为什么要选择反激拓扑结构
- 格式:doc
- 大小:84.00 KB
- 文档页数:5
反激式正激式推挽式半桥式全桥式开关电源优缺点反激式开关电源是一种常见的开关电源拓扑结构,其工作原理是利用电感储能和电容滤波器来实现电压变换。
以下是反激式、正激式、推挽式、半桥式和全桥式开关电源的优缺点分析。
1.反激式开关电源:优点:-体积小,结构简单,成本较低。
-输出电流大,适用于一些高功率应用。
-效率较高,在负载率低时仍能提供稳定的输出电压。
缺点:-输出电压稳定性较差,容易受到输入电压波动的影响。
-输入电流波形不纯净,含有较高的谐波成分。
-输出电流变化较大时容易产生振荡和噪音。
2.正激式开关电源:优点:-输出电压稳定性较好,能够提供较为纯净的输出电流。
-输出电流较大,适用于一些高负载应用。
-效率较高,在大部分负载条件下都能保持较高的效率。
缺点:-体积较大,结构相对复杂。
-成本较高。
-在负载率低时效率较低。
3.推挽式开关电源:优点:-输出频率较高,适用于一些高频应用。
-输出电压稳定性较好。
-体积相对较小,结构简单。
缺点:-输出电流相对较小。
-效率较低,在大负载条件下会有较大的功率损耗。
-容易受到电容和电感等元器件的损耗影响,导致输出电压不稳定。
4.半桥式开关电源:优点:-输出电压稳定性较好。
-输出电流较大。
-效率较高。
-结构简单,成本相对较低。
缺点:-输入电流波形较复杂,含有较高的谐波成分。
-输出电流较小负载时容易出现振荡。
-适用负载范围较窄。
5.全桥式开关电源:优点:-输出电压稳定性较好。
-输出电流较大。
-效率较高。
-结构简单,成本相对较低。
缺点:-输入电流波形较复杂,含有较高的谐波成分。
-输出电流较小负载时容易出现振荡。
-适用负载范围较窄。
总结:根据以上分析,不同的开关电源拓扑在不同应用场景中具有不同的优缺点。
在选择开关电源时,应根据具体应用需求,综合考虑输出电压稳定性、输出电流、效率、结构复杂性、成本等因素,选择最适合的拓扑结构。
能产生负电压的常见拓扑1.引言1.1 概述概述:在很多电子设备和电路中,产生负电压是非常常见的。
负电压的产生对于实现一些特定的功能和电路的操作至关重要。
本文将讨论一些常见的负电压产生方法,并探讨在拓扑电路中如何利用这些方法来实现负电压的生成。
这些负电压产生的方法包括电池供电、反相运算放大器、反相嵌入运放、反向开关等等。
我们将深入研究每种方法的工作原理、优缺点以及其在实际应用中的适用性。
在拓扑电路中产生负电压是电子技术领域的一个重要话题。
负电压的生成为各种电路提供了更多的可能性和灵活性。
例如,在一些放大器电路中,负电压可用于提供更高的增益或改善电路的性能。
此外,负电压还可以用于直流电源的反相输出,以及一些特殊应用领域,如运算放大器、电源管理和信号调理电路等。
通过本文的研究,我们将全面了解各种常见的负电压产生方法以及它们在拓扑电路中的应用。
这将有助于电子工程师在设计和构建电路时选择合适的负电压产生方法,以满足特定的电路需求和性能要求。
此外,本文还将展望拓扑电路中负电压产生的应用前景,并探讨可能的发展方向和创新点。
通过深入研究和理解负电压产生的方法和应用,我们可以不断推动电子技术的发展,并为各个领域的电子设备带来更高的性能和功能。
1.2文章结构1.2 文章结构本文将按照以下结构进行介绍常见的能产生负电压的拓扑:2.1 常见的负电压产生方法在本节中,我们将详细介绍一些常见的负电压产生方法。
这些方法包括负电压发生器、反向电压放大器、负电压稳压器等。
我们将对每种方法的原理、应用场景和优缺点进行深入分析和讨论。
2.2 拓扑电路中的负电压产生在本节中,我们将重点关注拓扑电路中的负电压产生。
我们将介绍一些常见的拓扑结构,如反激式变换器、反激式升压器、反激式降压器等,并深入探讨它们如何产生负电压。
我们将详细解释每种拓扑的工作原理、性能特点以及适用领域,帮助读者理解和应用这些拓扑。
3. 结论在本节中,我们将对前两节的内容进行总结。
反激电源工作原理反激电源是一种常见的开关电源拓扑结构,它具有简单、高效、可靠等特点,被广泛应用于各种电子设备中。
在了解反激电源的工作原理之前,我们首先需要了解什么是反激电源以及它的基本结构。
反激电源是一种以变压器为核心的开关电源拓扑结构,它由输入滤波电路、整流电路、功率开关器件、变压器、输出整流滤波电路等部分组成。
其中,功率开关器件通常采用MOSFET或者IGBT,变压器则是反激电源的核心部件,通过变压器的绝缘性能,可以实现输入和输出之间的电气隔离。
