2019年6月西南大学网络教育大作业答案-数学建模0349.doc
- 格式:doc
- 大小:86.00 KB
- 文档页数:2
高等数学选讲第三次作业答案1:[论述题]1.计算下列二重积分:(p.103:习题9-2 1. (1);(2))(1) ,其中D是矩形闭区域:;(2) ,其中D是由两坐标轴及直线所围成的闭区域.参考答案:解:(1)(2) D可表示为:,2:[论述题]2.证明下列曲线积分在整个面内与路径无关,并计算积分值:(p.184:习题10-3 4.(2))参考答案:解:故被积式是函数的全微分,从而题设线积分与路径无关,且3:[论述题]3.利用格林公式,计算下列曲线积分:(p.184:习题10-3 ,5.(1)),其中L为三顶点分别为、和的三角形正向边界.解:原式4:[论述题]4.求下列幂级数的收敛区间:(p.263:习题11-3 1.(2))参考答案:解:;当时,数值级数的绝对值级数为:由级数的收敛性,知上列级数收敛,从而幂级数在也收敛,收敛区间为。
5:[论述题]5.将数展开成的幂级数。
(p.275:习题11-4 6.)参考答案:解:其中即由,故上述幂级数的收敛区间为。
6:[论述题]6. 求下列微分方程的通解:(p.333:习题12-2 1.(8))解:7:[论述题]7.求下列微分方程的通解:(p.348:习题12-4 1.(7))参考答案:解:8:[论述题8.求下列微分方程的通解:(p.394:习题12-10 1. (1))参考答案:解:特征方程:特征根:∴自由项,属型,这里(为常数),是零次多项式,其同次多项式也是常数,设;这里不是特征根,在中取,于是设特解且代入原方程,得∴,。
2019 高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B 题“同心协力”策略研究“同心协力” (又称“同心鼓”)是一项团队协作能力拓展项目。
该项目的道具是一面牛皮双面鼓,鼓身中间固定多根绳子,绳子在鼓身上的固定点沿圆周呈均匀分布,每根绳子长度相同。
团队成员每人牵拉一根绳子,使鼓面保持水平。
项目开始时,球从鼓面中心上方竖直落下,队员同心协力将球颠起,使其有节奏地在鼓面上跳动。
颠球过程中,队员只能抓握绳子的末端,不能接触鼓或绳子的其他位置。
图片来源:项目所用排球的质量为 270 g。
鼓面直径为 40 cm,鼓身高度为 22 cm,鼓的质量为 kg 。
队员人数不少于 8 人,队员之间的最小距离不得小于 60 cm。
项目开始时,球从鼓面中心上方 40 cm处竖直落下,球被颠起的高度应离开鼓面 40 cm以上,如果低于 40cm,则项目停止。
项目的目标是使得连续颠球的次数尽可能多。
试建立数学模型解决以下问题:1.在理想状态下,每个人都可以精确控制用力方向、时机和力度,试讨论这种情形下团队的最佳协作策略,并给出该策略下的颠球高度。
2.在现实情形中,队员发力时机和力度不可能做到精确控制,存在一定误差,于是鼓面可能出现倾斜。
试建立模型描述队员的发力时机和力度与某一特定时刻的鼓面倾斜角度的关系。
设队员人数为 8,绳长为,鼓面初始时刻是水平静止的,初始位置较绳子水平时下降 11 cm,表 1 中给出了队员们的不同发力时机和力度,求 s 时鼓面的倾斜角度。
表 1 发力时机(单位:s)和用力大小(单位:N)取值序号用力参数 1 2 3 4 5 6 7 8 鼓面倾角(度)1 发力时机0 0 0 0 0 0 0 0 用力大小90 80 80 80 80 80 80 802 发力时机0 0 0 0 0 0 0 0 用力大小90 90 80 80 80 80 80 803 发力时机0 0 0 0 0 0 0 0 用力大小90 80 80 90 80 80 80 804 发力时机0 0 0 0 0 0 0 用力大小80 80 80 80 80 80 80 805 发力时机0 0 0 0 0 0 用力大小80 80 80 80 80 80 80 806 发力时机0 0 0 0 0 0 用力大小80 80 80 80 80 80 80 807 发力时机0 0 0 0 0 0 0 用力大小90 80 80 80 80 80 80 808 发力时机0 0 0 0 0 0 用力大小90 80 80 90 80 80 80 809 发力时机0 0 0 0 0 0用力大小90 80 80 90 80 80 80 803.在现实情形中,根据问题 2 的模型,你们在问题 1 中给出的策略是否需要调整?如果需要,如何调整?4.当鼓面发生倾斜时,球跳动方向不再竖直,于是需要队员调整拉绳策略。
(0349)《数学建模》复习思考题答案一、名词解释1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。
