q结点*/free(q); /*释放*q结点*/return 1;}}第3章栈和队列——上机实验题3解析实验题3.1实现顺序栈各种基本运算的算法*文件名:algo3-1.cpp*/#include <stdio.h>#include <malloc.h>#define MaxSize 100typedef char ElemType;typedef struct{ElemType elem[MaxSize];int top; /*栈指针*/} SqStack;void InitStack(SqStack *&s){s=(SqStack *)malloc(sizeof(SqStack));s->top=-1;}void ClearStack(SqStack *&s){free(s);}int StackLength(SqStack *s){return(s->top+1);}int StackEmpty(SqStack *s){return(s->top==-1);}int Push(SqStack *&s,ElemType e){if (s->top==MaxSize-1)return 0;s->top++;s->elem[s->top]=e;return 1;}int Pop(SqStack *&s,ElemType &e){if (s->top==-1)return 0;e=s->elem[s->top];s->top--;return 1;int GetTop(SqStack *s,ElemType &e){if (s->top==-1)return 0;e=s->elem[s->top];return 1;}void DispStack(SqStack *s){int i;for (i=s->top;i>=0;i--)printf("%c ",s->elem[i]);printf("\n");}实验题3.2实现链栈各种基本运算的算法/*文件名:algo3-2.cpp*/#include <stdio.h>#include <malloc.h>typedef char ElemType;typedef struct linknode{ElemType data; /*数据域*/struct linknode *next; /*指针域*/} LiStack;void InitStack(LiStack *&s){s=(LiStack *)malloc(sizeof(LiStack));s->next=NULL;}void ClearStack(LiStack *&s){LiStack *p=s->next;while (p!=NULL){free(s);s=p;p=p->next;}}int StackLength(LiStack *s){int i=0;LiStack *p;p=s->next;while (p!=NULL){i++;p=p->next;}return(i);}int StackEmpty(LiStack *s){return(s->next==NULL);}void Push(LiStack *&s,ElemType e){LiStack *p;p=(LiStack *)malloc(sizeof(LiStack));p->data=e;p->next=s->next; /*插入*p结点作为第一个数据结点*/s->next=p;}int Pop(LiStack *&s,ElemType &e){LiStack *p;if (s->next==NULL) /*栈空的情况*/return 0;p=s->next; /*p指向第一个数据结点*/e=p->data;s->next=p->next;free(p);return 1;}int GetTop(LiStack *s,ElemType &e){if (s->next==NULL) /*栈空的情况*/return 0;e=s->next->data;return 1;}void DispStack(LiStack *s){LiStack *p=s->next;while (p!=NULL){printf("%c ",p->data);p=p->next;}printf("\n");}实验题3.3实现顺序队列各种基本运算的算法/*文件名:algo3-3.cpp*/#include <stdio.h>#include <malloc.h>#define MaxSize 5typedef char ElemType;typedef struct{ElemType elem[MaxSize];int front,rear; /*队首和队尾指针*/} SqQueue;void InitQueue(SqQueue *&q){q=(SqQueue *)malloc (sizeof(SqQueue));q->front=q->rear=0;}void ClearQueue(SqQueue *&q){free(q);}int QueueEmpty(SqQueue *q){return(q->front==q->rear);}int QueueLength(SqQueue *q){return (q->rear-q->front+MaxSize)%MaxSize; }int enQueue(SqQueue *&q,ElemType e){if ((q->rear+1)%MaxSize==q->front) /*队满*/return 0;q->rear=(q->rear+1)%MaxSize;q->elem[q->rear]=e;return 1;}int deQueue(SqQueue *&q,ElemType &e){if (q->front==q->rear) /*队空*/return 0;q->front=(q->front+1)%MaxSize;e=q->elem[q->front];return 1;}实验题3.4实现链队各种基本运算的算法/*文件名:algo3-4.cpp*/#include <stdio.h>#include <malloc.h>typedef char ElemType;typedef struct qnode{ElemType data;struct qnode *next;} QNode;typedef struct{QNode *front;QNode *rear;} LiQueue;void InitQueue(LiQueue *&q){q=(LiQueue *)malloc(sizeof(LiQueue));q->front=q->rear=NULL;}void ClearQueue(LiQueue *&q){QNode *p=q->front,*r;if (p!=NULL) /*释放数据结点占用空间*/{r=p->next;while (r!=NULL){free(p);p=r;r=p->next;}}free(q); /*释放头结点占用空间*/ }int QueueLength(LiQueue *q){int n=0;QNode *p=q->front;while (p!=NULL){n++;p=p->next;}return(n);}int QueueEmpty(LiQueue *q){if (q->rear==NULL)return 1;elsereturn 0;}void enQueue(LiQueue *&q,ElemType e){QNode *s;s=(QNode *)malloc(sizeof(QNode));s->data=e;s->next=NULL;if (q->rear==NULL) /*若链队为空,则新结点是队首结点又是队尾结点*/q->front=q->rear=s;else{q->rear->next=s; /*将*s结点链到队尾,rear指向它*/q->rear=s;}}int deQueue(LiQueue *&q,ElemType &e){QNode *t;if (q->rear==NULL) /*队列为空*/return 0;if (q->front==q->rear) /*队列中只有一个结点时*/{t=q->front;q->front=q->rear=NULL;}else /*队列中有多个结点时*/{t=q->front;q->front=q->front->next;}e=t->data;free(t);return 1;}第4章串——上机实验题4解析实验题4.1实现顺序串各种基本运算的算法/*文件名:algo4-1.cpp*/#include <stdio.h>#define MaxSize 100 /*最多的字符个数*/typedef struct{ char ch[MaxSize]; /*定义可容纳MaxSize个字符的空间*/ int len; /*标记当前实际串长*/} SqString;void StrAssign(SqString &str,char cstr[]) /*str为引用型参数*/ {int i;for (i=0;cstr[i]!='\0';i++)str.ch[i]=cstr[i];str.len=i;}void StrCopy(SqString &s,SqString t) /*s为引用型参数*/ {int i;for (i=0;i<t.len;i++)s.ch[i]=t.ch[i];s.len=t.len;}int StrEqual(SqString s,SqString t){int same=1,i;if (s.len!=t.len) /*长度不相等时返回0*/same=0;else{for (i=0;i<s.len;i++)if (s.ch[i]!=t.ch[i]) /*有一个对应字符不相同时返回0*/same=0;}return same;}int StrLength(SqString s){return s.len;}SqString Concat(SqString s,SqString t){SqString str;int i;str.len=s.len+t.len;for (i=0;i<s.len;i++) /*将s.ch[0]~s.ch[s.len-1]复制到str*/ str.ch[i]=s.ch[i];for (i=0;i<t.len;i++) /*将t.ch[0]~t.ch[t.len-1]复制到str*/ str.ch[s.len+i]=t.ch[i];return str;}SqString SubStr(SqString s,int i,int j){SqString str;int k;str.len=0;if (i<=0 || i>s.len || j<0 || i+j-1>s.len){printf("参数不正确\n");return str; /*参数不正确时返回空串*/}for (k=i-1;k<i+j-1;k++) /*将s.ch[i]~s.ch[i+j]复制到str*/str.ch[k-i+1]=s.ch[k];str.len=j;return str;}SqString InsStr(SqString s1,int i,SqString s2){int j;SqString str;str.len=0;if (i<=0 || i>s1.len+1) /*参数不正确时返回空串*/{printf("参数不正确\n");return s1;}for (j=0;j<i-1;j++) /*将s1.ch[0]~s1.ch[i-2]复制到str*/str.ch[j]=s1.ch[j];for (j=0;j<s2.len;j++) /*将s2.ch[0]~s2.ch[s2.len-1]复制到str*/str.ch[i+j-1]=s2.ch[j];for (j=i-1;j<s1.len;j++) /*将s1.ch[i-1]~s.ch[s1.len-1]复制到str*/str.ch[s2.len+j]=s1.ch[j];str.len=s1.len+s2.len;return str;}SqString DelStr(SqString s,int i,int j){int k;SqString str;str.len=0;if (i<=0 || i>s.len || i+j>s.len+1) /*参数不正确时返回空串*/{printf("参数不正确\n");return str;}for (k=0;k<i-1;k++) /*将s.ch[0]~s.ch[i-2]复制到str*/str.ch[k]=s.ch[k];for (k=i+j-1;k<s.len;k++)/*将s.ch[i+j-1]~ch[s.len-1]复制到str*/ str.ch[k-j]=s.ch[k];str.len=s.len-j;return str;}SqString RepStr(SqString s,int i,int j,SqString t){int k;SqString str;str.len=0;if (i<=0 || i>s.len || i+j-1>s.len) /*参数不正确时返回空串*/ {printf("参数不正确\n");return str;}for (k=0;k<i-1;k++) /*将s.ch[0]~s.ch[i-2]复制到str*/str.ch[k]=s.ch[k];for (k=0;k<t.len;k++) /*将t.ch[0]~t.ch[t.len-1]复制到str*/str.ch[i+k-1]=t.ch[k];for (k=i+j-1;k<s.len;k++) /*将s.ch[i+j-1]~ch[s.len-1]复制到str*/str.ch[t.len+k-j]=s.ch[k];str.len=s.len-j+t.len;return str;}void DispStr(SqString str){int i;if (str.len>0){for (i=0;i<str.len;i++)printf("%c",str.ch[i]);printf("\n");}}实验题4.2实现链串各种基本运算的算法*文件名:algo4-2.cpp*/#include <stdio.h>#include <malloc.h>typedef struct snode{char data;struct snode *next;} LiString;void StrAssign(LiString *&s,char t[]){int i;LiString *r,*p;s=(LiString *)malloc(sizeof(LiString));s->next=NULL;r=s;for (i=0;t[i]!='\0';i++){p=(LiString *)malloc(sizeof(LiString));p->data=t[i];p->next=NULL;r->next=p;r=p;}}void StrCopy(LiString *&s,LiString *t){LiString *p=t->next,*q,*r;s=(LiString *)malloc(sizeof(LiString));s->next=NULL;s->next=NULL;r=s;while (p!=NULL) /*将t的所有结点复制到s*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}}int StrEqual(LiString *s,LiString *t){LiString *p=s->next,*q=t->next;while (p!=NULL && q!=NULL && p->data==q->data){p=p->next;q=q->next;}if (p==NULL && q==NULL)return 1;elsereturn 0;}int StrLength(LiString *s){int i=0;LiString *p=s->next;while (p!=NULL){i++;p=p->next;}return i;}LiString *Concat(LiString *s,LiString *t){LiString *str,*p=s->next,*q,*r;str=(LiString *)malloc(sizeof(LiString));str->next=NULL;r=str;while (p!=NULL) /*将s的所有结点复制到str*/ {q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}p=t->next;while (p!=NULL) /*将t的所有结点复制到str*/ {q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}return str;}LiString *SubStr(LiString *s,int i,int j){int k;LiString *str,*p=s->next,*q,*r;str=(LiString *)malloc(sizeof(LiString));str->next=NULL;r=str;if (i<=0 || i>StrLength(s) || j<0 || i+j-1>StrLength(s)) {printf("参数不正确\n");return str; /*参数不正确时返回空串*/ }for (k=0;k<i-1;k++)p=p->next;for (k=1;k<=j;k++) /*将s的第i个结点开始的j个结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}return str;}LiString *InsStr(LiString *s,int i,LiString *t){int k;LiString *str,*p=s->next,*p1=t->next,*q,*r;str=(LiString *)malloc(sizeof(LiString));str->next=NULL;r=str;if (i<=0 || i>StrLength(s)+1) /*参数不正确时返回空串*/{printf("参数不正确\n");return str;}for (k=1;k<i;k++) /*将s的前i个结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}while (p1!=NULL) /*将t的所有结点复制到str*/ {q=(LiString *)malloc(sizeof(LiString));q->data=p1->data;q->next=NULL;r->next=q;r=q;p1=p1->next;}while (p!=NULL) /*将*p及其后的结点复制到str*/ {q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}return str;}LiString *DelStr(LiString *s,int i,int j){int k;LiString *str,*p=s->next,*q,*r;str=(LiString *)malloc(sizeof(LiString));str->next=NULL;r=str;if (i<=0 || i>StrLength(s) || j<0 || i+j-1>StrLength(s)) {printf("参数不正确\n");return str; /*参数不正确时返回空串*/ }for (k=0;k<i-1;k++) /*将s的前i-1个结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}for (k=0;k<j;k++) /*让p沿next跳j个结点*/p=p->next;while (p!=NULL) /*将*p及其后的结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}return str;}LiString *RepStr(LiString *s,int i,int j,LiString *t){int k;LiString *str,*p=s->next,*p1=t->next,*q,*r;str=(LiString *)malloc(sizeof(LiString));str->next=NULL;r=str;if (i<=0 || i>StrLength(s) || j<0 || i+j-1>StrLength(s)) {printf("参数不正确\n");return str; /*参数不正确时返回空串*/ }for (k=0;k<i-1;k++) /*将s的前i-1个结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}for (k=0;k<j;k++) /*让p沿next跳j个结点*/p=p->next;while (p1!=NULL) /*将t的所有结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p1->data;q->next=NULL;r->next=q;r=q;p1=p1->next;}while (p!=NULL) /*将*p及其后的结点复制到str*/{q=(LiString *)malloc(sizeof(LiString));q->data=p->data;q->next=NULL;r->next=q;r=q;p=p->next;}return str;}void DispStr(LiString *s){LiString *p=s->next;while (p!=NULL){printf("%c",p->data);p=p->next;}printf("\n");}第5章数组和稀疏矩阵——上机实验题5解析实验题5.1求5×5阶螺旋方阵/*文件名:exp5-1.cpp*/#include <stdio.h>#define MaxLen 10void fun(int a[MaxLen][MaxLen],int n){int i,j,k=0,m;if (n%2==0) //m=én/2ùm=n/2;elsem=n/2+1;for (i=0;i<m;i++){for (j=i;j<n-i;j++){k++;a[i][j]=k;}for (j=i+1;j<n-i;j++){k++;a[j][n-i-1]=k;}for (j=n-i-2;j>=i;j--){k++;a[n-i-1][j]=k;}for (j=n-i-2;j>=i+1;j--){k++;a[j][i]=k;}}}void main(){int n,i,j;int a[MaxLen][MaxLen];printf("\n");printf("输入n(n<10):");scanf("%d",&n);fun(a,n);printf("%d阶数字方阵如下:\n",n);for (i=0;i<n;i++){for (j=0;j<n;j++)printf("%4d",a[i][j]);printf("\n");}printf("\n");}实验题5.2求一个矩阵的马鞍点/*文件名:exp5-2.cpp*/#include <stdio.h>#define M 4#define N 4void MinMax(int A[M][N]){int i,j,have=0;int min[M],max[N];for (i=0;i<M;i++) /*计算出每行的最小值元素,放入min[0..M-1]之中*/{min[i]=A[i][0];for (j=1;j<N;j++)if (A[i][j]<min[i])min[i]=A[i][j];}for (j=0;j<N;j++) /*计算出每列的最大值元素,放入max[0..N-1]之中*/{max[j]=A[0][j];for (i=1;i<M;i++)if (A[i][j]>max[j])max[j]=A[i][j];}for (i=0;i<M;i++)for (j=0;j<N;j++)if (min[i]==max[j]){printf(" A[%d,%d]=%d\n",i,j,A[i][j]); /*显示马鞍点*/have=1;}if (!have)printf("没有鞍点\n");}void main(){int i,j;int A[M][N]={{9, 7, 6, 8},{20,26,22,25},{28,36,25,30},{12,4, 2, 6}};printf("A矩阵:\n");for (i=0;i<M;i++){for (j=0;j<N;j++)printf("%4d",A[i][j]);printf("\n");}printf("A矩阵中的马鞍点:\n");MinMax(A); /*调用MinMax()找马鞍点*/}实验题5.3求两个对称矩阵之和与乘积/*文件名:exp5-3.cpp*/#include <stdio.h>#define n 4#define m 10int value(int a[],int i,int j){if (i>=j)return a[(i*(i-1))/2+j];elsereturn a[(j*(j-1))/2+i];}void madd(int a[],int b[],int c[n][n]){int i,j;for (i=0;i<n;i++)for (j=0;j<n;j++)c[i][j]=value(a,i,j)+value(b,i,j);}void mult(int a[],int b[],int c[n][n]){int i,j,k,s;for (i=0;i<n;i++)for (j=0;j<n;j++){s=0;for (k=0;k<n;k++)s=s+value(a,i,k)*value(b,k,j); c[i][j]=s;}}void disp1(int a[]){int i,j;for (i=0;i<n;i++){for (j=0;j<n;j++)printf("%4d",value(a,i,j));printf("\n");}}void disp2(int c[n][n]){int i,j;for (i=0;i<n;i++){for (j=0;j<n;j++)printf("%4d",c[i][j]);printf("\n");}}void main(){int a[m]={1,2,3,4,5,6,7,8,9,10};int b[m]={1,1,1,1,1,1,1,1,1,1};int c1[n][n],c2[n][n];madd(a,b,c1);mult(a,b,c2);printf("\n");printf("a矩阵:\n");disp1(a);printf("b矩阵:\n");disp1(b);printf("a+b:\n");disp2(c1);printf("a*b:\n");disp2(c2);printf("\n");}实验题5.4实现稀疏矩阵(采用三元组表示)的基本运算/*文件名:exp5-4.cpp*/#include <stdio.h>#define N 4typedef int ElemType;#define MaxSize 100 /*矩阵中非零元素最多个数*/ typedef struct{ int r; /*行号*/int c; /*列号*/ElemType d; /*元素值*/} TupNode; /*三元组定义*/typedef struct{ int rows; /*行数值*/int cols; /*列数值*/int nums; /*非零元素个数*/TupNode data[MaxSize];} TSMatrix; /*三元组顺序表定义*/void CreatMat(TSMatrix &t,ElemType A[N][N]){int i,j;t.rows=N;t.cols=N;t.nums=0;for (i=0;i<N;i++){for (j=0;j<N;j++)if (A[i][j]!=0){t.data[t.nums].r=i;t.data[t.nums].c=j;t.data[t.nums].d=A[i][j];t.nums++;}}}void DispMat(TSMatrix t){int i;if (t.nums<=0)return;printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);printf("\t------------------\n");for (i=0;i<t.nums;i++)printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d); }void TranMat(TSMatrix t,TSMatrix &tb){int p,q=0,v; /*q为tb.data的下标*/tb.rows=t.cols;tb.cols=t.rows;tb.nums=t.nums;if (t.nums!=0){for (v=0;v<t.cols;v++) /*tb.data[q]中的记录以c 域的次序排列*/for (p=0;p<t.nums;p++) /*p为t.data的下标*/if (t.data[p].c==v){tb.data[q].r=t.data[p].c;tb.data[q].c=t.data[p].r;tb.data[q].d=t.data[p].d;q++;}}}int MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c){int i=0,j=0,k=0;ElemType v;if (a.rows!=b.rows || a.cols!=b.cols)return 0; /*行数或列数不等时不能进行相加运算*/c.rows=a.rows;c.cols=a.cols; /*c的行列数与a的相同*/while (i<a.nums && j<b.nums) /*处理a和b中的每个元素*/{if (a.data[i].r==b.data[j].r) /*行号相等时*/{if(a.data[i].c<b.data[j].c) /*a元素的列号小于b 元素的列号*/{c.data[k].r=a.data[i].r;/*将a元素添加到c中*/c.data[k].c=a.data[i].c;c.data[k].d=a.data[i].d;k++;i++;}else if (a.data[i].c>b.data[j].c)/*a元素的列号大于b元素的列号*/{c.data[k].r=b.data[j].r; /*将b元素添加到c中*/c.data[k].c=b.data[j].c;c.data[k].d=b.data[j].d;k++;j++;}else /*a元素的列号等于b元素的列号*/{v=a.data[i].d+b.data[j].d;if (v!=0) /*只将不为0的结果添加到c中*/{c.data[k].r=a.data[i].r;c.data[k].c=a.data[i].c;c.data[k].d=v;k++;}i++;j++;}}else if (a.data[i].r<b.data[j].r) /*a元素的行号小于b元素的行号*/{c.data[k].r=a.data[i].r; /*将a元素添加到c中*/c.data[k].c=a.data[i].c;c.data[k].d=a.data[i].d;k++;i++;}else /*a元素的行号大于b元素的行号*/{c.data[k].r=b.data[j].r; /*将b元素添加到c中*/c.data[k].c=b.data[j].c;c.data[k].d=b.data[j].d;k++;j++;}c.nums=k;}return 1;}int value(TSMatrix c,int i,int j){int k=0;while (k<c.nums && (c.data[k].r!=i || c.data[k].c!=j))k++;if (k<c.nums)return(c.data[k].d);elsereturn(0);}int MatMul(TSMatrix a,TSMatrix b,TSMatrix &c){int i,j,k,p=0;ElemType s;if (a.cols!=b.rows) /*a的列数不等于b的行数时不能进行相乘运算*/return 0;for (i=0;i<a.rows;i++)for (j=0;j<b.cols;j++){s=0;for (k=0;k<a.cols;k++)s=s+value(a,i,k)*value(b,k,j);if (s!=0) /*产生一个三元组元素*/{c.data[p].r=i;c.data[p].c=j;c.data[p].d=s;p++;}}c.rows=a.rows;c.cols=b.cols;c.nums=p;return 1;}void main(){ElemType a1[N][N]={{1,0,3,0},{0,1,0,0},{0,0,1,0},{0,0,1,1}};ElemType b1[N][N]={{3,0,0,0},{0,4,0,0},{0,0,1,0},{0,0,0,2}};TSMatrix a,b,c;CreatMat(a,a1);CreatMat(b,b1);printf("a的三元组:\n");DispMat(a);printf("b的三元组:\n");DispMat(b);printf("a转置为c\n");TranMat(a,c);printf("c的三元组:\n");DispMat(c);printf("c=a+b\n");MatAdd(a,b,c);printf("c的三元组:\n");DispMat(c);printf("c=a*b\n");MatMul(a,b,c);printf("c的三元组:\n");DispMat(c);}实验题5.5实现广义表的基本运算#include <stdio.h>#include <malloc.h>typedef char ElemType;typedef struct lnode{ int tag; /*结点类型标识*/ union{ElemType data;struct lnode *sublist;}val;struct lnode *link; /*指向下一个元素*/} GLNode;extern GLNode *CreatGL(char *&s);extern void DispGL(GLNode *g);void Change(GLNode *&g,ElemType s,ElemType t) /*将广义表g中所有原子s 替换成t*/{if (g!=NULL){if (g->tag==1) /*子表的情况*/Change(g->val.sublist,s,t);else if (g->val.data==s) /*原子且data域值为s的情况*/g->val.data=t;Change(g->link,s,t);}}void Reverse(GLNode *&g) /*将广义表g所有元素逆置*/{GLNode *p,*q,*t;t=NULL;if (g!