2018 初三数学中考总复习 平面直角坐标系与函数 专题训练题 含答案
- 格式:doc
- 大小:438.50 KB
- 文档页数:11
(专题精选)初中数学函数之平面直角坐标系全集汇编含答案一、选择题1.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.2.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.详解:∵点A(a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a<-1,b>2,则-a>1,1-b<-1,故点B(-a,1-b)在第四象限.故选D.点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3.下列说法正确的是()A.相等的角是对顶角B.在同一平面内,不平行的两条直线一定互相垂直C.点P(2,﹣3)在第四象限D.一个数的算术平方根一定是正数【答案】C【解析】【分析】直接利用对顶角的性质以及算术平方根和平行线的性质以及坐标与图形的性质分别分析得出答案.【详解】解:A、相等的角是对顶角,错误;B、在同一平面内,不平行的两条直线一定相交,故此选项错误;C、点P(2,﹣3)在第四象限,正确;D、一个数的算术平方根一定是正数或零,故此选项错误.故选:C.此题主要考查了坐标与图形的性质、对顶角的性质等知识,正确把握相关性质是解题关键.4.点P(a,b)在y轴右侧,若P到x轴的距离是2,到y轴的距离是3,则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(3,2)或(3,﹣2)D.(2,3)或(2,﹣3)【答案】C【解析】【分析】根据点P在y轴右侧可知点P在第一象限或第四象限,结合点P到x轴的距离是2可知点P的纵坐标是2或2-,而再根据其到y轴的距离是3得出点P的横坐标是3,由此即可得出答案.【详解】∵点P在y轴右侧,∴点P在第一象限或第四象限,又∵点P到x轴的距离是2,到y轴的距离是3,-,横坐标是3,∴点P的纵坐标是2或2∴点P的坐标是(3,2)或(3,2-),故选:C.【点睛】本题主要考查了直角坐标系中各象限内点的坐标特征,熟练掌握相关概念是解题关键.5.如图,在菱形ABCD中,点,B C在x轴上,点A的坐标为()0,23,分别以点,A B为圆心、大于12AB的长为半径作弧,两弧相交于点,E F.直线EF恰好经过点,D则点B的坐标为()A.()1,0B.)3,0C.()2,0D.()3,0【答案】C【解析】【分析】连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出OB=2,从而得到B点坐标.【详解】解:连接DB,如图,由作法得EF垂直平分AB,∴DA=DB,∵四边形ABCD是菱形,∴AD∥BC,AD=AB,∴AD=AB=DB,∴△ADB为等边三角形,∴∠DAB=60°,∴∠ABO=60°,∵A(0,23∴OA=23∵∠ABO =60°,∠AOB =90°,∴∠BAO =30°,∴在Rt △AOB 中,AB =2OB ,∵OB 2+OA 2=AB 2,∴OB 2+()232=(2OB )2,∴OB =2(舍负),∴B (2,0).故选:C .【点睛】本题考查了作图基本作图:作已知线段的垂直平分线,也考查了线段垂直平分线的性质和菱形的性质以及30°的直角三角形的特殊性质.6.在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为23π个单位长度/秒,则2019秒时,点P 的坐标是( )A .()2019,0B .(3C .(2019,3-D .()2018,0【答案】C【解析】【分析】 如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数),根据锐角三角函数和扇形的弧长公式求得414+34+442(413),(42,0),(43,3),(44,0)n n n n P n P n P n P n +++++-+,根据201945043=⨯+即可求解点P 的坐标.【详解】如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数)2,60OA AOB ︒=∠=Qsin 3cos 1AB OA AOB OB OA AOB ∴=⋅∠==⋅∠=,圆心角为60°的扇形的弧长为60221803ππ⨯= 12345(13),(2,0),(3,3)(4,0),3),,P P P P P ∴-L1244(413),n n P n P ++∴+4+34+4(42,0),(43,3),(44,0)n n n P n P n ++-+201945043=⨯+Q∴2019秒时,点P 的坐标为(2019,3-故答案为:C .【点睛】本题考查了坐标类的规律题,掌握各点坐标的规律是解题的关键.7.下列说法中,正确的是( )A .点P (3,2)到x 轴距离是3B .在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C .若y =0,则点M (x ,y )在y 轴上D .在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号【答案】D【解析】【分析】根据点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点逐一判断可得.【详解】A 、点P (3,2)到x 轴距离是2,此选项错误;B 、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;C 、若y =0,则点M (x ,y )在x 轴上,此选项错误;D 、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确; 故选D .【点睛】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.8.如图,若A 、B 两点的坐标分别为(﹣3,5)、(3,5),则点C 坐标为( )A.(﹣2,6)B.(﹣1,6)C.(﹣2,7)D.(﹣1,7)【答案】D【解析】【分析】根据A、B的坐标判断出y轴在AB的垂直平分线上,结合图形可得点C的纵坐标比A、B 的纵坐标大2,然后解答即可.【详解】如图所示,∵A、B两点的坐标分别为(﹣3,5)、(3,5),∴则点C坐标为(﹣1,7),故选:D.【点睛】本题考查了坐标确定位置,准确识图,判断出y轴的位置以及点C的纵坐标与点A、B的纵坐标的关系是解题的关键.9.如图,在平面直角坐标系中,点O是坐标原点,四边形ABOC是正方形,其中,点A 在第二象限,点,B C在x轴、y轴上.若正方形ABOC的面积为36,则点A的坐标是()A .()6,6-B .()6,6-C .(D . 【答案】B【解析】【分析】 由正方形的面积可以把正方形的边长计算出来,根据点A 在第二象限和,B C 在x 轴、y 轴上,可以得到点A 的坐标.【详解】解:∵正方形ABOC 的面积为36,∴假设正方形ABOC 的边长为x ,则236x =,解得6x =或者6x =-(舍去),又∵点A 在第二象限,因此,A 点坐标为()6,6-,点,B C 在x 轴、y 轴上,故B 为答案.【点睛】本题主要考查了正方形的性质、正方形的面积公式以及直角坐标系的基本特点,知道正方形面积能反过来求正方形的边长是解题的关键.10.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m +3=﹣1+3=2,∴点P 的坐标为(2,0).故选:B .【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x 轴上时纵坐标为0,得出m 的值是解题关键.11.在平面直角坐标系中,A ,B ,C 三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C12.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【答案】D【解析】【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.13.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P (2m-4,2m+4)在y 轴上,其横坐标为0,列式可得m 的值.【详解】∵P (2m-4,2m+4)在y 轴上,∴2m-4=0,解得m=2,故选:A .【点睛】此题考查点的坐标,解题关键在于掌握y 轴上点的横坐标为0.14.在平面直角坐标系xOy 中,若点P 在第四象限,且点P 到x 轴的距离为1,到y 轴的距离为3,则点的坐标为( )A .(3,-1)B .(-3,1)C .(1,-3)D .(-1,3)【答案】A【解析】【分析】根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,结合第四象限点(+,-),可得答案.【详解】解:若点P 在第四象限,且点P 到x 轴的距离为1,到y 轴的距离为3,则点的坐标为(3,-1),故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.如图,在平面直角坐标系中.四边形OABC 是平行四边形,其中()()2,03,1,A B 、将ABCD Y 在x 轴上顺时针翻滚.如:第一次翻滚得到111,AB C O Y 第二次翻滚得到1122B AO C Y ,···则第五次翻滚后,C 点的对应点坐标为( )A .()622,2+B .()2,622+ C .()2,622- D .()622,2- 【答案】A【解析】【分析】ABCD Y 在x 轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点A 的坐标,再利用平移的性质求出C 的对应点坐标即可.【详解】连接AC ,过点C 作CH ⊥OA 于点H ,∵四边形OABC 是平行四边形,A(2,0)、B(3,1),∴C(1,1),∴∠COA=45°,OC=AB=2,∴OH= OC÷2=1,∴AH=2-1=1,∴OA=AH ,∴OC=AC ,∴∆OAC 是等腰直角三角形,∴AC ⊥OC ,∵ABCD Y 在x 轴上顺时针翻滚,四次一个循环,∴第五次翻滚后点,A 的坐标为(6+22,0),把点A 向上平移2个单位得到点C , ∴第五次翻滚后,C 点的对应点坐标为()622,2+.故选:A .【点睛】本题主要考查图形与坐标,涉及平行四边形的性质,等腰直角三角形的性质以及平移的性质,找到点的坐标的变化规律,是解的关键.16.已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A .(3,4)B .(-3,4)C .(-4,3)D .(4,3)【答案】A【解析】【分析】根据题意,P 点应在第一象限,横、纵坐标为正,再根据P 点到坐标轴的距离确定点的坐标.【详解】解:∵P 点位于y 轴右侧,x 轴上方,∴P 点在第一象限,又∵P 点距y 轴3个单位长度,距x 轴4个单位长度,∴P 点横坐标为3,纵坐标为4,即点P 的坐标为(3,4).故选A .【点睛】本题考查了点的位置判断方法及点的坐标几何意义.17.已知()0,2A 、()10B ,,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标为( ) A .()6,0B .()4,0-C .()4,0-或()6,0D .无法确定【答案】C【解析】【分析】根据A 点的坐标可知BP 边上的高为2,而△PAB 的面积为5,点P 在x 轴上,说明BP=5,已知点B 的坐标,可求P 点坐标.【详解】解:∵B (1,0),A (0,2),点P 在x 轴上,∴BP 边上的高为2,又△PAB 的面积为5,∴BP=5,而点P 可能在点B (1,0)的左边或者右边,∴P (-4,0)或(6,0).故选:C .【点睛】本题考查了直角坐标系中,利用三角形的面积公式来求出三角形的底边.18.点P(1,-2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】点P(1,-2)所在的象限是第四象限,故选D.19.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【答案】C【解析】【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.20.在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为()A.1 B.2 C.3 D.1 或 3【答案】C【解析】【分析】根据题意可知:点A的横、纵坐标相等或互为相反数,然后列出方程即可求出a的两个值,最后根据点A在y轴的右侧,即可得出结论.【详解】解:∵点A到x轴的距离与到y轴的距离相等,∴3a﹣5=a+1或3a﹣5=﹣(a+1),解得:a=3或1,∵点A在y轴的右侧,∴点A的横坐标为正数,∴3a﹣5>0,∴a>53,∴a=3,故选:C.【点睛】此题考查的是点的坐标特征,掌握点到x轴的距离与到y轴的距离相等则点的横、纵坐标相等或互为相反数是解决此题的关键.。