反激电源的工作原理可以简单描述为,当输入电压施加在变压器的初级绕组上时,由于变压器的电感性质,电流不会瞬间变化,从而在变压器的次级绕组上产生感应电动势,从而实现对输出电压的调节。
在这个过程中,功率开关器件通过PWM控制,可以实现对输出电压的精确调节和稳定输出。
反激电源的工作原理还涉及到反激电路的工作模式,一般包括导通状态和关断状态。
在导通状态下,功率开关器件导通,输入电压施加在变压器的初级绕组上,变压器储能,同时输出电压被输出电容储存;在关断状态下,功率开关器件关断,变压器释放储能,输出电压被输出电容释放,同时变压器的次级绕组上产生感应电动势,从而实现对输出电压的调节。
在实际应用中,反激电源的工作原理还需要考虑到电磁兼容、电源因数校正、过载保护等问题。
为了提高反激电源的性能,还需要结合控制策略、电路设计、元器件选型等方面进行综合考虑。
总的来说,反激电源的工作原理是基于变压器的电感性质和功率开关器件的PWM控制实现的,通过合理的电路设计和控制策略,可以实现高效、稳定的电源输出。
在实际应用中,需要综合考虑电路设计、控制策略、元器件选型等方面的因素,以实现最佳的性能和可靠性。
通过对反激电源工作原理的深入了解,可以更好地应用和设计反激电源,为各种电子设备提供稳定、高效的电源支持。
希望本文的内容能够对您有所帮助,谢谢阅读!。
反激拓扑原理解析反激拓扑原理解析1. 引言反激拓扑是一种相对较新的拓扑学原理,被广泛应用于电力电子领域及其他工程和科学领域。
它的独特性和优势使得它成为许多电路和系统设计中的重要元素。
本文将对反激拓扑原理进行全面解析,之后再分享笔者对该原理的观点和理解。
2. 反激拓扑原理概述反激拓扑是一种特殊的开关电源拓扑,其主要特点是使用了储能元件(比如电感和电容)来实现能量传输和转换。
它通过适当的开关动作将能量从输入端传递到输出端,并且在工作过程中可以实现能量的反向流动。
这种特性使得反激拓扑可以适应不同的电源和负载要求,并且具有较高的转换效率和良好的稳定性。
3. 反激拓扑的工作原理3.1 基本结构:反激拓扑由一个开关元件(如MOSFET或BJT)、一个储能元件(如电感或电容)以及一个整流元件组成。
开关元件控制着储能元件的充放电过程,整流元件则将储能元件输出端的能量转换为所需的电流或电压。
3.2 工作过程:在正常工作状态下,开关元件轮流开关和关闭,通过能量的转移来实现电源到负载的能量传输。
当开关元件关闭时,储能元件负责储存能量,并将能量在系统中传递和分配。
当开关元件打开时,储能元件释放储存的能量,使之经过整流元件输出到负载。
4. 反激拓扑的特点和应用4.1 特点:- 可实现电源和负载的电气隔离,提高安全性。
- 具有较高的转换效率和较低的功率损耗。
- 可适应不同输入和输出电压范围的要求。
- 适用于直流和交流电源的转换。
4.2 应用领域:- 电力电子领域:如开关电源、逆变器、变频器等。
- 汽车电子:如电动汽车充电器、混合动力系统等。
- 太阳能和风能转换系统:用于电能的采集和储存。
- 医疗设备和通信系统。
5. 反激拓扑的进一步研究和发展反激拓扑作为一种基本的电路结构,目前已经发展出了多种变种和改进方案。
研究人员在提高效率、减少尺寸和重量、增加功能性等方面做出了许多努力。
特别是在高频应用和混合电源系统中的应用,反激拓扑的性能和可靠性仍然是研究的重点。
反激电源的工作原理详解
反激电源(flyback power supply)是一种常见的开关电源拓扑结构,它通过磁性元件(变压器)储存能量并将其传递给负载。
以下是反激电源的工作原理的详细解释:
1. 输入电压:反激电源的输入电压通常是交流电源,通过整流电路将交流电转换为直流电。
2. 开关管:反激电源中有一个开关管(通常是MOSFET或BJT),它的作用是控制能量的传输和储存。
3. 控制电路:反激电源中有一个控制电路,它通过对开关管的控制来实现能量的传输和储存。
控制电路可以采用各种不同的方式,如PWM(脉宽调制)控制或变频控制。
4. 变压器:反激电源中的关键元件是变压器,它由一个或多个绕组组成。
输入绕组连接到开关管和输入电源,输出绕组连接到负载。
变压器通过磁耦合将能量从输入绕组传输到输出绕组。
5. 储能:当开关管导通时,输入绕组的电流开始增加,同时储存能量。
当开关管断开时,输入绕组的电流停止增加,并且能量通过变压器传递到输出绕组。
6. 整流和滤波:输出绕组的交流电压通过整流电路转换为直流电压,并通过滤波电路去除纹波。
这样就得到了稳定的直流电压,可以供给负载使用。