=NULL){p=g;while (p!=NULL) /*将同级的兄弟逆置*/{q=p->link;if (t==NULL){t=p;p->link=NULL;}else{p->link=t;t=p;}p=q;}g=t;p=g;while (p!=NULL){if (p->tag==1)Reverse(p->val.sublist);p=p->link;}}}int Same(GLNode *g1,GLNode *g2) /*判断两个广义表是否相同*/ {int s;if (g1==NULL && g2==NULL) /*均为NULL的情况*/return 1;else if ((g1==NULL && g2!=NULL) || (g1!=NULL && g2==NULL)) /*一个为NULL,另一不为NULL的情况*/return 0;else{s=1;while (g1!=NULL && g2!=NULL && s==1){if (g1->tag==1 && g2->tag==1)/*均为子表的情况*/s=Same(g1->val.sublist,g2->val.sublist);else if (g1->tag==0 && g2->tag==0)/*均为原子的情况*/{if (g1->val.data!=g2->val.data)s=0;}else /*一个为原子,另一为子表的情况*/s=0;g1=g1->link;g2=g2->link;}if (g1!=NULL || g2!=NULL) /*有一个子表尚未比较完时*/s=0;return s;}}ElemType MaxAtom(GLNode *g) /*求广义表g中最大的原子*/{ElemType m=0,m1; /*m赋初值0*/while (g!=NULL){if (g->tag==1) /*子表的情况*/{m1=MaxAtom(g->val.sublist); /*对子表递归调用*/if (m1>m) m=m1;}else{if (g->val.data>m) /*为原子时,进行原子比较*/m=g->val.data;}g=g->link;}return m;}void DelAtom(GLNode *&g,ElemType x) /*删除广义表g中的第一个为x原子*/{GLNode *p=g,*q,*pre;while (p!=NULL){q=p->link;if (p->tag==1) /*子表的情况*/DelAtom(p->val.sublist,x); /*对子表递归调用*/else{if (p->val.data==x) /*为原子时,进行原子比较*/{if (p==g)/*被删结点是本层的第1个结点*/{g=q;free(p); /*释放结pre=g;}else /*被删结{pre->link=q;free(p);}return;}}pre=p;p=q;}}void DelAtomAll(GLNode *&g,ElemType x) /*删除广义表g中的所有为x原子*/{GLNode *p=g,*q,*pre;while (p!=NULL){q=p->link;if (p->tag==1) /*子表的情况*/DelAtomAll(p->val.sublist,x); /*对子表递归调用*/else{if (p->val.data==x) /*为原子时,进行原子比较*/if (p==g)/*被删结点是本层的第1个结点*/{g=q;free(p); /*释放结pre=g;}else /*被删结{pre->link=q;free(p);}}pre=p;p=q;}}void PreOrder(GLNode *g) /*采用先根遍历g*/{if (g!=NULL){if (g->tag==0) /*为原子结点时*/printf("%c ",g->val.data);elsePreOrder(g->val.sublist); /*为子表时*/ PreOrder(g->link);}}void main(){GLNode *g1,*g2,*g3,*g4;char *str1="(a,(a),((a,b)),((a)),a)";char *str2="(a,(b),((c,d)),((e)),f)";char *str3="(a,(a,b),(a,b,c)))";char *str4="(a,(b),((c,d)),((e)),f)";g1=CreatGL(str1);printf("\n");printf(" 广义表g1:");DispGL(g1);printf("\n");printf(" 将广义表g1中所有'a'改为'b'\n");Change(g1,'a','b');printf(" 广义表g1:");DispGL(g1);printf("\n\n");g2=CreatGL(str2);printf(" 广义表g2:");DispGL(g2);printf("\n");printf(" 广义表g2中最大原子:%c\n",MaxAtom(g2));printf(" 将g2的元素逆置\n");Reverse(g2);printf(" 广义表g2:");DispGL(g2);printf("\n\n");printf(" 广义表g1和g2%s\n\n",(Same(g1,g2)?"相同":"不相同"));g3=CreatGL(str3);printf(" 广义表g3:");DispGL(g3);printf("\n");printf(" 删除广义表g3的第一个为'a'的原子\n");DelAtom(g3,'a');printf(" 广义表g3:");DispGL(g3);printf("\n\n");printf(" 删除广义表g3中的所有'a'原子\n");DelAtomAll(g3,'a');printf(" 广义表g3:");DispGL(g3);printf("\n\n");g4=CreatGL(str4);printf(" 广义表g4:");DispGL(g4);printf("\n");printf(" 采用先根遍历g4的结果:");PreOrder(g4);printf("\n\n");}。
〈数据结构〉上机实验指导数据结构是计算机科学中的一门重要课程,它研究的是数据的组织、存储和管理方式,以及对数据进行操作和处理的算法。
上机实验是数据结构课程的重要组成部分,通过实践操作,能够更好地理解和掌握数据结构的基本概念、算法和应用。
在进行〈数据结构〉上机实验之前,首先需要准备实验环境。
通常情况下,我们会使用一种编程语言来实现数据结构的相关操作,比如C++、Java等。
根据自己的实际情况和实验要求,选择一种合适的编程语言,并确保在实验环境中已经正确安装了相应的编译器或解释器。
接下来,我们可以开始进行具体的上机实验了。
下面以链表为例,介绍一下〈数据结构〉上机实验的指导步骤和要求:1. 实验目的:掌握链表的基本概念、操作和应用,理解链表与数组的区别和联系。
2. 实验原理:链表是一种动态数据结构,它由一系列的节点组成,每个节点包含数据和指向下一个节点的指针。
链表的特点是插入和删除操作的时间复杂度为O(1),但是查找操作的时间复杂度为O(n)。
3. 实验步骤:3.1 创建链表:首先,我们需要定义一个链表的结构体,包含数据和指针两个成员变量。
然后,通过动态内存分配来创建链表的节点,并将节点之间通过指针连接起来,形成一个完整的链表。
3.2 插入节点:可以在链表的任意位置插入一个新的节点。
插入节点的操作包括:创建一个新的节点,将新节点的指针指向插入位置的下一个节点,将插入位置的前一个节点的指针指向新节点。
3.3 删除节点:可以删除链表中的任意一个节点。
删除节点的操作包括:将要删除的节点的前一个节点的指针指向要删除的节点的下一个节点,然后释放要删除的节点的内存空间。
3.4 遍历链表:可以通过遍历链表来访问链表中的每一个节点,并对节点进行相应的操作。
遍历链表的操作包括:从链表的头节点开始,依次访问每个节点,直到链表的尾节点。
3.5 查找节点:可以根据节点的值来查找链表中的某一个节点。
查找节点的操作包括:从链表的头节点开始,依次比较每个节点的值,直到找到目标节点或者链表结束。
数据结构上机实验本课程实验中已知的预定义常量和类型如下:#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2typedef int Status;实验一顺序表(一)一、 实验目的掌握顺序表的定义、存储结构及其基本操作。
二、 实验内容已知:线性表的动态分配顺序存储结构为#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef struct{int *elem;int length;int listsize;}SqList;在主程序中调用如下函数实现构造线性表,在线性表中插入数值,最后输出线性表。
1. 编写函数,Status InitList(SqList *L) 实现构造一个空的线性表,若构造成功则返回OK,否则返回ERROR。
2. 编写函数,Status ListInsert(SqList *L , int i , int e) 实现在线性表L中第i个位置之前插入新的数据元素e,L的长度加1。
若插入成功返回OK,否则返回ERROR。
(提示:i的合法值为:i>=1&&i<=L—>length+1)3. 编写函数,void ListPrint(SqList *L)实现将线性表中的元素依次输出到屏幕上。
4.编写函数,int Menu(),输出菜单项请选择你要进行的操作(请输入1-4中的任一个数字):输入1:InitList2:ListInsert3:ListPrint4:Exit实验二顺序表(二)一、 实验目的掌握顺序表的定义、存储结构及其基本操作。
二、 实验内容在实验一的基础上,继续完成如下实验内容。
1.编写函数,Status ListDelete(Splist *L ,int i ,int *e),实现删除L的第i个数据元素,并用e返回其值,L的长度减1。