平面直角坐标系与函数一.选择题(共5小题)1.(•重庆)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()2.(•柳州)如图,点A(﹣2,1)到y轴的距离为()3.(•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()4.(•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P的坐标是()=1==335 (5)5.(•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是().景仁宫(4,2)二.填空题(共11小题)6.(•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).7.(•广安)如果点M(3,x)在第一象限,则x的取值范围是x>0.8.(•甘孜州)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为(5,﹣5).=5=59.(•黑龙江)如图,在平面直角坐标系中,点A(0,)、B(﹣1,0),过点A作AB的垂线交x轴于点A1,过点A1作AA1的垂线交y轴于点A2,过点A2作A1A2的垂线交x轴于点A3…按此规律继续作下去,直至得到点A为止,则点A坐标为(﹣31008,0),.))10.(•绵阳)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是(2,﹣1).11.(•六盘水)观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:(2,7).12.(•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A 处的位置.则椒江区B处的坐标是(10,8)..13.(•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是(2,3).,横坐标保持不变,纵坐标分别变为原来的,则点14.(•梅州)函数中,自变量x的取值范围是x≥0.15.(•酒泉)在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.16.(•大庆)函数y=的自变量x的取值范围是x>0.。
中考数学复习函数与平面直角坐标系专题复习练习1. 在平面直角坐标系中,点P(1,2)关于原点的对称点P′的坐标是() A.(1,2) B.(-1,2) C.(1,-2) D.(-1,-2)2. 如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小3. 在平面直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位得到的点的坐标是( )A. (4,-3)B. (-4,3)C. (0,-3)D. (0,3)4. 在平面直角坐标系中,点P(-2,x2+1)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5. 点A(2,-5)关于x轴对称的点的坐标是( )A. (2,5)B. (-2,5)C. (-2,-5)D. (-5,2)6. 函数y=x-2x-3中自变量x的取值范围是( )A. x>2B. x≥2C. x≥2且x≠3D. x≠37. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的( )A B C D8. 如图,在Rt△ABC中,∠C=90°,AC=1 cm,BC=2 cm,点P从点A出发,以 1 cm/s 的速度沿折线AC→CB→BA 运动,最终回到点A.设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图象大致是( )9. 小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴、对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm,则图中转折点P的坐标表示正确的是( )A.(5,30) B.(8,10) C.(9,10) D.(10,10)10. 某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35 h时,选择B方式最省钱D.每月上网时间超过70 h时,选择C方式最省钱11. 平面内的点可以用一对有序实数对来表示.例如点M在平面内可表示为M(x,y),其中x表示点M的坐标,y表示点M的坐标;平面内的点和有序实数对是一一对应的关系.12. 点P(x,y)关于x轴(横轴)的对称点P1的坐标为;关于y轴的对称点P2的坐标为;关于原点的对称点P3的坐标为.13. 在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1).若线段AC与BD 互相平分,则点D关于坐标原点的对称点的坐标为.14. 在函数y=x+3+1x2中,自变量x的取值范围是.15. 在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是________________.16. 如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为.…17. 如图①,在Rt△ABC中,∠ACB=90°,点P以每秒1 cm的速度从点A出发,沿折线AC→CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(s)的函数图象如图②所示.当点P运动5 s时,求PD的长。
平面直角坐标系与函数的认识参考答案与试题解析一.选择题(共22小题)1.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.2.(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,AB=OD﹣OA=40﹣30=10,∴P(9,10);故选:C.3.(2018•广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2 C.m2 D.1009m2【分析】由OA4n=2n知OA2018=+1=1009,据此得出A2A2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.【解答】解:由题意知OA4n=2n,∵2018÷4=504÷2,∴OA2018=+1=1009,∴A2A2018=1009﹣1=1008,则△OA2A2018的面积是×1×1008=504m2,故选:A.4.(2018•宿迁)函数y=中,自变量x的取值范围是()A.x≠0 B.x<1 C.x>1 D.x≠1【分析】根据分母不等于零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.5.(2018•娄底)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:x≥2且x≠3.故选:C.6.(2018•黄冈)函数y=中自变量x的取值范围是()A.x≥﹣1且x≠1 B.x≥﹣1 C.x≠1 D.﹣1≤x<1【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:,解得x≥﹣1且x≠1,故选:A.7.(2018•南通)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.8.(2018•永州)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=3【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.9.(2018•内江)已知函数y=,则自变量x的取值范围是()A.﹣1<x<1 B.x≥﹣1且x≠1 C.x≥﹣1 D.x≠1【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x≥﹣1且x≠1.故选:B.10.(2018•潍坊)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A 点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S 与t之间的函数关系的是()A.B.C.D.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;当2≤t<4时,S=4××(4﹣t)=﹣2t+8;只有选项D的图形符合.故选:D.11.(2018•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB 向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q 两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.12.(2018•自贡)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A.数形结合B.类比C.演绎D.公理化【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.13.(2018•无锡)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤4【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,4﹣x≠0,解得x≠4.故选:B.14.(2018•荆门)在函数y=中,自变量x的取值范围是()A.x≥1 B.x>1 C.x<1 D.x≤1【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.15.(2018•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y 值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.16.(2018•内江)如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则如图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图是()A.B.C.D.【分析】根据在铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理和称重法可知y的变化,注意铁块露出水面前读数y不变,离开水面后y不变,即可得出答案.【解答】解:露出水面前排开水的体积不变,受到的浮力不变,根据称重法可知y不变;铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理可知受到的浮力变小,根据称重法可知y变大;铁块完全露出水面后一定高度,不再受浮力的作用,弹簧秤的读数为铁块的重力,故y不变.故选:C.17.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A 正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.18.(2018•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.19.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.20.(2018•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.21.(2018•岳阳)函数y=中自变量x的取值范围是()A.x>3 B.x≠3 C.x≥3 D.x≥0【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:函数y=中x﹣3≥0,所以x≥3,故选:C.22.(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.。