2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。
3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。
4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。
5.测试分析:将研究对象看作一个“黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。
6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。
7.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。
8.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。
9.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。
10.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。
11.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。
12.思维模型:指人们对原形的反复认识,将获取的知识以经验的形式直接储存于人脑中,从而可以根据思维或直觉作出相应的决策。
13.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。
14.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。
15.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。
单项选择题1、经济增长模型中, 经济(生产率)增长的条件是( )..整数模型.静态模型.动态模型.线性模型2、.上述A.上述C.上述D.上述B3、层次分析法中, 成对比较尺度为3, 表示为( )..强.稍强.稍弱.弱4、天气预报的评价中, 计数模型里若明天有雨概率<50%, 则( )..预报有雨.预报无效.不予统计.预报无雨5、. F. 上述A.上述B.上述C.上述D6、交通流与道路通行能力中, 车流密度较大时适用( )..整数模型.指数模型.线性模型.对数模型7、奶制品的生产与销售中, 用LINGO求解,输出丰富,利用影子价格和( ) 可对结果做进一步研究..灵敏性分析.价值系数范围.变量取值.敏感性分析8、动态优化问题指最优解是( )..数.实数.函数.整数9、软件开发人员的薪金中, ( ),有助于得到更好的结果..保留全部数据.剔除异常数据.保留异常数据.剔除部分数据10、如何施救药物中毒中, 口服活性炭来吸附药物,可使药物的排除率增加到原来(人体自身)的( ) 倍. . A. 1.5. 3. 2.5. 211、牙膏的销售量中, 建立统计回归模型时, 通过增添( ), 二次项等进行模型改进.. C. 一次项.交互项.回归项.统计项12、模型假设在合理与简化之间作出( )..取舍.选择.优化.折中13、回归模型是通过( ) 讨论如何选择不同类型的模型..变量.数据.约束.实例14、实物交换中, 同一族无差别曲线( )..没有交点.共有1个交点.每两条有2个交点.每两条有1个交点15、求解静态优化模型一般用( )..积分法.单纯形法.图解法.微分法16、.上述C.上述D.上述A.上述B17、数学建模的一般步骤包括模型准备, ( ), 模型构成, 模型检验, 模型分析, 模型求解, 模型应用..模型约束.模型假设.模型变量.模型符号18、污水均流池的设计中, 假设认为设计均流池最大容量时需留有( ) 的裕量.. 20%. 15%. 25%. 30%19、动态模型描述对象特征随( ) 的演变过程..时间或空间.时间或地点.时间.地点20、商人们怎样安全过河中, 随从们密约, 在河的任一岸, 一旦随从的人数比商人( ), 就杀人越货.. D. 多.相等.少.多或相等21、椅子在不平的地面上放稳, 假设认为地面高度( ).. E. 慢慢变化.小范围变化.连续变化.基本不变22、下列哪种模型是实物模型..水箱中的舰艇.火箭模型.分子结构图.电路图23、多元函数条件极值, 最优解在可行域的( ) 上取得..边界.顶点.内部.原点24、层次分析模型属于( ) 模型..离散.整数.非线性.线性25、传染病模型描述的是传染病的( ) 过程..增长.传播.变化.减少26、层次分析法对于不一致的成对比较阵, 建议用对应于( )的特征向量作为权向量..