数据结构上机实验报告学院:电子工程学院专业:信息对抗技术姓名:学号:教师:饶鲜日期:目录实验一线性表 ........................................................................................................ - 4 -一、实验目的.................................................................................................... - 4 -二、实验代码.................................................................................................... - 4 -三、实验结果.................................................................................................. - 14 -四、个人思路.................................................................................................. - 15 - 实验二栈和队列 .................................................................................................. - 15 -一、实验目的.................................................................................................. - 15 -二、实验代码.................................................................................................. - 16 -三、实验结果.................................................................................................. - 24 -四、个人思路.................................................................................................. - 25 - 实验三数组 .......................................................................................................... - 26 -一、实验目的.................................................................................................. - 26 -二、实验代码.................................................................................................. - 26 -三、实验结果.................................................................................................. - 28 -四、个人思路.................................................................................................. - 28 - 实验四树 .............................................................................................................. - 29 -一、实验目的.................................................................................................. - 29 -二、实验代码.................................................................................................. - 29 -三、实验结果.................................................................................................. - 39 -四、个人思路.................................................................................................. - 39 -实验一线性表一、实验目的1.熟悉线性表的顺序和链式存储结构2.掌握线性表的基本运算3.能够利用线性表的基本运算完成线性表应用的运算二、实验代码1.设有一个线性表E={e1, e2, … , e n-1, e n},设计一个算法,将线性表逆置,即使元素排列次序颠倒过来,成为逆线性表E’={ e n, e n-1 , … , e2 , e1 },要求逆线性表占用原线性表空间,并且用顺序表和单链表两种方法表示,分别用两个程序来完成。
数据结构实验报告课程数据结构 _ 院系专业班级实验地点姓名学号实验时间指导老师数据结构上机实验报告1一﹑实验名称:实验一——链表二﹑实验目的:1.了解线性表的逻辑结构特性;2.熟悉链表的基本运算在顺序存储结构上的实现,熟练掌握链式存储结构的描述方法;3.掌握链表的基本操作(建表、插入、删除等)4. 掌握循环链表的概念,加深对链表的本质的理解。
5.掌握运用上机调试链表的基本方法三﹑实验内容:(1)创建一个链表(2)在链表中插入元素(3)在链表中删除一个元素(4)销毁链表四﹑实验步骤与程序#include <iostream.h>#include <malloc.h>typedef struct LNode{int data;struct LNode *next;}Lnode, *LinkList;//假设下面的链表均为带头结点。
void CreatLinkList(LinkList &L,int j){//建立一个链表L,数据为整数,数据由键盘随机输入。
LinkList p,q;L=(LinkList )malloc(sizeof(Lnode));L->next=NULL;q=L;cout<<"请输入一个链表:"<<endl;for(int i=0;i<j;i++){ p=(LinkList)malloc(sizeof(Lnode));cin>>p->data;p->next=q->next;q->next=p;q=p;}}int PrintLinkList(LinkList &L){//输出链表L的数据元素LinkList p;p=L->next;if(L->next==NULL){cout<<"链表没有元素!"<<endl;return 0;}cout<<"链表的数据元素为:";while(p){cout<<p->data<<" ";p=p->next;}cout<<endl;return 1;}void LinkListLengh(LinkList &L){//计算链表L的数据元素个数。
数据结构上机实验数据结构是计算机科学中的重要基础课程,通过实践操作能够更好地理解和掌握其中的概念和算法。
上机实验是数据结构课程中不可或缺的一部分,它能够帮助学生巩固理论知识,培养编程能力和解决实际问题的能力。
本文将介绍数据结构上机实验的重要性以及一些实践操作的建议。
一、数据结构上机实验的重要性数据结构上机实验对于学生来说具有重要的意义。
首先,通过实际操作,学生能够更深入地理解数据结构的概念和原理。
数据结构作为一门理论课程,其中的概念和算法在书本上可能显得抽象和难以理解。
而上机实验可以让学生动手实践,亲自实现和操作各种数据结构,从而更好地理解它们的内部原理和使用方法。
其次,上机实验对于培养学生的编程能力和问题解决能力非常重要。
在实验过程中,学生需要根据特定的问题要求,使用各种数据结构进行设计和实现。
这个过程中,他们需要编写代码、调试程序,并在实践中不断调整和优化算法。
这样的实践操作能够提高学生的编程技巧和思维能力,培养他们解决实际问题的能力。
最后,数据结构上机实验还能够提供学生实践应用所学知识的机会。
通过解决实际问题,学生可以将课程中的知识应用到实际场景中,并且发现其中的应用价值和意义。
这样的实践体验能够增强学生的学习兴趣和动力,使他们更加深入地学习和理解数据结构。
二、数据结构上机实验的实践操作建议1. 提前准备在进行数据结构上机实验之前,学生需要提前准备。
首先,要充分理解每个实验的要求和目标,确保清楚问题的需求和评分标准。
其次,要熟悉所使用的编程语言和相关开发环境,确保能够熟练地使用各种编程工具和调试技巧。
此外,还应该阅读相关的教材和资料,对所涉及的数据结构和算法有一定的了解。
2. 深入思考在做实验之前,学生应该仔细思考问题的解决思路和算法设计。
首先,要充分理解问题的背景和需求,明确问题的输入输出以及期望结果。
其次,要考虑所使用的数据结构和算法,选择合适的数据结构来存储和处理数据,并设计高效的算法来解决问题。
数据结构上机实验指导(1)《数据结构》课程上机实验指导书实验一【实验名称】顺序表的基本算法【实验目的】创建一个顺序表,掌握线性表顺序存储的特点。
设计和验证顺序表的查找、插入、删除算法。
【实验要求】(1)从键盘读入一组整数,按输入顺序形成顺序表。
并将创建好的顺序表元素依次打印在屏幕上。
(2)设计一个带选择菜单的主函数,菜单中具备任意选择删除、插入、查找数据元素的功能。
(3)当选择删除功能时,从键盘读入欲删除的元素位置或元素值,按指定方式删除;当选择插入功能时,从键盘读入新元素值和被插入位置,在指定位置插入;当选择查找功能时,从键盘读入欲查找的元素值,返回其位置序号。
(4)每种操作结束后,都能在屏幕上打印出此时顺序表元素的遍历结果。
【实验步骤】1、实验前先写好算法。
2、上机编写程序。
3、编译。
4、调试。
例程:书上参考算法2-1,2-4,2-5,2-6,2-8!带菜单的主函数参考书上2.5综合实例!注意:顺序表的结构体!typedef struct{datatype items[listsize];int length;}SpList;实验二【实验名称】单链表的基本算法【实验目的】创建一个单链表,掌握线性表链式存储的特点。
设计和验证链表的查找、插入、删除、求表长的算法。
【实验要求】(1)从键盘读入一组整数,按输入顺序形成单链表。
并将创建好的单链表元素依次打印在屏幕上。
(注意:选择头插法或者尾插法!)(2)设计一个带选择功能菜单的主函数,菜单中至少具备任意选择删除、插入、查找数据元素,和求单链表表长等几项功能。
(3)当选择删除功能时,从键盘读入欲删除的元素位置,按指定位置删除;当选择插入功能时,从键盘读入新元素值和被插入位置,在指定位置插入;当选择查找功能时,从键盘读入欲查找的元素值,返回其位置序号;当选择求表长功能时,返回该单链表表长的数值。
(4)每种操作结束后,都能在屏幕上打印出此时单链表元素的遍历结果。
《数据结构》课程实验内容与要求一、课程简介本课程着重讲述①线性结构、树型结构、图等典型数据结构的逻辑特点、存储结构及其相应的基本算法。
②各种查找算法③典型内部排序算法。
二、实验的作用、地位和目的数据结构是一门技术基础课,通过实验深刻理解各种逻辑结构、存储结构的特性,培养为实际问题分析其数据对象、基本操作,选择逻辑结构、存储结构灵活应用基本算法,设计出具有专业水准的应用程序的能力。
三、实验方式与要求①首先要求学生在课下完成问题分析、算法设计,基本完成程序设计。
②实验时,每位学生使用一台微机,独立调试,完成程序。
③程序调试好后,由指导教师检测运行结果,并要求学生回答相关的问题。
教师评出检查成绩。
④学生记录程序的输入数据,运行结果及源程序。
⑤在一周内完成实验报告。
四、考核方式与实验报告要求实验成绩由指导教师根据学生的实验完成情况、源程序质量、回答问题情况、实验报告质量、实验纪律等方面给分。
学生在实验后的一周内提交实验报告。
实验报告首页按学校统一印刷的实验报告模版书写。
实验报告中应包括如下内容:☐实验内容按任课教师下达的实验任务填写(具体实验题目和要求);☐实验过程与实验结果应包括如下主要内容:算法设计思路简介算法描述:可以用自然语言、伪代码或流程图等方式算法的实现和测试结果:包括算法运行时的输入、输出,实验中出现的问题及解决办法等☐源程序清单与实验结果或其它说明可打印,并装订在实验报告首页之后。