2018年中考数学专题复习卷: 平面直角坐标系一、选择题1.在平面直角坐标系中,点P(-1,2)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.点P(x﹣1,x+1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B. C. D.5.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)6. 抛物线(m是常数)的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 在平面直角坐标系中,点关于原点的对称点的坐标是()A. B. C. D.8. 已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法判断9.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A. 横坐标相等B. 纵坐标相等C. 横坐标的绝对值相等D. 纵坐标的绝对值相等10.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是()A. B. ﹣ C. D. ﹣11. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (﹣2,1)B. (﹣1,1)C. (1,﹣2)D. (﹣1,﹣2)12.如图,小手盖住的点的坐标可能为()A. (-4,-5)B. (-4,5)C. (4,5)D. (4,-5)二、填空题13.如果在y轴上,那么点P的坐标是________ .14.平面直角坐标系内,点P(3,-4)到y轴的距离是________15.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=________.16.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。
平面直角坐标系及函数一、选择题1.函数y=错误!中,自变量x的取值范围是()A.x≠-2 B.x≠2C.x<2 D.x〉2解析根据题意得:x-2≠0,解得:x≠2.答案B2.函数y=错误!的自变量x的取值范围是( )A.x>1 B.x<1C.x≤1 D.x≥1解析根据题意得:1-x≥0,解得:x≤1。
答案C3.函数y=错误!+错误!中自变量x的取值范围是( ) A.x≤3 B.x=4C.x<3且x≠4 D.x≤3且x≠4解析二次根式的被开方数是非负数,∴3-x≥0,即x≤3;分式的分母不等于0,∴x-4≠0,即x≠4.∴x≤3.故选A.答案A4.若a>0,则点P(-a,2)应在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析∵a>0,∴-a<0。
∵点P的横坐标是负数,纵坐标是正数,∴点P在平面直角坐标系的第二象限.答案B5.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C。
设BE=x,BC=y,则y关于x的函数解析式是()A.y=-错误!B.y=-错误!C.y=-错误!D.y=-错误!解析作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°,∴∠BDE=∠FEG。
在△DBE与△EGF中,错误!∴△DBE≌△EGF(AAS),∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y-3x。
∵FG⊥BC,AB⊥BC,∴FG∥AB,CG∶BC=FG∶AB,即错误!=错误!,∴y=-错误!.答案A二、填空题6.已知函数y=错误!,则自变量x的取值范围是________.解析由题意得,x-1〉0,解得x>1。
答案x>17.函数y=错误!+错误!中,自变量x的取值范围是________.解析由题意得,x+1≥0且x≠0,解得x≥-1且x≠0。
2019 初三数学中考复习 平面直角坐标系与函数 专项复习训练题1.函数y =x -3x -4的自变量x 的取值范围是( ) A .x>3 B .x ≥3 C .x>4 D .x ≥3且x≠42. 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )A .(-3,3)B .(3,2)C .(1,3)D .(0,3)3. 若函数y = 有意义,则( )A .x>1B .x<1C .x =1D .x ≠14. 使函数y =x 的取值范围是( )A .x <2B .x ≤2C .x ≥2D .x >25. 在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)6. 已知点A(m 2-2,5m +4)在第一象限角平分线上,则m 的值为 ( )A .6B .-1C .2或3D .-1或67. 在方格纸上有A ,B 两点,若以点A 为原点,建立平面直角坐标系,点B 的坐标为(2,3),则以点B 为原点,建立平面直角坐标系,则点A 的坐标为( )A .(2,3)B .(2,-3)C .(-2,-3)D .(-2,3)8. 如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则11x -点P的坐标不可能是( )A.(2,0) B.(4,0) C.(-8,0) D.(3,0)9. 函数y=1x+2中自变量x的取值范围是( )A.x>-2 B.x<-2 C.x≠-2 D.x≠010. 长方形的周长为240,两邻边长为x,y,则它们的关系是( ) A.y=120-x(0<x<120) B.y=120-x(0≤x≤120)C.y=240-x(0<x<240) D.y=240-x(0≤x≤240)11. 已知点A的坐标为(-2,3),则点A关于原点对称的点B的坐标为____.12. 点P(m-1,2m+1)在第一象限,则m的取值范围是__ __.13.函数y=12-x的自变量取值范围是__ __.14. 直角三角形的一个锐角的度数y与另一个锐角的度数x之间的函数关系式为y=90-x,则x的取值范围是_____________.15. 某镇三个厂址的地理位置如下:汽车配件厂在饲料厂的正南1 000 m,酒厂在汽车配件厂的正西800 m处,若酒厂的坐标是(-800,-1 000),则选取的坐标原点是_________.16. 如图,长方形ABCD的面积为8,点C的坐标为(0,1),点D的坐标为(0,3),则点A的坐标为________,点B的坐标为_________.17. 点A(2,1)与点B关于原点对称,则点B的坐标是_________.18. 在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为_________.19. 已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1) 点P在y轴上;(2) 点P的纵坐标比横坐标大3;(3) 点P到x轴的距离为2,且在第四象限.20. 已知长方形周长为20,其中一条边长为x,设长方形面积为y,写出y与x 的函数表达式,并写出自变量x的取值范围.21. 高空的气温与距地面的高度有关,某地地面气温为24 ℃,且已知离地面距离每升高1 km,气温下降6 ℃.(1)写出该地空中气温T(℃)与高度h(km)之间的函数表达式;(2)求距地面3 km处的气温T;(3)求气温为-6 ℃处距地面的高度h.22. 在如图所示的图形中建立平面直角坐标系,使点B,C的坐标分别为(2,0)和(6,0),根据坐标系提供的数据:(1)求点A,D,E,F,G的坐标;(2)求三角形BCF及四边形ABFG的面积参考答案1---10 DCDAD ACDCA11. (2,-3)12. m>113. x≠214. 0<x<9015. 饲料厂16. (-4,3) (-4,1)17. (-2,-1)18. (1,3)19. 解:(1)∵点P(2m+4,m-1)在y轴上,∴2m+4=0,解得m=-2,∴m-1=-2-1=-3,∴点P的坐标为(0,-3);(2)∵点P的纵坐标比横坐标大3,∴(m-1)-(2m+4)=3,解得m=-8,m-1=-8-1=-9,2m+4=2×(-8)+4=-12,∴点P的坐标为(-12,-9);(3)∵点P到x轴的距离为2,∴|m-1|=2,解得m=-1或m=3,当m=-1时,2m+4=2×(-1)+4=2,m-1=-1-1=-2,此时,点P(2,-2),当m=3时,2m+4=2×3+4=10,m-1=3-1=2,此时,点P(10,2),∵点P在第四象限,∴点P的坐标为(2,-2).20. 解:y=x(10-x),即y=-x2+10x,0<x<1021. 解:(1)T=24-6h(2)当h=3 km时,T=24-6×3=6(℃)(3)当气温为-6 ℃时,-6=24-6h,∴h=5,即高度h为5 km 22. 解:(1)A(0,3),D(8,1),E(7,3),F(5,2),G(3,5)(2)S △BCF =12×4×2=4,S 四边形ABFG =52-4×12×3×2=13。
中考数学专题复习第十一讲平面直角坐标系与函数【基础知识回顾】一、平面直角坐标系:1、定义:具有的两条的数轴组成平面直角坐标系,两条数轴分别称轴轴或轴轴,这两系数轴把一个坐标平面分成的四个部分,我们称作是四个2、有序数对:在一个坐标平面内的任意一个点可以用一对来表示,如A(a .b),(a .b)即为点A的其中a是该点的坐标,b是该点的坐标平面内的点和有序数对具有的关系。
3、平面内点的坐标特征:① P(a .b):第一象限第二象限第三象限第四象限X轴上Y轴上②对称点:(,) (,) (,)xP a b P a b P a b −−−−−→−−−−−→−−−−−→关于轴对称关于y轴对称关于原点对称③特殊位置点的特点:P(a .b)若在一、三象限角的平分线上,则若在二、四象限角的平分线上,则④到坐标轴的距离:P(a .b)到x轴的距离到y轴的距离到原点的距离⑤坐标平面内点的平移:将点P(a .b)向左(或右)平移h个单位,对应点坐标为(或),向上(或下)平移k个单位,对应点坐标为(或)。
名师提醒:坐标平面内点的坐标所具备的特征必须结合坐标平面去理解和记忆,不可生硬死记一些结论。
二、确定位置常用的方法:一般由两种:1、2、。
三、函数的有关概念:1、常量与变量:在某一变化过程中,始终保持的量叫做常量,数值发生的量叫做变量。
名师提醒:常量与变量是相对的,在一个变化过程中,同一个量在不同情况下可以是常量,也可能是变量,要根据问题的条件来确定。
2、函数:⑴函数的概念:一般的,在某个过程中如果有两个变量x、y,如果对于x的每一个确定的值,y都有的值与之对应,我们就成x是,y是x 的。
⑵自变量的取值范围:主要有两种情况:①、解析式有意义的条件,常见分式和二次根式两种情况②、实际问题有意义的条件:必须符合实际问题的背景⑶函数的表示方法:通常有三种表示函数的方法:①、法②、法③、法⑷函数的同象:对于一个函数,把自变量x和函数y的每对对应值作为点的与在平面内描出相应的点,符合条件的所有的点组成的图形叫做这个函数的同象名师提醒:①在确定自变量取值范围时要注意分式和二次根式同时存在,应保证两者都有意义,即被开方数应同时分母应。