最小特征根.第一特征根.第二特征根.最大特征根27、机理分析和测试分析二者结合是用机理分析建立( ), 用测试分析确定模型参数..模型约束.模型内容.模型框架.模型结构28、双层玻璃窗的功效中, 双层与单层窗传导的热量之比为( ).. B. 2/(s+2). 1/(s+1). 1/(s+2). 2/(s+1)29、.提高阈值.提高卫生水平.群体免疫.提高医疗水平判断题30、实物交换中, 甲乙双方最终的交换方案是交换路径上的任一点. . A.√. B.×31、牙膏的销售量中, 价格差较小时更需要靠广告来吸引顾客的眼球.. A.√. B.×32、模型的基本特征是由构造模型的目的决定的.. A.√. B.×33、线性规划模型的最优解一定在凸多边形的某个顶点取得.. A.√. B.×34、传染病模型的模型3(SIS模型)中, 传染病有免疫性.. A.√. B.×35、地图、电路图、照片都是符号模型.. A.√. B.×36、软件开发人员的薪金中, 0-1变量的个数可比定性因素的水平少1.. A.√. B.×37、原型和直观模型是一对对偶体。
数学模型课程期末大作业题1、课本Page 56 ex82、课本Page 56 ex103、课本Page 57 ex124、课本Page 57 ex135、课本Page 57 ex146、课本Page 82 ex77、课本Page 83 ex88、课本Page 83 ex99、课本Page 83 ex1011、课本Page 180 ex6,ex712、课本Page 181 ex1113、课本Page 181 ex1214、课本Page 181 ex1315、课本Page 181 ex1416、课本Page 181 ex1517、课本Page 182 ex1618、课本Page 182 ex17,ex1819、课本Page 182 ex1920、课本Page 182 ex2021、课本Page 214 ex1122、课本Page 214 ex1223、课本Page 248 ex1324、课本Page 248 ex1425、课本Page 248 ex1526、课本Page 248 ex1627、课本Page 248 ex1728、生产安排问题某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。
工厂收益规定作产品售价减去原材料费用之余。
每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1):表1各种产品各月份的市场容量如下表(表2):表2每种产品存货最多可到100件。
存费每件每月为0.5元。
现在无存货。
要求到6月底每种产品有存货50件。
工厂每周工作6天,每天2班,每班8小时。
不需要考虑排队等待加工的问题。
在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合适的月份维修。
除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。
扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。
停工时间的这种灵活性价值若何?注意,可假设每月仅有24个工作日。
西南大学网络与继续教育学院课程考试答题卷学号:1517580663001 姓名:任文莉 2016 年6 月课程名称【编号】:数学建模【0349 】(横线以下为答题区)答题不需复制题目,写明题目编号,按题目顺序答题一、名词解释1、数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。
2、原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。
3、机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。
4、概率模型:如何用随机变量和概率分布描述随机因素的影响,建立比较简单的随机模型叫概率模型。
5、二、填空题1、描述模型、预报模型、优化模型、决策模型、控制模型2、X(t)=rX(1-X/N)3、随机变量、概率分布4、19.44 万元5、19 天,2090 件6、想象和逻辑思维三、问答题1、答(1)在一般工程技术领域,数学建模仍然大有用武之地。
(2)在高新技术领域,数学建模几乎是必不可少的工具。
(3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。
2、答:确定性模型和随机性模型、静态模型和动态模型、线性模型和非线性模型、离散模型和连续模型。