总结起来,反激电源的工作原理是通过控制开关管的导通和断开,使得能量在变压器中储存和传递,最终得到稳定的直流电压输出。
这种拓扑结构具有成本低、效率高的优点,因此在许多应用中得到广泛应用。
单极pfc反激拓扑原理单极PFC反激拓扑原理是一种有效地实现功率因数校正的电路拓扑结构,可用于交流电源中的直流输出电路。
这种拓扑结构利用开关管连接以及变压器缩小输入电压的效应,从而达到较高的功率效率和功率因数。
以下是单极PFC反激拓扑原理的步骤阐述:1.整体概述单极PFC反激拓扑原理采用一个开关管、电容和电感元件组成。
它的基本原理是通过改变输入电流和输出电压之间的相位,使得负载电导产生一个与输入电压同频但相位差为零或接近于零的电流,从而实现功率因数校正。
该拓扑结构可以在宽范围的输入电压和负载条件下实现高功率效率和高功率因数。
2.电路原理单极PFC反激拓扑原理的电路结构包含一个单极开关器、一个L-C滤波器、一个直流电容和一个负载电阻。
当开关管关断时,电容器C通过电感器L向负载提供能量。
当开关管开通时,负载电流通过L-C滤波器流回电容器C和电源,从而实现功率因数校正的目的。
3.电路特点单极PFC反激拓扑原理具有以下优点:(1)具有相对简单的电路结构。
(2)功率效率高,可达80%以上。
(3)功率因数可以达到接近1,满足国际标准,提高系统效率。
(4)适用于大约100瓦到500瓦功率的方案。
(5)具有输出电压稳定的特点,可以满足LED照明、家用电器等方面的应用需求。
总之,单极PFC反激拓扑原理是一种有效地实现交流电源输入电路直流输出的电路拓扑结构。
它采用L-C滤波器、直流电容和负载电阻组成,具有功率效率高、功率因数接近于1和输出电压稳定的特点。
因此,该电路结构可以被应用于LED照明、家用电器等各个领域的电源设计中。
反激电源工作原理详解反激电源是一种常见的电源拓扑结构,广泛应用于电子设备和电路中。
它在许多领域具有重要的作用,如电子通信、工业控制和家用电器等。
本文将详细介绍反激电源的工作原理,并解释其在电路中的应用。
一、引言反激电源是一种高效且可靠的电源供应解决方案。
它的工作原理基于能量的存储和释放,通过交替打开和关闭电流来将直流电压转换为所需的输出电压。
反激电源通过电感储能和二极管的导通来实现电流的循环流动,从而实现电能转换的过程。
二、反激电源的基本结构反激电源由几个基本组成部分构成,包括输入电源、开关元件、输出电路和控制电路。
输入电源提供初始的电能输入,开关元件用于控制电能的转换,输出电路将转换后的电能提供给负载,而控制电路则用于监测和控制电路的工作状态。
三、反激电源的工作过程1. 充电过程:当输入电源接通时,电源电压通过输入电阻和电流限制电阻进入开关元件的源极和汇极。
在这个过程中,电感储能。
2. 放电过程:当开关元件导通时,电流经过开关元件,二极管封锁,电感储能被释放并传递给输出电路。
输出电路中的电容器将贮存的能量滤波后提供给电路的负载。
3. 控制过程:为了确保电路的稳定性和可靠性,控制电路通过检测输出电路的电压和电流,并校正开关元件的导通和关闭时间。
通过调整开关元件的工作周期和占空比,控制电路可以保持输出电压的稳定,并且对负载变化做出快速响应。
四、反激电源的优势和应用1. 高效性:反激电源相对于传统的线性电源具有更高的效率。
这是因为在充电过程中,电感会将电流累积并释放,实现电能的循环利用。
通过减少能量的损耗,反激电源能够以较小的功耗产生所需的输出电压。
2. 稳定性:由于有控制电路的存在,反激电源具有较高的稳定性和可靠性。
控制电路能够实时监测电压和电流,并对系统做出调整。
这使得反激电源能够快速适应负载变化和输入电压波动,保持输出电压的稳定性。
3. 应用广泛:反激电源在许多电子设备和电路中得到了广泛应用。
看电压或电流波形的好坏,工程师通常会用其幅值、平均值、有效值、一次谐波等参量互相进行比较,其中幅值和平均值最为直观,因此,电压或电流的幅值与其平均值之比被称为脉动系数S,也有人用电压或电流的有效值与其平均值之比,则称为波形系数K。
小编在本文中就将盘点开关电源拓扑结构的优缺点,让它们尽在你的掌握之中。
首先先列出电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki的表示:Sv=Up/Ua——电压脉动系数 (1)Si=Im/Ia——电流脉动系数 (2)Kv=Ud/Ua——电压波形系数 (3)Ki=Id/Ia——电流波形系数 (4)上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。
脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。
S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。
反激式开关电源的优点和缺点:(1)反激式开关电源的电压和电流的输出特性要比正激式开关电源的差反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2,电流脉动系数等于4。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。
(2)反激式开关电源的瞬态控制特性相对来说比较差由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。
六种基本DCDC变换器拓扑结构总结DC-DC变换器是一种将一种直流电压转换为另一种直流电压的电子设备。
根据其拓扑结构,可以将DC-DC变换器分为六种基本拓扑结构。
下面将对这六种拓扑结构进行总结。
1. 升压型拓扑结构(Boost Converter):升压型拓扑结构是将输入电压提升到更高电压的一种拓扑结构。
其基本结构由一个电感、一个开关管、一个二极管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过二极管和输出滤波电容供给负载。
2. Buck拓扑结构(降压型拓扑结构):Buck拓扑结构是将输入电压降低到更低电压的一种拓扑结构。
其基本结构由一个电感、一个开关管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过输出滤波电容供给负载。
3. Buck-Boost拓扑结构(降升压型拓扑结构):Buck-Boost拓扑结构可以实现输入电压的增益和降低。
其基本结构由一个电感、一个开关管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过输出滤波电容供给负载。
该拓扑结构可以实现输入电压大于、等于或小于输出电压的转换。
4. 反激型拓扑结构(Flyback Converter):反激型拓扑结构是一种将输入电压转换为输出电压的一种拓扑结构。
其基本结构由一个变压器、一个开关管和一个输出滤波电容组成。
工作原理为开关管导通时,电能储存在变压器中;开关管关闭时,变压器释放储存的能量,将电流经过输出滤波电容供给负载。
5. 单边反激型拓扑结构(Half-Bridge Converter):单边反激型拓扑结构也是一种将输入电压转换为输出电压的一种拓扑结构。
其基本结构由两个开关管、一对二极管和一个输出滤波电容组成。
工作原理为开关管交替导通和关闭,将输入直流电压分别连接到变压器的两个输入端,以实现电压的转换。
为什么要选择反激拓扑结构?(1)2011-05-09 14:31:43 来源:互联网关键字:反激拓扑结构一、为什么选用反激拓扑?许多书籍都有提到,反激拓扑适用于150W以下功率,但是具体的原因却很少分析,我尝试做些解释。
从三个方面分析:开关管、磁性器件、电容。
初级开关管(MOSFET)。
假设输入电压恒定为60V,情况同上。
从两个方面考虑反激、正激、半桥:选用mosfet的最大耐压和流过mosfet的最大电流有效值。
可见在理想状态下,三种拓扑的差别并没有体现在初级mosfet的导通损耗上(注意半桥使用了两个功率mosfet),开关管的另一个损耗是开关损耗,公式的推导见EXEL文件。
假设开通关断有相同损耗,电感量无穷大,则计算公式如下:反激开关损耗:正激开关损耗:半桥:从公式可以看出,在只针对一个输入电压点优化的情况下,反激的开关损耗最大,正激和半桥没有区别,这是限制反激大功率运用的一个原因。
次级mosfet次级mosfet都是零电压开通关断,不存在开关损耗次级mosfet的导通损耗同样限制了反激在大功率场合的运用,mosfet体内二极管的反向恢复同样产生损耗,值得注意的是这个损耗源于次级,发生在初级mosfet,计算公式如下考虑到半桥的占空比D可以是0.9,所以以上三个公式基本上没有区别。
3、磁性器件。
反激的变压器等效理想变压器和电感器的结合,不知道该如何正激和半桥的磁性器件比较,这里只讨论下为什么反激变压器中漏感的影响大。
具体分析见EXEL中《磁性器件》页面4、电容。
同样关心电容的电流应力和电压。
电压应力没什么区别。