(专题精选)初中数学函数之平面直角坐标系全集汇编附答案一、选择题1.在平面直角坐标系中,点P(-3,4)到x轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【解析】【分析】纵坐标的绝对值就是点到x轴的距离.【详解】∵|4|=4,∴点P(-3,4)到x轴距离为4.故选C.2.下列说法正确的是()A.相等的角是对顶角B.在同一平面内,不平行的两条直线一定互相垂直C.点P(2,﹣3)在第四象限D.一个数的算术平方根一定是正数【答案】C【解析】【分析】直接利用对顶角的性质以及算术平方根和平行线的性质以及坐标与图形的性质分别分析得出答案.【详解】解:A、相等的角是对顶角,错误;B、在同一平面内,不平行的两条直线一定相交,故此选项错误;C、点P(2,﹣3)在第四象限,正确;D、一个数的算术平方根一定是正数或零,故此选项错误.故选:C.此题主要考查了坐标与图形的性质、对顶角的性质等知识,正确把握相关性质是解题关键.0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时3.如图,动点P从().当点P第2018次碰到矩形的边时,点P的坐标为()反射角等于入射角A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.4.如图所示,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m),则点E 的坐标是( )A .(2,-3)B .(2,3)C .(3,2)D .(3,-2) 【答案】C【解析】【分析】【详解】∵点A 坐标为(0,a ),∴点A 在该平面直角坐标系的y 轴上,∵点C 、D 的坐标为(b ,m ),(c ,m ),∴点C 、D 关于y 轴对称,∵正五边形ABCDE 是轴对称图形,∴该平面直角坐标系经过点A 的y 轴是正五边形ABCDE 的一条对称轴,∴点B 、E 也关于y 轴对称,∵点B 的坐标为(﹣3,2),∴点E 的坐标为(3,2),故选C..【点睛】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y 轴.5.已知点() ,3A a 、点()3, B b -关于y 轴对称,点(),P a b --在第( )象限A .一B .二C .三D .四【答案】C【解析】【分析】根据点A 、点B 关于y 轴对称,求出a ,b 的值,然后根据象限点的符号特点即可解答.【详解】∵点() ,3A a 、点()3, B b -关于y 轴对称,∴a=3,b=3,∴点P 的坐标为()3, 3 --,∴点P 在第三象限,故答案为:C.【点睛】本题考查了轴对称和象限内点的符号特点,解题的关键是熟练掌握其性质.6.已知直线y x m =-+与直线1y x =-的交点在第四象限,则m 的取值范围是( ) A .1m >-B .1m <C .11m -<<D .11m -≤≤【答案】C【解析】【分析】解方程组求出交点坐标,根据交点在第四象限得到不等式组,即可求出答案.【详解】解方程组1y x m y x =-+⎧⎨=-⎩,得1212m x m y +⎧=⎪⎪⎨-⎪=⎪⎩, ∴直线y x m =-+与直线1y x =-的交点坐标是(12+m ,12m - ), ∵交点在第四象限, ∴102102m m +⎧>⎪⎪⎨-⎪<⎪⎩, 得-1<m<1,故选:C.【点睛】此题考查一次函数交点与二元一次方程组的关系:交点的横纵坐标即是方程组的解,直角坐标系中点的坐标的特点,熟记每个象限内点的坐标特点是解题的关键.7.在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点一定不在( ) A .直线y=-x 上B .直线y=x 上C .双曲线y=1xD .抛物线y=x 2上 【答案】C【解析】【分析】【详解】解:A 、若此点坐标是(0,0)时,在直线y=-x 上,故本选项错误;B 、若此点坐标是(0,0)时,在直线y=x 上,故本选项错误;C 、因为双曲线y=1x上的点必须符合xy=1,故x 、y 同号与已知矛盾,故本选项正确; D 、若此点坐标是(0,0)时,在抛物线y=x 2上,故本选项错误.故选C .【点睛】 本题考查反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.8.如图,已知A :(1,0).A 2(1,-1),A 3(-1,-l).A 4 (-1, 1), A 5 (2, 1),...则点A 2020的坐标是( )A .(506,505)B .(-505,-505)C .(505,-505)D .(-505,505)【答案】D【解析】【分析】 经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2020【详解】解:易得4的整数倍的各点如:4812,,A A A∵20204505÷=,∴点2020A 在第二象限,∴2020A 是第二象限的第505个点,∴2020A 的坐标为(-505,505),故选:D【点睛】本题考查了点的坐标规律,属于规律型,考查点的坐标,首先确定象限,再找出点之间的规律.9.如图,在平面直角坐标系上有个点(1,0)P ,点P 第1次向上跳动1个单位至点1(1,1)P ,紧接着第2次向左跳动2个单位至点2(1,1)P -,第3次向上跳动1个单位到达3(1,2)P -,第4次向右跳动3个单位到达4(2,2)P ,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点2019P 的坐标为( ).A .(505,1010)B .(505,505)-C .(505,1010)-D .(505,505)-【答案】C【解析】【分析】 设第n 次跳动至点Pn ,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)”,依此规律结合2019=504×4+3即可得出点P 2019的坐标.【详解】设第n 次跳动至点Pn ,观察发现:P (1,0),P 1(1,1),P 2(−1,1),P 3(−1,2),P 4(2,2),P 5(2,3),P 6(−2,3),P 7(−2,4),P 8(3,4),P 9(3,5),…,∴P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数).∵2019=504×4+3,∴P 2019(-504-1,504×2+2),即(505,1010)-.故选:C .【点睛】本题考查了规律型中点的坐标,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数)”是解题的关键.10.若点P(a ,b)在第二象限,则点Q(b ,1﹣a)所在象限应该是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】先根据点P(a ,b)在第二象限判断出a <0,b >0,据此可得1﹣a >0,从而得出答案.【详解】∵若点P(a ,b)在第二象限,∴a <0,b >0,则1﹣a >0,∴点Q(b ,1-a)所在象限应该是第一象限,故选:A .【点睛】本题是象限的考查,解题关键是判断横、纵坐标的正负11.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.12.已知()0,2A 、()10B ,,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标为( ) A .()6,0B .()4,0-C .()4,0-或()6,0D .无法确定【答案】C【解析】【分析】根据A 点的坐标可知BP 边上的高为2,而△PAB 的面积为5,点P 在x 轴上,说明BP=5,已知点B 的坐标,可求P 点坐标.【详解】解:∵B (1,0),A (0,2),点P 在x 轴上,∴BP 边上的高为2,又△PAB 的面积为5,∴BP=5,而点P 可能在点B (1,0)的左边或者右边,∴P (-4,0)或(6,0).故选:C .【点睛】本题考查了直角坐标系中,利用三角形的面积公式来求出三角形的底边.13.P 在第二象限,P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是( ) A .()2,3-B .()3,2-C .()3,2D .()2,3【答案】B【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度求解即可.【详解】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为3,∴点P的横坐标为-3,纵坐标为2,∴点P的坐标是(-3,2).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.14.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b),如f(1,2)=(-1,2);②g(a,b)=(b,a),如g(1,2)=(2,1);③h(a,b)=(-a,-b),如h(1,2)=(-1,-2);按照以上变换有:g(h(f (1,2)))=g(h(-1,2))=g(1,-2)=(-2,1),那么h(f(g(3,-4)))等于()A.(4,-3)B.(-4,3)C.(-4,-3)D.(4,3)【答案】C【解析】【分析】根据f(a,b)=(-a,b).g(a,b)=(b,a).h(a,b)=(-a,-b),可得答案.【详解】由已知条件可得h(f(g(3,-4)))= h(f(-4,3))= h(4,3)=(-4,-3)故选:C【点睛】本题考查了点的坐标,利用f(a,b)=(-a,b).g(a,b)=(b,a).h(a,b)=(-a,-b)是解题关键.15.会议室2排3号记作(2,3),那么3排2号记作()A.(3,2)B.(2,3)C.(-3,-2) D.(-2,-3)【答案】A【解析】【分析】根据有序数对的意义求解.【详解】会议室2排3号记作(2,3),那么3排2号记作(3,2).故选:A【点睛】关键是理解题意,理解有序数对的意义..16.若点A(a+2,b-1)在第二象限,则点B(-a,b-1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】【详解】解:因为点A(a+2,b-1)在第二象限,所以a+2<0,b-1>0,则-a>2,,b-1>0,即点B的横坐标为正数,纵坐标为正数,所以点B在第一象限,故选A17.在平面直角坐标系中,点(一6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】根据所给点的横纵坐标的符号可得所在象限.【详解】解:∵所给点的横坐标是-6为负数,纵坐标是5为正数,∴点(-6,5)在第二象限,故选:B.【点睛】本题考查象限内点的符号特点;用到的知识点为:符号为(-,+)的点在第二象限.18.在平面直角坐标系中,点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.19.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【答案】C【解析】【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.20.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.。