3、答:(1)列出约束条件及目标函数(2)画出约束条件所表示的可行域(3)在可行域内求目标函数的最优解及最优值。
4、答:随机存储策略是反映存储策略(库存数量和进货数量)与存储费用之间关系的数学模型。
四、分析题1、答:题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个:(1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等;(2)学生:是否连续上课,专业课课时与共同课是否冲突,选修人数等;(3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件;2、答:(1)因为可行域的右上方无界,故将出现目标函数趋于无穷大的情形,结果是问题具有无界解;(2)将最优解代入约束条件可知第二个约束条件为严格不等式,而其他为严格等式。
1、西南大学网络教育2018年春[0917]《高等数学》答案2、西南大学网络教育【0917】3、西南大学网络教育0917高等数学4、西南大学网络教育2016年6月〈高等数学〉[0917]试卷大作业A答案5、西南大学网络与继续教育学院0917大作业答案6、西南大学网络与继续教育学院0917高等数学大作业答案7、西南大学网络与继续教育学院高等数学【0917】大作业答案8、西南大学2016年6月[0917]《高等数学》大作业A 答案9、西南大学2016年6月网教《高等数学》【0917】大作业A 答案10、西南大学2016年6月网络教育学院《高等数学》[0917]大作业A标准答案11、西南大学2016年12月[0917]〈高等数学〉大作业A答案12、西南大学2016年12月网络教育学院西南大学(0917)《高等数学》大作业A答案13、西南大学2016年12月网络与继续教育【0917】《高等数学》大作业答案14、西南大学2016年12月网络与继续教育学院《高等数学》【0917】大作业答案15、西南大学2017年6月网络教育-[0917]《高等数学》16、西南大学2017年12月网教大作业答案-高等数学【0917】doc17、西南大学2017年12月网络教育大作业答案-091718、西南大学2017年12月网络教育大作业答案-0917高等数学19、西南大学2018年6月网络与继续教育学院大作业答案-0917高等数学20、西南大学网络继续教育学院2016年12月[091721、西南大学网络教育[0917]《高等数学》------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------(一)计算题(本大题共9小题,每小题10分,共90分)1. 求.解:本题考虑无穷多个无穷小之和.先变形再求极限2.求不定积分.解:3. 求定积分. 解: ⎰⎰---=1010x x xde dx xe ⎪⎭⎫ ⎝⎛--=⎰--1010dx e xe x x ()()⎥⎦⎤⎢⎣⎡-+--=⎰--1010x d e e x ⎪⎭⎫ ⎝⎛+-=--101xe e ()[]111-+-=--e e121--=e4. 求函数的微分. 解:5. 求函数的极值.6. 计算抛物线与直线所围图形的面积. 解:面积微元:所求面积:7.求函数的全微分.解:因为8. 求三元函数的偏导数.解:把和z 看作常数,对求导得把和看作常数,对求导得把和看作常数,对求导得9.求解微分方程解:原方程变形为(齐次方程)令则故原方程变为即分离变量得两边积分得或回代便得所给方程的通解为(二)证明题(本大题共1小题,每小题10分,共10分)1. 证明方程有且仅有一个小于1的正实根.------------------------------------------------------------------------------------------------------------------------0917高等数学------------------------------------------------------------------------------------------------------------------------西南大学网络与继续教育学院课程考试试题卷类别:网教 专业:机电一体化技术、车辆工程、电力系统自动化技术 2016年6月课程名称【编号】: 高等数学 【0917】 A 卷大作业 满分:100分(一)计算题(本大题共9小题,每小题10分,共90分)1. 求.解:2. 求不定积分.解:3. 