输入电容电流应力基本没有区别,输出电容上反激的电流应力很糟糕,但需要注意的是,输出电容的电流应力与输出电流成正比,与输出功率并没有直接关系,正激和半桥的输出电容电流应力为0是因为电感假设为无穷大,实际值与△I有关。
5、总结:通过以上分析,反激不适合大功率引用原因如下:初级mosfet开关损耗次级mosfet导通损耗变压器漏感导致的损耗输出电容电流应力上面的计算基于输入电压恒定为60V,但实际情况是25~125V。
这个情况下,反激拓扑显示出它的优势,可能更恰当的说应该是正激、半桥变得更加难以设计,其原因在于占空比变化过大,导致次级开关管电压应力大,同时初级mosfet的开关损耗可能超过反激因为功率为400W,我考虑三个方案:全桥,双相交错有源嵌位正激或反激。
全桥初级需要四个mosfet,且驱动要浮驱,比较难找到合适的驱动芯片;双相交错有源嵌位正激需要两个N管,两个P管,同样有驱动芯片难找的问题;同时因为以前没有做过反激,对反激比较感兴趣,在一个以前的同事建议下选择双相交错反激。
后来事实证明我当时错误估计了漏感的影响,导致了使用复杂的吸收电路。
*********************************************************为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。
在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。
因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为:Sv = Up/Ua ——电压脉动系数(1-84)幅值与其平均值之比Si = Im/Ia ——电流脉动系数(1-85)Kv =Ud/Ua ——电压波形系数(1-86)有效值与其平均值之比Ki = Id/Ia ——电流波形系数(1-87)上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。
脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。
S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。
反激式开关电源的优点和缺点1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2,电流脉动系数等于4。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。
2 反激式开关电源的瞬态控制特性相对来说比较差。
由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。
有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况在电视机的开关电源中最容易出现。
3 反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。
反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。
另一方面是因为变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。
因此,反激式开关电源变压器初级和次级线圈的漏感都比较大,从而会降低开关电源变压器的工作效率,并且漏感还会产生反电动势,容易把开关管击穿。
4 反激式开关电源的优点是电路比较简单,体积比较小,反激式开关电源输出电压受占空比的调制幅度,相对于正激式开关电源来要高很多。
反激式开关电源的优点是电路比较简单,比正激式开关电源少用了一个大的储能滤波电感,以及一个续流二极管;其次,反激式开关电源的体积要比正激式开关电源的体积小,且成本也要低。
此外,反激式开关电源输出电压受占空比的调制幅度,相对于正激式开关电源来要高很多,因此,反激式开关电源要求调控占空比的误差信号幅度要比较低,误差信号放大器的增益和动态范围也要较小。
由于这些优点,目前,反激式开关电源在家电领域中还是被广泛的应用。
5 反激式开关电源多用于功率较小的场合或是多路输出的场合。
6 反激式开关电源不需要加磁复位绕组。
在反激式开关电源中,在开关管关断的时候,反激式变换器的变压器储能向负载释放,磁芯自然复位,不需要加磁复位措施。
7.在反激式开关电源中,电压器既具有储能的功能,有具有变压和隔离的功能。