初中数学函数之平面直角坐标系专项训练解析附答案一、选择题1.在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为()A.1 B.2 C.3 D.1 或 3【答案】C【解析】【分析】根据题意可知:点A的横、纵坐标相等或互为相反数,然后列出方程即可求出a的两个值,最后根据点A在y轴的右侧,即可得出结论.【详解】解:∵点A到x轴的距离与到y轴的距离相等,∴3a﹣5=a+1或3a﹣5=﹣(a+1),解得:a=3或1,∵点A在y轴的右侧,∴点A的横坐标为正数,∴3a﹣5>0,∴a>53,∴a=3,故选:C.【点睛】此题考查的是点的坐标特征,掌握点到x轴的距离与到y轴的距离相等则点的横、纵坐标相等或互为相反数是解决此题的关键.2.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为( )A.(3,1) B.(-1,1) C.(3,5) D.(-1,5)【答案】C【解析】解:∵正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,∴点B的横坐标为:﹣1+4=3,纵坐标为:1,∴点B的坐标为(3,1),∴点C的横坐标为:3,纵坐标为:1+4=5,∴点C的坐标为(3,5).故选C.点睛:本题考查坐标与图形性质,解题的关键是明确正方形的各条边相等,能根据图形找出它们之间的关系.3.如图所示,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m),则点E 的坐标是( )A .(2,-3)B .(2,3)C .(3,2)D .(3,-2) 【答案】C【解析】【分析】【详解】 ∵点A 坐标为(0,a ),∴点A 在该平面直角坐标系的y 轴上,∵点C 、D 的坐标为(b ,m ),(c ,m ),∴点C 、D 关于y 轴对称,∵正五边形ABCDE 是轴对称图形,∴该平面直角坐标系经过点A 的y 轴是正五边形ABCDE 的一条对称轴,∴点B 、E 也关于y 轴对称,∵点B 的坐标为(﹣3,2),∴点E 的坐标为(3,2),故选C..【点睛】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y 轴.4.已知直线y x m =-+与直线1y x =-的交点在第四象限,则m 的取值范围是( ) A .1m >-B .1m <C .11m -<<D .11m -≤≤【答案】C【解析】【分析】解方程组求出交点坐标,根据交点在第四象限得到不等式组,即可求出答案.【详解】 解方程组1y x m y x =-+⎧⎨=-⎩,得1212m x m y +⎧=⎪⎪⎨-⎪=⎪⎩,∴直线y x m =-+与直线1y x =-的交点坐标是(12+m ,12m - ), ∵交点在第四象限, ∴102102m m +⎧>⎪⎪⎨-⎪<⎪⎩, 得-1<m<1,故选:C.【点睛】此题考查一次函数交点与二元一次方程组的关系:交点的横纵坐标即是方程组的解,直角坐标系中点的坐标的特点,熟记每个象限内点的坐标特点是解题的关键.5.若点M 的坐标为b |+1),则下列说法中正确的是 ( )A .点M 在x 轴正半轴上B .点M 在x 轴负半轴上C .点M 在y 轴正半轴上D .点M 在y 轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M 的横、纵坐标的符号; 然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】有意义,则-a 2≥0,∴a =0.∵|b |≥0,∴|b |+1>0,∴点M 在y 轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.6.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5【答案】A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.7.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.8.如图,已知A :(1,0).A 2(1,-1),A 3(-1,-l).A 4 (-1, 1), A 5 (2, 1),...则点A 2020的坐标是( )A .(506,505)B .(-505,-505)C .(505,-505)D .(-505,505)【答案】D【解析】【分析】 经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2020【详解】解:易得4的整数倍的各点如:4812,,A A A∵20204505÷=,∴点2020A 在第二象限,∴2020A 是第二象限的第505个点,∴2020A 的坐标为(-505,505),故选:D【点睛】本题考查了点的坐标规律,属于规律型,考查点的坐标,首先确定象限,再找出点之间的规律.9.如图,在平面直角坐标系中,点O 是坐标原点,四边形ABOC 是正方形,其中,点A 在第二象限,点,B C 在x 轴、y 轴上.若正方形ABOC 的面积为36,则点A 的坐标是( )A .()6,6-B .()6,6-C .()6,6-D .()6,6- 【答案】B【解析】【分析】 由正方形的面积可以把正方形的边长计算出来,根据点A 在第二象限和,B C 在x 轴、y 轴上,可以得到点A 的坐标.【详解】解:∵正方形ABOC 的面积为36,∴假设正方形ABOC 的边长为x ,则236x =,解得6x =或者6x =-(舍去),又∵点A 在第二象限,因此,A 点坐标为()6,6-,点,B C 在x 轴、y 轴上,故B 为答案.【点睛】本题主要考查了正方形的性质、正方形的面积公式以及直角坐标系的基本特点,知道正方形面积能反过来求正方形的边长是解题的关键.10.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为,表示点B 的坐标为,则表示其他位置的点的坐标正确的是( )A .B .C .D .【解析】【分析】正确建立平面直角坐标系,根据平面直角坐标系,找出相应的位置,然后写出坐标即可.【详解】建立平面直角坐标系,如图:则.表示正确的点的坐标是点D.故选B.【点睛】 本题主要考查坐标确定位置,确定坐标原点和x ,y 轴的位置及方向,正确建立平面直角坐标系是解题关键.11.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,……,组成一条平滑的曲线,点P 从原点O出发沿这条曲线向右运动,速度为每秒2个单位长度,则第2019秒时,点P 的坐标是( )A .(2018,0)B .(2019,1)C .(2019,﹣1)D .(2020,0)【答案】C【解析】分析:计算点P 走一个半圆的时间,确定第2019秒点P 的位置.详解:点运动一个半圆用时为2ππ=2秒∵2019=1009×2+1∴2019秒时,P 在第1010个的半圆的中点处∴点P 坐标为(2019,-1)点睛:本题是平面直角坐标系下的规律探究题,解答时既要研究动点的位置规律,又要考虑坐标的象限符号.12.在平面直角坐标系中,点(-1, 3)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点(-1, 3)在第二象限故选B.【点睛】本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P (2m-4,2m+4)在y 轴上,其横坐标为0,列式可得m 的值.【详解】∵P (2m-4,2m+4)在y 轴上,∴2m-4=0,解得m=2,故选:A .【点睛】此题考查点的坐标,解题关键在于掌握y 轴上点的横坐标为0.14.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A 的对应点A′的坐标是( )A.(2,3) B.(6,1) C.(2,1) D.(3,3)【答案】A【解析】【分析】先写出点A的坐标为(6,3),纵坐标保持不变,横坐标变为原来的13,即可判断出答案.【详解】点A变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′坐标是(2,3).故选A.【点睛】本题考查的是坐标,熟练掌握坐标是解题的关键.15.在平面直角坐标系中,以A(0,2),B(﹣1,0),C(0.﹣2),D为顶点构造平行四边形,下列各点中,不能作为顶点D的坐标是()A.(﹣1,4)B.(﹣1,﹣4)C.(﹣2,0)D.(1,0)【答案】C【解析】【分析】根据平行四边形的判定,可以解决问题.【详解】若以AB为对角线,则BD∥AC,BD=AC=4,∴D(-1,4)若以BC为对角线,则BD∥AC,BD=AC=4,∴D(-1,-4)若以AC为对角线,B,D关于y轴对称,∴D(1,0)故选C.【点睛】本题考查了平行四边形的判定,关键是熟练利用平行四边形的判定解决问题.16.会议室2排3号记作(2,3),那么3排2号记作( )A .(3,2)B .(2,3)C .(-3,-2)D .(-2,-3)【答案】A【解析】【分析】根据有序数对的意义求解.【详解】会议室2排3号记作(2,3),那么3排2号记作(3,2).故选:A【点睛】关键是理解题意,理解有序数对的意义..17.如图,在平面直角坐标系中,三角形AOB 的三个顶点的坐标分别是(1,3)A ,(0,0)O ,(2,0)B ,第一次将三角形AOB 变换成三角形11AOB ,1(2,3)A ,1(4,0)B ;第二次将三角形11AOB 变换成三角形22A OB ,2(4,3)A ,2(8,0)B ;第三次将三角形22A OB 变换成三角形33A OB …,则2020B 的横坐标是( )A .20192B .20202C .20212D .20222【答案】C【解析】【分析】 对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是3,B n 的纵坐标总为0,横坐标为2n+1,即可得到2020B 的横坐标.【详解】解:因为B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)…纵坐标不变,为0, 同时横坐标都和2有关为2n+1,那么B 的坐标为2020B (20212,0);故选:C .【点睛】本题考查了学生观察图形及总结规律的能力,解题的关键是找到点B 横坐标都与2有关的规律.18.在平面直角坐标系中,点(一6,5)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】根据所给点的横纵坐标的符号可得所在象限.【详解】解:∵所给点的横坐标是-6为负数,纵坐标是5为正数,∴点(-6,5)在第二象限,故选:B .【点睛】本题考查象限内点的符号特点;用到的知识点为:符号为(-,+)的点在第二象限.19.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2),(2,0)-,则表示棋子“馬”的点的坐标为( )A .(4,2)B .(2,4)C .(3,2)D .(2, 1)【答案】A【解析】【分析】 根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.20.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,2)C.(20,)D.(﹣1,1)【答案】D【解析】分析:根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.详解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2,由旋转得:OB=OB1=OB2=OB32,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(02),B2(-1,1),B3(20),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(-1,1)故选:D.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法。
2019 初三数学中考复习 平面直角坐标系与函数 专项复习训练题1.函数y =x -3x -4的自变量x 的取值范围是( ) A .x>3 B .x ≥3 C .x>4 D .x ≥3且x≠42. 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )A .(-3,3)B .(3,2)C .(1,3)D .(0,3)3. 若函数y = 有意义,则( )A .x>1B .x<1C .x =1D .x ≠14. 使函数y =x 的取值范围是( )A .x <2B .x ≤2C .x ≥2D .x >25. 在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)6. 已知点A(m 2-2,5m +4)在第一象限角平分线上,则m 的值为 ( )A .6B .-1C .2或3D .-1或67. 在方格纸上有A ,B 两点,若以点A 为原点,建立平面直角坐标系,点B 的坐标为(2,3),则以点B 为原点,建立平面直角坐标系,则点A 的坐标为( )A .(2,3)B .(2,-3)C .(-2,-3)D .(-2,3)8. 如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则11x -点P的坐标不可能是( )A.(2,0) B.(4,0) C.(-8,0) D.(3,0)9. 函数y=1x+2中自变量x的取值范围是( )A.x>-2 B.x<-2 C.x≠-2 D.x≠010. 长方形的周长为240,两邻边长为x,y,则它们的关系是( ) A.y=120-x(0<x<120) B.y=120-x(0≤x≤120)C.y=240-x(0<x<240) D.y=240-x(0≤x≤240)11. 已知点A的坐标为(-2,3),则点A关于原点对称的点B的坐标为____.12. 点P(m-1,2m+1)在第一象限,则m的取值范围是__ __.13.函数y=12-x的自变量取值范围是__ __.14. 