求定积分.dx xdx x dxx x dx x x x x dx x x x x = + + = + + = + + + = + + + ⎰ ⎰ ⎰ ⎰ ⎰ …………………………………… 1 1 1 ) 11 1 ( ) 1 ( ) 1 ( ) 1 ( 12 2 2 2 2 2 x x x x x x x x x x x x 1 1 1 1 1 1 1 1 1 lim lim lim lim 1 = ⎪⎭⎫ ⎝ ⎛ - + = ⎥ ⎥ ⎦⎤ ⎢ ⎢ ⎣⎡ ⎪ ⎭ ⎫⎝ ⎛ - + = ⎪ ⎭ ⎫ ⎝ ⎛- + = ⎪ ⎭ ⎫ ⎝ ⎛ - - ∞ → - - ∞ → ∞ → ∞ →解:4. 求函数的导数.解:5. 求函数的极值.解:6. 求函数的二阶偏导数及.7. 计算函数的全微分.带做秋秋:334123452 32620794528. 求微分方程 的通解.解:.,·ln 2221211212x C x C C x Ce y e C e e e y C x y xdx y dyxdx y dy =±=±=±=+=⇒==+⎰⎰解,则得到题设方程的通记从而两端积分得分离变量得( ) [ ] ( ) [ ]( ) (1)( sin 3 ) (sin sin 2 1 sin 3 ) sin ( ) sin (3 sin 2 2 ' 2 2 ' 2 2 2 3 2 ''x x x x x x x x x x x x y + + = + + = + + = + = . ) (sin 5 2 ) (sin 5 2sin ) (sin sin ) (sin ) (sin cos ) (sin cos ) (sin cos sin sin ) (sin cos sin sin 22 5 2 0 2 5 23 2 23 2 023 2232 023 05 3 35 3 = - = - =- ==- ∴= - ⎰ ⎰⎰ ⎰⎰ ⎰ xxx xx x xx x xxx x x d x x d x dxx x dx x x dx x x dx x x x x x x9. 计算,其中是抛物线及直线所围成的闭区域.解:D 既是X-型,也是Y-型,但选择前者计算比较麻烦,需将积分区域划分为两部门来计算,故选择后者。
数学模型课程期末大作业题1、课本Page 56 ex82、课本Page 56 ex103、课本Page 57 ex124、课本Page 57 ex135、课本Page 57 ex146、课本Page 82 ex77、课本Page 83 ex88、课本Page 83 ex99、课本Page 83 ex1011、课本Page 180 ex6,ex712、课本Page 181 ex1113、课本Page 181 ex1214、课本Page 181 ex1315、课本Page 181 ex1416、课本Page 181 ex1517、课本Page 182 ex1618、课本Page 182 ex17,ex1819、课本Page 182 ex1920、课本Page 182 ex2021、课本Page 214 ex1122、课本Page 214 ex1223、课本Page 248 ex1324、课本Page 248 ex1425、课本Page 248 ex1526、课本Page 248 ex1627、课本Page 248 ex1728、生产安排问题某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。
工厂收益规定作产品售价减去原材料费用之余。
每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1):表1各种产品各月份的市场容量如下表(表2):表2每种产品存货最多可到100件。
存费每件每月为0.5元。
现在无存货。
要求到6月底每种产品有存货50件。
工厂每周工作6天,每天2班,每班8小时。
不需要考虑排队等待加工的问题。
在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合适的月份维修。
除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。
扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。
停工时间的这种灵活性价值若何?注意,可假设每月仅有24个工作日。
0349 《数学建模》判断题1、做数学规划的模型中一般有先剖析问题,找出目标函数以及拘束条件,进而得出线性规划问题的数学符号及式子等步骤1. A. √2. B. ×2、掌握建模这门艺术。
培育想象力和洞察力只需学习、剖析、评论、改造他人作过的模型就能够了。
1. A. √2. B. ×3、追求公正分派席位方法的重点是成立权衡公正程度的既合理有简洁的数目指标。
1. A. √2. B. ×4、依据若干人对某些对象的决议结果,综合出这个集体的决议结果的过程称为集体决议。