☐实验报告雷同者,本次实验成绩为0分或雷同实验报告平分得分五、实验的软硬件环境硬件环境:PⅡ以上微型计算机软件环境:Windows98/2000, VC++6.0或turbo C六、实验内容安排实验一线性表应用实验时间:2012年3月16日,7-8节(地点:7-215)实验目的:理解线性表的逻辑特点;掌握顺序表、链表存储结构,以及线性表的基本操作,如插入、删除、查找,以及线性表合并等操作在顺序存储结构和链式存储结构上的实现算法,并能够在实际问题背景下的灵活运用线性表来解决问题,实现相应算法。
实验名称:数据结构实验实验时间:2021年X月X日实验地点:计算机实验室实验目的:1. 理解并掌握基本数据结构(线性表、栈、队列、链表、树、图)的概念和操作。
2. 能够运用C语言实现基本数据结构的各种操作。
3. 培养编程能力和问题解决能力。
实验内容:1. 线性表2. 栈3. 队列4. 链表5. 树6. 图实验环境:1. 操作系统:Windows 102. 编程语言:C语言3. 开发环境:Visual Studio 2019实验步骤:一、线性表1. 实现线性表的创建、插入、删除、查找和遍历等基本操作。
2. 编写代码,实现以下功能:- 创建一个线性表,包含10个元素。
- 在第3个位置插入一个新元素。
- 删除第5个位置的元素。
- 查找线性表中的第7个元素。
- 遍历线性表,并打印所有元素。
二、栈1. 实现栈的创建、入栈、出栈、判空和求栈顶元素等基本操作。
2. 编写代码,实现以下功能:- 创建一个栈。
- 向栈中依次入栈元素1、2、3、4、5。
- 判断栈是否为空。
- 求栈顶元素。
- 出栈元素,并打印出栈的元素。
三、队列1. 实现队列的创建、入队、出队、判空和求队头元素等基本操作。
2. 编写代码,实现以下功能:- 创建一个队列。
- 向队列中依次入队元素1、2、3、4、5。
- 判断队列是否为空。
- 求队头元素。
- 出队元素,并打印出队的元素。
四、链表1. 实现单链表、双向链表和循环链表的创建、插入、删除、查找和遍历等基本操作。
2. 编写代码,实现以下功能:- 创建一个单链表,包含元素1、2、3、4、5。
- 在第2个位置插入一个新元素。
- 删除第3个位置的元素。
- 查找链表中的第4个元素。
- 遍历链表,并打印所有元素。
五、树1. 实现二叉树的创建、插入、删除、查找和遍历等基本操作。
2. 编写代码,实现以下功能:- 创建一个二叉树,包含元素1、2、3、4、5。
- 在第2个位置插入一个新元素。
- 删除第3个位置的元素。
数据结构上机实验报告一、实验目的本次数据结构上机实验的主要目的是通过实际编程操作,深入理解和掌握常见的数据结构及其基本操作,提高解决实际问题的能力和编程技能。
具体目标包括:1、熟练掌握线性表、栈、队列、树、图等数据结构的基本概念和存储方式。
2、学会运用数据结构的相关算法进行数据的插入、删除、查找、排序等操作。
3、培养分析问题、设计算法、编写代码和调试程序的综合能力。
4、增强对数据结构在实际应用中的认识,提高解决复杂问题的思维能力。
二、实验环境1、操作系统:Windows 102、编程环境:Visual Studio 20193、编程语言:C++三、实验内容本次实验共包括以下几个部分:1、线性表的操作实现顺序表和链表的创建、插入、删除、查找和遍历操作。
比较顺序表和链表在不同操作下的性能差异。
2、栈和队列的应用利用栈实现表达式求值。
用队列模拟银行排队系统。
3、树的遍历实现二叉树的先序、中序和后序遍历算法,并输出遍历结果。
构建哈夫曼树,并进行编码和解码操作。
4、图的基本操作用邻接矩阵和邻接表存储图,并实现图的深度优先搜索和广度优先搜索算法。
四、实验步骤及结果1、线性表的操作顺序表的实现:```cppinclude <iostream>using namespace std;define MAXSIZE 100 //顺序表的最大长度class SeqList {private:int dataMAXSIZE; //存储顺序表元素的数组int length; //顺序表的当前长度public:SeqList(){//构造函数,初始化顺序表length = 0;}//插入元素bool insert(int pos, int element) {if (pos < 0 || pos > length || length == MAXSIZE) {return false;}for (int i = length; i > pos; i) {datai = datai 1;}datapos = element;length++;return true;}//删除元素bool remove(int pos) {if (pos < 0 || pos >= length) {return false;}for (int i = pos; i < length 1; i++){datai = datai + 1;}length;return true;}//查找元素int search(int element) {for (int i = 0; i < length; i++){if (datai == element) {return i;}}return -1;}//遍历输出顺序表void traverse(){for (int i = 0; i < length; i++){cout << datai <<"";}cout << endl;}};int main(){SeqList list;listinsert(0, 10);listinsert(1, 20);listinsert(2, 30);listtraverse();listremove(1);listtraverse();int position = listsearch(30);if (position!=-1) {cout <<"元素 30 在位置"<< position << endl;} else {cout <<"未找到元素 30" << endl;}return 0;}```链表的实现:```cppinclude <iostream>using namespace std;class Node {public:int data;Node next;Node(int element) {data = element;next = NULL;}};class LinkedList {private:Node head;public:LinkedList(){head = NULL;}//插入元素void insert(int element) {Node newNode = new Node(element);if (head == NULL) {head = newNode;} else {Node current = head;while (current>next!= NULL) {current = current>next;}current>next = newNode;}}//删除元素void remove(int element) {if (head == NULL) {return;}if (head>data == element) {Node temp = head;head = head>next;delete temp;return;}Node current = head;Node prev = NULL;while (current!= NULL && current>data!= element) {prev = current;current = current>next;}if (current!= NULL) {prev>next = current>next;delete current;}}//查找元素bool search(int element) {Node current = head;while (current!= NULL) {if (current>data == element) {return true;}current = current>next;}return false;}//遍历输出链表void traverse(){Node current = head;while (current!= NULL) {cout << current>data <<"";current = current>next;}cout << endl;}};int main(){LinkedList list;listinsert(10);listinsert(20);listinsert(30);listtraverse();listremove(20);listtraverse();if (listsearch(30)){cout <<"找到元素 30" << endl;} else {cout <<"未找到元素 30" << endl;}return 0;}```性能比较:在插入和删除操作中,顺序表在表头或中间位置操作时需要移动大量元素,时间复杂度较高;而链表只需要修改指针,时间复杂度较低。
数据结构上机实验一实验内容:单链表的基本操作实验要求:1)链表的显示要作为函数被调用.2)把自己使用的单链表结构明确的表达出来.3)要求都是带头结点的单链表.分组要求:可单独完成,也可两人一组。
实验目的:1)熟悉C/C++基本编程,培养动手能力.2)通过实验,加深对链表的理解.评分标准:1) 第一题必做;2)其它题为选做,不设上限。
3)上机结束后,由助教检查结果并适当提问,根据情况给出成绩。
上机题目:一)建立单链表+求长度+显示(3分)(1) 由键盘逐个输入正整数,建立相应的链表,输入-1时,链表结束;(2) 显示链表中的元素 (要求在显示器可见);(3) 求链表的长度;(4)求链表的第i个元素;(i为参数)二)查找+插入+删除+显示(1分)在题目(一)的单链表中:(1)在链表中第i个位置插入新的数据元素,显示链表;(2)删除链表的第i个元素,输出该元素,显示链表;三)就地置逆+求最大最小值(1分)在题目(一)的单链表中:(1)将链表就地逆置,显示链表;(2)求链表中的最大,最小值,显示结果;#include<stdio.h>#include<malloc.h>typedef struct Lnode{int data;struct Lnode *next;}LNode, *LinkList;LinkList CreatList_L(void){LinkList head;LinkList p1,p2;head=p1=p2=(LinkList)malloc(sizeof(LNode));scanf("&d",&p1->data);head->next=p1;while(p1->data!=-1){p2->next=p1;p2=p1;p1=(LinkList)malloc(sizeof(LNode));scanf("%d",&p1->data);}p2->next=NULL;return head;}void ShowList(LinkList L){printf("\nHere is the list:\n");LinkList p;p=L->next;while(p!=NULL){printf("%d\n",p->data);p=p->next;}printf("\n");}int LenList(LinkList L){LinkList p;p=L->next;int n=0;while(p!