直角三角形的一个锐角的度数y与另一个锐角的度数x之间的函数关系式为y=90-x,则x的取值范围是_____________.15. 某镇三个厂址的地理位置如下:汽车配件厂在饲料厂的正南1 000 m,酒厂在汽车配件厂的正西800 m处,若酒厂的坐标是(-800,-1 000),则选取的坐标原点是_________.16. 如图,长方形ABCD的面积为8,点C的坐标为(0,1),点D的坐标为(0,3),则点A的坐标为________,点B的坐标为_________.17. 点A(2,1)与点B关于原点对称,则点B的坐标是_________.18. 在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为_________.19. 已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1) 点P在y轴上;(2) 点P的纵坐标比横坐标大3;(3) 点P到x轴的距离为2,且在第四象限.20. 已知长方形周长为20,其中一条边长为x,设长方形面积为y,写出y与x 的函数表达式,并写出自变量x的取值范围.21. 高空的气温与距地面的高度有关,某地地面气温为24 ℃,且已知离地面距离每升高1 km,气温下降6 ℃.(1)写出该地空中气温T(℃)与高度h(km)之间的函数表达式;(2)求距地面3 km处的气温T;(3)求气温为-6 ℃处距地面的高度h.22. 在如图所示的图形中建立平面直角坐标系,使点B,C的坐标分别为(2,0)和(6,0),根据坐标系提供的数据:(1)求点A,D,E,F,G的坐标;(2)求三角形BCF及四边形ABFG的面积参考答案1---10 DCDAD ACDCA11. (2,-3)12. m>113. x≠214. 0<x<9015. 饲料厂16. (-4,3) (-4,1)17. (-2,-1)18. (1,3)19. 解:(1)∵点P(2m+4,m-1)在y轴上,∴2m+4=0,解得m=-2,∴m-1=-2-1=-3,∴点P的坐标为(0,-3);(2)∵点P的纵坐标比横坐标大3,∴(m-1)-(2m+4)=3,解得m=-8,m-1=-8-1=-9,2m+4=2×(-8)+4=-12,∴点P的坐标为(-12,-9);(3)∵点P到x轴的距离为2,∴|m-1|=2,解得m=-1或m=3,当m=-1时,2m+4=2×(-1)+4=2,m-1=-1-1=-2,此时,点P(2,-2),当m=3时,2m+4=2×3+4=10,m-1=3-1=2,此时,点P(10,2),∵点P在第四象限,∴点P的坐标为(2,-2).20. 解:y=x(10-x),即y=-x2+10x,0<x<1021. 解:(1)T=24-6h(2)当h=3 km时,T=24-6×3=6(℃)(3)当气温为-6 ℃时,-6=24-6h,∴h=5,即高度h为5 km 22. 解:(1)A(0,3),D(8,1),E(7,3),F(5,2),G(3,5)(2)S △BCF =12×4×2=4,S 四边形ABFG =52-4×12×3×2=13。
2018年初三数学中考总复习平面直角坐标系与函数专题训练题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 如图,在平面直角坐标系中,点P的坐标为( )A.(3,-2)B.(-2,3)C.(-3,2)D.(2,-3)2. 下列各曲线中表示y是x的函数的是()A.B.C.D.3. 在直角坐标中,点P(2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4. (2016四川省成都市)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)5. 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点4,3),(-2,1),则表示棋子“炮”的点的坐标为()A.B.C.D.6. 若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣1,0)B.(﹣1,﹣1)C.(﹣2,0)D.(﹣2,﹣1)7. 函数y=的自变量x的取值范围是( )A.x≥-2 B.x≥-2且x≠0C.x≠0D.x>0且x≠-2 8. 下列曲线中,不能表示y是x的函数的是()A.B.C.D.9. 对任意实数x,点P(x,x2-2x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限10. 如图所示,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D 的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)11. 如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.12. 早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y (单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个13. 在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)14. 如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为( )A.(2,-1) B.(2,3) C.(0,1) D.(4,1)15. 函数y=的自变量x的取值范围是( )A.x≥0且x≠2B.x≥0C.x≠2D.x>2二、填空题16. 点P(x-2,x+3)在第一象限,则x的取值范围是___.17. 在函数中,自变量的取值范围是__________.18. 点P(1,2)关于直线y=1对称点的坐标是____.19. 如图,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AOA.若将A点表示为(3,30°),B点表示为(1,120°),则C点可表示为______________.20. 甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.21. 函数y=中,自变量x的取值范围是________.22. 点P(2,-3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是________.23. 若代数式在实数范围内有意义,则x的取值范围是_______.24. 若点A(x,2)在第二象限,则x的取值范围是____.三、解答题25. 已知y=-2x+4,且-1≤x<3,求函数值y的取值范围.26. 某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.27. 如图,平面直角坐标系中,A(-3,-2)、B(-1,-4)(1)直接写出:S△OAB=______;(2)延长AB交y轴于P点,求P点坐标;(3)Q点在y轴上,以A、B、O、Q为顶点的四边形面积为6,求Q点坐标.。
第三单元函数第十课时平面直角坐标系与函数1. (2017长沙中考模拟卷一)中国象棋历史悠久,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立直角坐标系,棋盘中的棋子的位置我们可以用有序数对表示,若使“帅”位于点(-2,-2),“馬”位于点(2,-2),则“兵”位于点()第1题图A. (-1,1)B. (-2,1)C. (-3,1)D. (1,2)2. (2017武汉)点A(-3,2)关于y轴对称的点的坐标为()A. (3,-2)B. (3,2)C. (-3,-2)D. (2,-3)3. (2017湘西州)已知点P(2,3),则点P关于x轴的对称点的坐标为()A. (-2,3)B. (2,-3)C. (3,-2)D. (-3,2)4. (2017荆门)在函数y=2x-5中,自变量x的取值范围是()A. x>5B. x≥5C. x≠5D. x<55. (2017泸州)已知点A(a,1)与点B(-4,b)关于原点对称,则a+b的值为()A. 5B. -5C. 3D. -36. (2017贵港)在平面直角坐标系中,点P(m-3,4-2m)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. (2017孝感)如图,在平面直角坐标系中,点A的坐标为(-1,3),以原点O 为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A. (0,-2)B. (1,-3)C. (2,0)D. (3,-1)8. (2017东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()9. 如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A. 1.1千米B. 2千米C. 15千米D. 37千米第9题图10. (2017内高)小颖从家步行到校车站点等候校车,然后乘校车去学校.图中的折线表示小颖的行程s(km)与所花时间t(min)之间的函数关系.根据图象,下列说法中错误的是( )A. 小颖离家8 km 时共用了30 minB. 小颖等校车时间为6 minC. 小颖步行的速度是100 m /minD. 校车的速度是400 m/min11. (2017丽水)在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象.下列说法错误的是( )第11题图A. 乙先出发的时间为0.5小时B. 甲的速度是80千米/小时C. 甲出发0.5小时后两车相遇D. 甲到B 地比乙到A 地早112小时12. (2016长郡第二届澄池杯)甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距离y(km)与甲车行驶的时间t (h )之间的函数关系如图所示.则下列结论:①A 、B 两城相距300 km ;②乙车比甲车晚出发1 h ,却早到1 h ;③乙车出发后2.5 h 追上甲车;④当甲、乙两车相距50 km 时,t =54或154.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个13. 如图,点A在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O 过点A的切线交于点B,且∠APB=60°.设OP=x,则△P AB的面积y关于x的函数图象大致是()14. (2017长郡双语中学二模)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为x,AP长为y,则y关于x的函数图象大致是()15. (2017天水)如图所示,在等腰△ABC中,AB=AC= 4 cm,∠B=30°,点P从点B出发,以 3 cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1 cm/s的速度沿BA→AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()16. (2017淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位h 与注水时间t 之间的变化情况的是( )17. 在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A ′的坐标为________.18. (2017江西)函数y =x -2中,自变量x 的取值范围是________.19. (2017百色)如图,在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A 的坐标为(2,0),将正方形OABC 沿着OB 方向平移12OB 个单位,则点C的对应点坐标是________.第19题图 第20题图20. (2017南充)小明从家到图书馆看报然后返回,他离家的距离y 与离家时间x 之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为________km . 