正激式开关电源的优点和缺点1 正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好。
正激式变压器开关电源正好是在变压器的初级线圈被直流电压激励时,变压器的次级线圈向负载提供功率输出,并且输出电压的幅度是基本稳定的,此时尽管输出功率不停地变化,但输出电压的幅度基本还是不变,这说明正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好;只有在控制开关处于关断期间,功率输出才全部由储能电感和储能电容两者同时提供,此时输出电压虽然受负载电流的影响,但如果储能电容的容量取得比较大,负载电流对输出电压的影响也很小。
2 正激式变压器开关电源负载能力相对来说比较强。
由于正激式变压器开关电源一般都是选取变压器输出电压的一周平均值,储能电感在控制开关接通和关断期间都向负载提供电流输出,因此,正激式变压器开关电源的负载能力相对来说比较强,输出电压的纹波比较小。
如果要求正激式变压器开关电源输出电压有较大的调整率,在正常负载的情况下,控制开关的占空比最好选取在0.5左右,或稍大于0.5,此时流过储能滤波电感的电流才是连续电流。
当流过储能滤波电感的电流为连续电流时,负载能力相对来说比较强。
3正激式变压器开关电源的电压和电流输出特性要比反激式变压器开关电源好很多。
当控制开关的占空比为0.5时,正激式变压器开关电源输出电压uo的幅值正好等于电压平均值Ua的两倍,流过滤波储能电感电流的最大值Im也正好是平均电流Io(输出电流)的两倍,因此,正激式变压器开关电源的电压和电流的脉动系数S都约等于2,而与反激式变压器开关电源的电压和电流的脉动系数S相比,差不多小一倍,说明正激式变压器开关电源的电压和电流输出特性要比反激式变压器开关电源好很多。
4正激式开关电源比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。
正激式变压器开关电源的缺点也是非常明显的。
其中一个是电路比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。
此外,正激式变压器开关电源输出电压受占空比的调制幅度,相对于反激式变压器开关电源来说要低很多,这个从(1-77)和(1-78)式的对比就很明显可以看出来。
因此,正激式变压器开关电源要求调控占空比的误差信号幅度比较高,误差信号放大器的增益和动态范围也比较大。
5正激式开关电源的体积比较大。
正激式变压器开关电源为了减少变压器的励磁电流,提高工作效率,变压器的伏秒容量一般都取得比较大(伏秒容量等于输入脉冲电压幅度与脉冲宽度的乘积,这里用US来表示),并且为了防止变压器初级线圈产生的反电动势把开关管击穿,正激式变压器开关电源的变压器要比反激式变压器开关电源的变压器多一个反电动势吸收绕组,因此,正激式变压器开关电源的变压器的体积要比反激式变压器开关电源的变压器的体积大。
6正激式开关电源的变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。
正激式变压器开关电源还有一个更大的缺点是在控制开关关断时,变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。
因为一般正激式变压器开关电源工作时,控制开关的占空比都取在0.5左右,而反激式变压器开关电源控制开关的占空比都取得比较小。
7双管正激式转换器可以应用于较高电压输入,较大功率输出的场合。
双端隔离式PWM DC/DC转换器,在一个开关周期内,功率从隔离变压器的初级绕组的一端和另一端交替的输入,故称双端。
双端隔离式PWM DC/DC转换器的磁芯在B-H平面坐标系的第一和第三象限运行,故磁芯可以得到充分的利用。
*********************************************************************************************************************************************************************************************************************************************************************************************。