1. A. √2. B. ×5、权衡一个数学模型的好坏在于它采纳了什么样的数学方法。
1. A. √2. B. ×6、用建模法解决实质问题,第一是用数学语言表述问题,其次才用数学工具求解构成的模型。
1. A. √2. B. ×7、一个原型只好成立一个模型。
1. A. √2. B. ×8、模型只需求反应与某种目的相关的那些方面和层次。
1. A. √2. B. ×9、原型和直观模型是一对对偶体。
1. A. √2. B. ×主观题10、随机模型:参照答案:假如随机要素对研究对象的影响一定考虑,就应当成立随机性的数学模型11、想象力参照答案::指人们在原有知识基础上,将新感知的形象与记忆中的形象互相比较、重理,创建出新形象,是一种形象思想活动。
12、机理剖析:参照答案:依据对客观事物特征的认识,找出反应内部机理的数目规律,成立的模型常或现实意义。
13、思想模型:参照答案:指人们对原形的频频认识,将获得的知识以经验的形式直接储藏于人脑中,或直觉作出相应的决议。
14、数学模型:参照答案:是由数字、字母或其余数字符号构成的,描绘现实对象数目规律的数学公15、计算机模拟:参照答案:依据实质系统或过程的特征,依据必定的数学规律用计算机程序语言模拟实据大批模拟结构对系统或过程进行定量剖析。
1、理性思维的含义包括的四个方面是.独立思考,不迷信权威;尊重事实,不感情用事;思辨分析,不混淆是非;严谨推理,不违背逻辑。
.独立思考,不迷信权威;尊重事实,不感情用事;思辨分析,不混淆是非;合情推理,不需要逻辑推理。
.博采众长,不独断猜测;尊重群众,不采纳少数意见;思辨分析,不混淆是非;严谨推理,不违背逻辑。
.合作交流,不单独思考;尊重事实,不感情用事;思辨分析,不混淆是非;严谨推理,不违背逻辑。
2、数学史教育应该遵循的四个原那么是.B. 科学性、实用性、趣味性、广泛性.普及性、实用性、趣味性、广泛性.科学性、实用性、趣味性、民族性.科学性、教育性、趣味性、广泛性3、?周易?对中国古代数学开展的影响主要表现在以下三个方面.第一,易数在各领域的广泛应用和开展;第二,?周易?对中国古代数学家知识构造的影响;第三,?周易?对中国古代数学思维方式的影响。
.第一,提出了勾股定理;第二,阐述了“割圆术〞;第三,提出了“辉三角〞.第一,易数在各领域的广泛应用和开展;第二,阐述了“割圆术〞;第三,算命.第一,提出了勾股定理;第二,?周易?对中国古代数学家知识构造的影响;第三,?周易?对中国古代数学思维方式的影响。
4、中学数学教学中最重要的三种根本思想方法是.F. 函数思想、方程思想和数形结合思想.化归思想、方程思想和概率统计思想.函数思想、算法思想和概率统计思想.函数思想、方程思想和概率统计思想5、古希腊文明的数学标志性著作是.?高观点下的初等数学?.?九章算术?.?怎样解题?6、波利亚认为中学数学教育的根本任务是.教会学生解题.教会学生思考.教会学生应用.教会学生猜测7、.在数学教学成为一门科学学科的历史开展过程中,有两门学科对其有过根本性的影响,它们是.C. 数学和心理学.数学与物理学.教育学与数学.教育学与心理学8、决定数学教学目标的主要依据是.学生的年龄特征.学生的情感因素.教师的教学能力.教材的难度9、波利亚在“怎样解题表〞中,将解题过程分为.E. 了解问题、拟定方案、实现方案三大步骤.了解问题、拟定方案、实现方案和回忆四大步骤.读题、解题、反思三大步骤.读题、解题过程、作答三大步骤10、中国古代数学的标志性著作是.?几何原本?.?周髀算经?.?易经?11、?全日制义务教育数学课程标准〔实验稿〕?的根本理念给义务教育数学课程的定位是.A. 根底性、普及性与灵活性.D. 根底性、普及性与开展性.选择性、根底性与操作性.根底性、选择性与开展性12、中国古代数学教育的主要目的是.选拔人才.经世致用.普及算法.思维训练多项选择题13、数学命题的教学设计的重点是.结论的发现过程.推导的思考过程.熟记命题的方法.弄清命题的条件与结论14、中国数学双基教学的特征是.重复练习依赖变式获得提升.记忆通向理解直至形成直觉.运算速度赢得思维效率15、“提高课堂效益的初中数学教改实验〞的指导思想、原那么和方法是.积极前进,循环上升.开门见山,适当集中.淡化形式,注重实质.先做后说,师生共作16、美籍匈牙利数学教育家波利亚关于解数学解题理论的代表作是.?数学的发现?.?中小学生数学能力心理学?.?数学与猜测?.?怎样解题? 17、构建数学课堂文化最重要的因素是.创造.安静.合作.民主18、弗赖登塔尔关于现实数学教育中的数学化的两种形式是.将数学问题转化为实际应用问题.将数学概念复原成为现实生活实例.实际问题转化为数学问题的数学化,即发现实际问题中的数学成分,并对这些成分作符号化处理。