答案1. C2. B3. B4. A5. C6. A7. D【解析】线段OA旋转后得OA′,过点A作AB⊥y轴于点B, 过点A′作A′C⊥x轴于点C,∵AB=1,BO=3,∴∠AOB=30°,∵∠AOA′=150°,∠A′OC=150°-30°-90°=30°,∴∠AOB=∠A′OC,∵AO=A′O,∠ABO =∠A′CO=90°,∴△OAB≌△OA′C,则OC=OB=3,A′C=AB=1, ∴A′(3,-1).8. C【解析】∵开始时,小明从家匀速步行到车站,∴函数图象为缓慢增加;之后等了几分钟,∵路程没有变化,∴图象是一段平行x轴的线段;坐上公交车后匀速到达学校,则s随t的增大而增大,且增大幅度比第一次更陡峭,故选C.9. A【解析】从图象可以看出小徐先到达距家1.1千米的菜地浇水,停留了10分钟后,又到达了玉米地除草18分钟后回家,∴菜地距小徐家的距离为1.1千米.10. D【解析】根据图象可得,他离家8 km共用了30 min,故A正确;他在第10 min开始等公交车,第16 min结束,∴他等公交车时间为6 min,故B正确;他步行10 min走了1 km,∴他步行的速度为100 m/min,故C正确;公交车(30-16)min走了(8-1)km,∴公交车的速度为7000÷14=500 m/min,故D错误.11. D【解析】由题图可知,AB两地之间的距离为100千米,乙先出发0.5小时然后甲再出发,相遇后两车继续相背而行,乙先到达A地,然后甲才到达B 地,则甲车从A地到B地的行驶时间为1.75-0.5=1.25,甲车的速度为100÷1.25=80千米/小时,乙车的速度为30÷0.5=60千米/小时,∴甲出发70÷(80+60)=0.5小时后两车相遇,此时乙车行驶1小时,距离B地的距离为60千米,甲车行驶到B地还需60÷80=0.75小时,乙车距A地还有40千米,还需行驶40÷60=23小时,甲到B 地比乙到A 地晚112小时.故选D.12. C 【解析】由图象可知A 、B 两城市之间的距离为300 km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可得k =60,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n ,把(1,0)和(4,300)代入可得⎩⎨⎧m +n =04m +n =300,解得⎩⎨⎧m =100n =-100,令y 甲=y 乙,可得60t =100t -100,解得t =2.5,即甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y 甲-y 乙|=50,可得|60t -100t +100|=50,即|100-40t|=50,解得t =54或t =154,∴④正确,综上,正确的结论有①②④.13. D 【解析】∵OA =2,OP =x ,∴AP =2-x ,∵AB 是⊙O 的切线,∴∠P AB =90°,在Rt △ABP 中,由三角函数关系可得,AB =AP tan ∠APB =AP ×tan60°=3(2-x ),∴S △P AB =12AP ·AB =32(2-x )2=32(x -2)2,即y =32(x -2)2,由二次函数图象的性质可得,函数图象开口向上,对称轴为x =2,且过点(0,23),故D 项符合题意.14. D 【解析】由题意可知,动点P 沿折线A →B →D →C →A 的路径运动,∵正方形ABCD 的边长为a ,∴BD =2a ,则当点P 在AB 上,即0≤x <a 时,y=x ;当点P 在BD 上,即a ≤x ≤(1+2)a 时,y =|2a 2|2+|a +22a -x|2;当点P 在DC 上,即(1+2)a ≤x ≤(2+2)a 时,y =a 2+(x -a -2a )2;当P 在AC 上,即(2+2)a ≤x ≤(2+22)a 时,y =(2+22)a -x ;结合函数解析式可以得出第2,3段函数解析式不同,∴A 选项错误;当a ≤x <(1+2)a 时,点P 在BD 中点时,函数图象被点P 分为对称的两部分,∴B 选项错误;根据第4段函数为一次函数得出,C 选项错误,故只有D 符合题意.15. D 【解析】如解图①,过点Q 作QD ⊥BC 于点D ,过点A 作AE ⊥BC 于点E ,在Rt △BEA 中,∠B =30°,AB =4,∴BE =23,则BC =43,则当x=4时,点P 停止运动,当0≤x ≤4时,点Q 在AB 上运动,则S △BPQ =12BP ×QD ,在Rt △BDQ 中,∠B =30°,BQ =x ,则QD =12x ,BP =3x ,∴S △BPQ =y =12×3x ×12x =34x 2,∴函数图象开口向上,是关于y 轴对称的二次函数的右半支;当4<x ≤8时,如解图②,点Q 在AC 上运动,CQ =AB +AC -x =8-x ,∵∠B =30°,∴QD =12(8-x ),则S △BPQ =y =12×BC ×QD =12×43×12(8-x )=-3x +83,综上所述,当0≤x≤4时,y =34x 2;当4<x ≤8时,y =-3x +83,故满足题意的函数图象如D 选项所示.第15题解图16. B 【解析】由题意可知,当先向空玻璃杯中注水时,玻璃杯内水位迅速上升,注满玻璃杯后,鱼缸水位开始上升,此时最高水位h 不变,当鱼缸水位与玻璃杯水位相等时,继续注水,鱼缸内水位h 缓慢上升,∴B 选项符合题意.17. (1,3)【解析】向左平移一个单位即横坐标减1,纵坐标不变,∴点A′的坐标为(1,3).18. x≥2【解析】由题意可知:x-2≥0,∴x≥2.19. (1,3)【解析】观察题图可以理解为将图形先向右平移一个单位再向上平移一个单位.20. 0.3【解析】由函数图象可知小明从家到图书馆用了10分钟,在图书馆看报30分钟,小明从离家到回家共55分钟,可得小明回家用了15分钟,∴小明回家行走的速度为0.9÷15=0.06 km/分钟,小明离家50分钟时,还需要55-50=5分钟到家,∴他此时离家的距离为0.06×5=0.3 km.。
2018中考数学试题分类汇编13 平面直角坐标系与函数基础知识一.选择题(共31小题)1.(2018•江苏扬州•3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.2.(2018·湖北省武汉·3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.(2018·湖北省宜昌·3分)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)【分析】依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).【解答】解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O 是AC 的中点,∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形,∴BD 经过点O ,∵B 的坐标为(﹣2,﹣2),∴D 的坐标为(2,2),故选:A .【点评】本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.4.(2018•北京•2分) 右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-); ②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-); ④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A .①②③B .②③④C .①④D .①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,9-)时,表示左安门的点的坐标为(15,18-)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移5.(2018•湖北荆门•3分)如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC 的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(2,﹣3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【解答】解:过点作IF⊥AC于点F,IE⊥OA于点E,∵A(4,0),B(0,3),C(4,3),∴BC=4,AC=3,则AB=5,∵I是△ABC的内心,∴I到△ABC各边距离相等,等于其内切圆的半径,∴IF=1,故I到BC的距离也为1,则AE=1,故IE=3﹣1=2,OE=4﹣1=3,则I(3,2),∵△ABC绕原点逆时针旋转90°,∴I的对应点I'的坐标为:(﹣2,3).故选:A.【点评】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.6.(2018•湖北黄石•3分)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)【分析】根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;【解答】解:由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:C.【点评】本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐标,上移加,属于中考常考题型.1.(2018•港南区一模)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质确定出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.2.(2018•东营)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.3.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据第二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.4.(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.5.(2018•呼和浩特)下列运算及判断正确的是()#ERR1A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限【分析】依据有理数的乘除混合运算法则、零指数幂、同底数幂的乘法法则以及点的坐标,进行判断即可得出结论.【解答】解:A.﹣5×÷(﹣)×5=﹣1×(﹣5)×5=25,故错误;B.方程(x2+x﹣1)x+3=1有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C.若a×5673=103,a÷103=b,则a×b=×=,故错误;D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限或第四象限或x轴正半轴上,故错误;故选:B.6.(2018•广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2C.m2D.1009m2【分析】由OA4n=2n知OA2018=+1=1009,据此得出A2A2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.【解答】解:由题意知OA4n=2n,∵2018÷4=504…2,∴OA2018=+1=1009,∴A2A2018=1009﹣1=1008,则△OA2A2018的面积是×1×1008=504m2,故选:A.7.(2018•北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④ D.①②③④【分析】由天安门的位置确定原点,再进一步得出广安门和左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论错误;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(6,﹣5),此结论错误;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.8.(2018•宿迁)函数y=中,自变量x的取值范围是()A.x≠0 B.x<1 C.x>1 D.x≠1【分析】根据分母不等于零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.9.