=NULL){n++;p=p->next;}return n;}LinkList InsertList(LinkList L,LinkList InsertNode,int i){ LinkList p0,p1,p2,p3;int n=1;p3=p1=L;p0=InsertNode;while(n<=i){p2=p1;p1=p1->next;n++;}p0->next=p1;p2->next=p0;return p3;}LinkList DeleteList(LinkList L,int i){LinkList p1,p2,p3;int n=1;p3=p1=L;while(n<=i){p2=p1;p1=p1->next;n++;}p1=p1->next;p2->next=p1;return p3;}int GetElem(LinkList L,int i){LinkList p;int n=1,m;p=L;while(n<=i){p=p->next;n++;}m=p->data;return m;}void InverseList(LinkList L){LinkList p,q;p=L->next;L->next=NULL;while(p){q=p->next;p->next=L->next;L->next=p;p=q;}}void MostList(LinkList L){LinkList p;int i,j;p=L->next;i=j=p->data;while(p){if(i<p->data)i=p->data;if(j>p->data)j=p->data;p=p->next;}printf("The maximum is:%d\n",i);printf("The minimum is:%d\n",j); }void main(){int n,i,j,k;LinkList L,InsertNode;printf("Input the list:");L=CreatList_L();ShowList(L);n=LenList(L);printf("\nThe length of List is %d\n",n);InsertNode=(LinkList)malloc(sizeof(LNode));printf("Input the inertnode(data and location):");scanf("%d,%d",&InsertNode->data,&i);L=InsertList(L,InsertNode,i);ShowList(L);printf("Input the deletenode(location):");scanf("%d",&j);k=GetElem(L,j);printf("The delete elem is %d\n",k);DeleteList(L,j);ShowList(L);printf("The inverselist is:");InverseList(L);ShowList(L);MostList(L);}四) 链表的合并(1分)(1)创建两个链表LA,LB(各链表按升序排列),分别显示两链表;(2)将两个链表合并成一个新的有序表(升序排列),显示链表. #include<stdio.h>#include<malloc.h>typedef struct Lnode{int data;struct Lnode *next;}LNode, *LinkList;LinkList CreatList_L(void){LinkList head;LinkList p1,p2;head=p1=p2=(LinkList)malloc(sizeof(LNode));scanf("&d",&p1->data);head->next=p1;while(p1->data!=-1){p2->next=p1;p2=p1;p1=(LinkList)malloc(sizeof(LNode));scanf("%d",&p1->data);}p2->next=NULL;return head;}void ShowList(LinkList L){printf("\nHere is the list:\n");LinkList p;p=L->next;while(p!=NULL){printf("%d\n",p->data);p=p->next;}printf("\n");}int LenList(LinkList L){LinkList p;p=L->next;int n=0;while(p!=NULL){n++;p=p->next;}return n;}LinkList SortList(LinkList L){LinkList first,last,head,min,p,q;first=NULL;head=L->next;while(head){for(p=head,min=head;p->next!=NULL;p=p->next){if (p->next->data < min->data){q=p;min=p->next;}}if (first == NULL){first=min;last=min;}else{last->next=min;last=min;}if (min == head)head = head->next;else q->next=min->next;last->next=NULL;}head=first;return head;}LinkList MergeList(LinkList La,LinkList Lb){ LinkList L3,p1,p2,p3;p1=La->next;p2=Lb->next;L3=p3=La;while(p1&&p2){if(p1->data<=p2->data){p3->next=p1;p3=p1;p1=p1->next;}else{p3->next=p2;p3=p2;p2=p2->next;}}if(p1)p3->next=p1;else p3->next=p2;return L3;}void main(){LinkList L1,L2,L3;printf("Input List1:");L1=CreatList_L();printf("Input List2:");L2=CreatList_L();printf("L1\n");ShowList(L1);printf("L2\n");ShowList(L2);L1->next=SortList(L1);L2->next=SortList(L2);printf("The new L1\n");ShowList(L1);printf("The new L2\n");ShowList(L2);L3=MergeList(L1,L2);printf("The new merge list\n");ShowList(L3);}五)单循环链表(2分)(1)建两个带头结点的循环单链表LA,LB单循环链表,(2)将两个循环单链表合并为一个循环单链表,其头指针为LA。
上机实验要求及规范《数据结构》课程具有比较强的理论性,同时也具有较强的可应用性和实践性,因此上机实验是一个重要的教学环节。
一般情况下学生能够重视实验环节,对于编写程序上机练习具有一定的积极性,但是容易忽略实验的总结,忽略实验报告的撰写。
对于一名大学生必须严格训练分析总结能力、书面表达能力。
需要逐步培养书写科学实验报告以及科技论文的能力。
拿到一个题目,一般不要急于编程,而是应该按照面向过程的程序设计思路(关于面向对象的训练将在其它后继课程中进行),首先理解问题,明确给定的条件和要求解决的问题,然后按照自顶向下,逐步求精,分而治之的策略,逐一地解决子问题。
具体步骤如下:1.问题分析与系统结构设计充分地分析和理解问题本身,弄清要求做什么(而不是怎么做),限制条件是什么。
按照以数据结构为中心的原则划分模块,搞清数据的逻辑结构(是线性表还是树、图?),确定数据的存储结构(是顺序结构还是链表结构?),然后设计有关操作的函数。
在每个函数模块中,要综合考虑系统功能,使系统结构清晰、合理、简单和易于调试。
最后写出每个模块的算法头和规格说明,列出模块之间的调用关系(可以用图表示),便完成了系统结构设计。
2.详细设计和编码详细设计是对函数(模块)的进一步求精,用伪高级语言(如类C语言)或自然语言写出算法框架,这时不必确定很多结构和变量。
编码,即程序设计,是对详细设计结果的进一步求精,即用某种高级语言(如C/C++语言)表达出来。
尽量多设一些注释语句,清晰易懂。
尽量临时增加一些输出语句,便于差错矫正,在程序成功后再删去它们。
3.上机准备熟悉高级语言用法,如C语言。
熟悉机器(即操作系统),基本的常用命令。
静态检查主要有两条路径,一是用一组测试数据手工执行程序(或分模块进行);二是通过阅读或给别人讲解自己的程序而深入全面地理解程序逻辑,在这个过程中再加入一些注释和断言。
如果程序中逻辑概念清楚,后者将比前者有效。
4.上机调试程序调试最好分块进行,自底向上,即先调试底层函数,必要时可以另写一个调用驱动程序,表面上的麻烦工作可以大大降低调试时所面临的复杂性,提高工作效率。
《数据结构》上机实验报告—利用栈实现迷宫求解实验目的:掌握栈的基本操作和迷宫求解的算法,并能够利用栈实现迷宫求解。
实验原理:迷宫求解是一个常见的路径问题,其中最常见的方法之一是采用栈来实现。
栈是一种先进后出的数据结构,适用于这种类型的问题。
实验步骤:1.创建一个迷宫对象,并初始化迷宫地图。
2.创建一个栈对象,用于存储待探索的路径。
3.将起点入栈。
4.循环执行以下步骤,直到找到一个通向终点的路径或栈为空:a)将栈顶元素出栈,并标记为已访问。
b)检查当前位置是否为终点,若是则路径已找到,结束。
c)检查当前位置的上、下、左、右四个方向的相邻位置,若未访问过且可以通行,则将其入栈。
5.若栈为空,则迷宫中不存在通向终点的路径。
实验结果:经过多次实验,发现利用栈实现迷宫求解的算法能够较快地找到一条通向终点的路径。
在实验中,迷宫的地图可通过一个二维数组表示,其中0表示可通行的路径,1表示墙壁。
实验结果显示,该算法能够正确地找出所有可行的路径,并找到最短路径。
实验结果还显示,该算法对于大型迷宫来说,解决速度相对较慢。
实验总结:通过本次实验,我掌握了利用栈实现迷宫求解的算法。
栈作为一种先进后出的数据结构,非常适合解决一些路径的问题。
通过实现迷宫求解算法,我深入了解了栈的基本操作,并学会运用栈来解决实际问题。
此外,我还了解到迷宫求解是一个复杂度较高的问题,对于大型迷宫来说,解决时间较长。
因此,在实际应用中需要权衡算法的速度和性能。
在今后的学习中,我将进一步加深对栈的理解,并掌握其他数据结构和算法。
我还将学习更多的路径算法,以便更好地解决迷宫类问题。
掌握这些知识将有助于我解决更加复杂的问题,并提升编程能力。
数据结构上机实验报告1. 实验目的本次实验旨在通过编写程序,掌握和理解常见的数据结构及其应用。
2. 实验环境与工具- 操作系统:Windows 10- 开发语言:C++- 集成开发环境(IDE):Visual Studio Code3. 实验内容及步骤3.1 线性表操作演示程序设计与分析步骤:a) 设计一个线性表类,并包含以下基本功能:i) 初始化线性表;ii) 插入元素到指定位置;iii) 删除指定位置的元素;iv) 获取指定位置处的元素值。
b)使用该线性表类进行一系列测试,验证各个功能是否正常运行。
记录并分析每个函数调用所消耗时间以评估算法效率。
3.2 栈和队列综合应用设计与模拟步骤:a)根据给出问题需求,在已有栈、队列等相关代码基础上完成如下任务:i)利用两个堆栈来模拟浏览器前进后退功能;ii)使用循环链式存储结构表示双向链队, 并对其进行初始化、入队、出队等操作。
b). 运行以上代码片段,并输出相应结果。
同时分析算法的时间复杂度和空间复杂度。
4. 实验结果与讨论a) 线性表操作演示程序设计与分析实验结果:- 初始化线性表所需时间为X秒;- 插入元素到指定位置平均耗时Y毫秒;- 删除指定位置的元素平均耗时Z毫秒。
b)栈和队列综合应用设计与模拟实验结果:i) 浏览器前进后退功能测试:共浏览N个网页,前进M 次、后退K次。
运行总体消耗时间T1;ii) 双向链队初始化、入队、出对等操作测试: 共进行P 组数据处理, 运行总体消耗时间T2.5. 结论通过本次上机实验,我们掌握了线性表及其相关基本操作,并且成功完成了栈和队列在特定场景下的应用。
同时,在代码编写过程中也深刻理解并评估了各种算法效率。
6. 致谢感谢老师们给予我宝贵意见以及同学们之间相互交流合作提供支持。
7. 附件8. 法律名词及注释在此处添加涉及到的法律名词或术语,并提供简要注释。
《数据结构》上机题(C语言程序)北京科技大学数据结构上机实验ivince上机题1.输入数据(设为整型)建立单链表,并求相邻两节点data值之和为最大的第一节点。
例如输入:2 6 4 7 3 0(0为结束符),建立:所求结果=4程序结构:类型说明;建表函数:Creatlist(L); 求值函数:Adjmax(L);main( ){ 变量说明;调用Creatlist(L)建表;调用Adjmax(L)求值;打印数据;释放链表空间;Y 继续?N停止}//ivince//启动程序后输入字符(每输入一个字符,都要回车结束),如果字符不是"@"和"0",字符就会进队。
输入"0",则队头元素出队;输入"@",所有元素出队。
//特殊情况:直接输入"0",或直接输入"@"都已经做了相应处理#include<stdio.h>#include<malloc.h>typedefstruct node{charch;struct node* next;}Qnode,*Qlink;typedefstruct{Qnode *front,*rear;}linkqueue;voidCreatqueue(linkqueue *q){q->front=(Qlink)malloc(sizeof(Qnode));q->front->next=NULL;q->rear=q->front;}intEmptyqueue (linkqueue *q) //判队空{if(q->front==q->rear)return(1);elsereturn (0);}void Enqueue(linkqueue *q,char e) //元素e进队{Qlink p=(Qlink)malloc(sizeof(Qnode)); //申请进队节点p->ch=e;p->next=NULL;q->rear->next=p;q->rear=p;}intDequeue(linkqueue *q) //出队{Qlink p;if (Emptyqueue(q))return(NULL); //队空处理else{p=q->front ;q->front=p->next ;free(p);return(q->front->ch);}}void main(void) //主函数{linkqueue q;charch='0',ch2;Creatqueue(&q);printf("请输入字符,字符0出队字符@全部出队:\n");while(ch!='@'){scanf("%c",&ch);fflush(stdin); //清除缓存字符if(ch=='0'){ch2=Dequeue(&q);if(ch2!=NULL)printf("%c\n",ch2);elseprintf("目前队列中不存在任何元素!,请您先存入!!\n");}else if(ch=='@'){while(!Emptyqueue(&q)){printf("%c\n",Dequeue(&q));}}elseEnqueue(&q,ch);}}上机题2.实现算术表达式求值程序(栈的运用)。
设操作数:0,1,2,……,8,9(可扩充);运算符:+,-,*,/,(,),#(#号为结束)。
输入中缀表达式,如:5+(4-2)*3 #,将其转换成后缀表达式:542-3*+#,然后计算,本例结果为11。
程序结构:类型说明;函数:Clearstack(S)、Emptystack(S)、Getstop(S)、Push(S)、Pop(S);中缀到后缀转换的函数:Mid-post(E[n],B[n]);后缀表达式求值的函数:Postcount(B[n]);main(){ 变量说明;输入中缀表达式,存入E[n];调用Mid-post(E,B);调用Postcount(B);打印表达式结果;Y 继续?N停止}//ivince//该程序用于计算正整数的+ - * / () 运算,输入正确的表达式并以#结尾,//只输入#将输出-1,运算过程出现分母为0的情况将终止程序//按要求输入数据后,程序自动将中缀表达式转换为后缀表达式,并将其输出出来,计算结果下一行输出//该程序用了一个栈存数据,一个栈存运算符,所以可以实现int范围内的正整数的和差积商的计算#include<stdio.h>#include<malloc.h>#include<math.h>#include<windows.h>//数据栈typedefstruct node1{int date1;struct node1* next1;}snode1,*slink1;int Emptystack1(slink1 S){if(S==NULL)return(1);else return(0);}int Pop1(slink1* top){int e;slink1 p;if(Emptystack1(*top))return(-1);else{e=(*top)->date1;p=*top;*top=(*top)->next1;free(p);return(e);}}void Push1(slink1* top,int e){slink1 p;p=(slink1)malloc(sizeof(snode1));p->date1=e;p->next1=*top;*top=p;}int Getstop1(slink1 S){if(S!=NULL)return(S->date1);return 0;}void Clearstack1(slink1* top){ slink1 p;while(*top!=NULL){p=(*top)->next1;Pop1(top);*top=p;}}//字符栈typedefstruct node{char date;struct node* next;}snode,*slink;intEmptystack(slink S){if(S==NULL)return(1);else return(0);}char Pop(slink* top){char e;slink p;if(Emptystack(*top))return(0);else{e=(*top)->date;p=*top;*top=(*top)->next;free(p);return(e);}}void Push(slink* top,char e){slink p;p=(slink)malloc(sizeof(snode));p->date=e;p->next=*top;*top=p;}voidClearstack(slink* top){ slink p;while(*top!=NULL){p=(*top)->next;Pop(top);*top=p;}*top=NULL;}charGetstop(slink S){if(S!=NULL)return(S->date);return 0;}int Precede(char x,char y){switch(x){case '#':x=0;break;case '(':x=1;break;case '+':case '-':x=2;break;case '*':case '/':x=3;break;}switch(y){case '+':case '-':y=2;break;case '*':case '/':y=3;break;case '(':y=4;break;}if(x>=y)return 1;else return 0;}voidmid_post(char post[],char mid[]){inti=0,j=0;char x;slink S=NULL;Push(&S,'#');do{x=mid[i++];switch(x){case '#':{while(!Emptystack(S)){if(post[j-1]<='9'&&post[j-1]>='0')post[j++]=' ';post[j++]=Pop(&S);}}break;case ')':{while(Getstop(S)!='('){if(post[j-1]<='9'&&post[j-1]>='0')post[j++]=' ';post[j++]=Pop(&S);}if(post[j-1]<='9'&&post[j-1]>='0')post[j++]=' ';Pop(&S);}break;case '+':case '-':case '*':case '/':case '(':{while(Precede(Getstop(S),x)){if(post[j-1]<='9'&&post[j-1]>='0')post[j++]=' ';post[j++]=Pop(&S);}if(post[j-1]<='9'&&post[j-1]>='0')post[j++]=' ';Push(&S,x);}break;default:post[j++]=x;}}while(x!='#');post[j]='\0';Clearstack(&S);}intpostcount(char post[]){inti=0,m=0,sum=0,j=0;char x;intz,a,b;slink S=NULL;slink1 S1=NULL;while(post[i]!='#'){x=post[i];switch(x){case '+':b=Pop1(&S1);a=Pop1(&S1);z=a+b;Push1(&S1,z);sum=0;m=0;j=0;break;case '-':b=Pop1(&S1);a=Pop1(&S1);z=a-b;Push1(&S1,z);sum=0;m=0;j=0;break;case '*':b=Pop1(&S1);a=Pop1(&S1);z=a*b;Push1(&S1,z);sum=0;m=0;j=0;break;case '/':b=Pop1(&S1);if(b==0){printf("运算过程中出现分母为0的状况\n");exit(0);}a=Pop1(&S1);z=a/b;Push1(&S1,z);sum=0;m=0;j=0;break;case ' ':while(j!=m){sum=sum+Pop1(&S1)*pow(10,j);j++;}Push1(&S1,sum);sum=0;m=0;j=0;break;default :x=post[i]-'0';Push1(&S1,x);m++;}i++;}sum=Pop1(&S1);Clearstack1(&S1);return sum;}void main(){int sum=0;char post[255],mid[255];char x='Y';printf("注意: 该程序无法检查表达式的正确性,输入不合法表达式将出现错误的结果!!!\n");while(x=='Y'||x=='y'){printf("请输入要处理的中缀表达式:\n");scanf("%s",mid);printf("相应的后缀表达式为:\n");mid_post(post,mid);printf("%s\n",post);sum=postcount(post);printf("表达式的值为:%d\n",postcount(post));printf("继续?y/n\n");scanf("%c",&x);scanf("%c",&x);}}上机题3.实现链式队列运算程序(队列的运用)。