(2018•包头)函数y=中,自变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.10.(2018•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.11.(2018•通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是故选:B.12.(2018•自贡)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A.数形结合 B.类比 C.演绎 D.公理化【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.13.(2018•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在图中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.14.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.15.(2018•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.16.(2018•齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.17.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B (1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.18.(2018•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.19.(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.20.(2012•内江)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C 的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.21.(2018•潍坊)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;当2≤t<4时,S=4××(4﹣t)=﹣2t+8;只有选项D的图形符合.故选:D.22.(2018•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B 以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B 两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.23.(2018•河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.24.(2018•东营)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.25.(2018•烟台)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C 方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S△APQ=AP•AQ==t2,故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S△APQ=AP•AB==4t,故选项B不正确;故选:A.26.(2018•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.27.(2018•香坊区)如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD 的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A. B.C.D.【分析】过点B作BE⊥AD于点E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图象.【解答】解:如图,过点B作BE⊥AD于点E,∵∠A=60°,设边AB的长为x,∴BE=AB•sin60°=x.∵平行四边形ABCD的周长为12,∴AD=(12﹣2x)=6﹣x,∴y=AD•BE=(6﹣x)×x=﹣x2+3x(0≤x≤6).则该函数图象是一开口向下的抛物线的一部分,观察选项,C选项符合题意.故选:C.28.(2018•广安)已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A.B.C.D.【分析】先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,PM总上等于半径,则可对D进行判断,从而得到正确选项.【解答】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;D选项中的封闭图形为圆,y为定中,所以D选项不正确;A选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.故选:A.29.(2018•安徽)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【分析】当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;【解答】解:当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.30.(2018•黄石)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.【解答】解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故选项A正确;故选:A.31.(2018•乌鲁木齐)如图①,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P、Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图②所示.以下结论:①BC=10;②cos∠ABE=;③当0≤t≤10时,y=t2;④当t=12时,△BPQ是等腰三角形;⑤当14≤t≤20时,y=110﹣5t中正确的有()A.2个B.3个C.4个D.5个【分析】根据题意,确定10≤t≤14,PQ的运动状态,得到BE、BC、ED问题可解.【解答】解:由图象可知,当10≤t≤14时,y值不变,则此时,Q点到C,P从E到D.∴BE=BC=10,ED=4故①正确.∴AE=6Rt△ABE中,AB=∴cos∠ABE=;故②错误当0≤t≤10时,△BPQ的面积为∴③正确;t=12时,P在点E右侧2单位,此时BP>BE=BCPC=∴△BPQ不是等腰三角形.④错误;当14≤t≤20时,点P由D向C运动,Q在C点,△BPQ的面积为则⑤正确故选:B.1.(2018·浙江临安·3分)P(3,﹣4)到x轴的距离是 4 .【考点】点的坐标的几何意义【分析】根据点在坐标系中坐标的几何意义即可解答.【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.【点评】本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.1.(2018四川省绵阳市)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。
中考数学总复习考点知识专题练习专题05 平面直角坐标系一、单选题(共10小题,每小题3分,共计30分)1.(2021·浙江台州市·中考真题)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)【答案】D【分析】先找到顶点C的对应点为F,再根据直角坐标系的特点即可得到坐标.【详解】∵顶点C的对应点为F,由图可得F的坐标为(3,1),故选D.P向下平移2个单位长2.(2021·四川成都市·中考真题)在平面直角坐标系中,将点(3,2)度得到的点的坐标是()A.(3,0)B.(1,2)C.(5,2)D.(3,4)【答案】A【分析】根据点的坐标平移规律“左减右加,下减上加”,即可解答.【详解】解:将点P ()3,2向下平移2个单位长度所得到的点坐标为()3,22-,即()3,0, 故选:A .3.(2021·四川泸州市中考真题)在平面直角坐标系中,将点(2,3)A -向右平移4个单位长度,得到的对应点A '的坐标为()A .()2,7B .()6,3-C .()2,3D .()2,1--【答案】C【分析】根据横坐标,右移加,左移减可得点A (-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3).【详解】解:点A (-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3), 即(2,3),故选:C .4.(2021·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)- 【答案】A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .5.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点()2,3A -位于哪个象限?( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据各象限内点的坐标特征解答即可.【详解】解:点A 坐标为()2,3-,则它位于第四象限,故选D .6.(2018·江苏扬州市·中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .7.(2018·北京中考真题)右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A .①③B .②③④C .①④D .①②③④【答案】D【详解】分析:根据天安门的坐标和点的平移规律,一一进行判断即可.详解:显然①②正确;③是在②的基础上,将所有点向右平移1个单位,再向上平移1个单位得到,故③正确; ④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,9-)时,表示左安门的点的坐标为(15,18-)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.故选D.点睛:考查平面直角坐标系,点坐标的确定,点的平移,熟练掌握点的平移规律是解题的关键.8.(2018·山东枣庄市·中考真题)在平面直角坐标系中,将点A (﹣1,﹣2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B′的坐标为( )A .(﹣3,﹣2)B .(2,2)C .(﹣2,2)D .(2,﹣2)【答案】B【分析】首先根据横坐标右移加,左移减可得B 点坐标,然后再根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】点A (﹣1,﹣2)向右平移3个单位长度得到的B 的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B 关于x 轴的对称点B ′的坐标是(2,2),故选B .9.(2018·浙江丽水市·中考真题)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【答案】C【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【详解】如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10);故选C.10.(2018·四川广元市·中考真题)若以A(﹣1,0),B(3,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【分析】首先画出平面直角坐标系,根据A、B、C三点的坐标找出其位置,然后再根据两组对边分别平行的四边形是平行四边形找出D的位置,进而可得答案.【详解】如图所示:第四个顶点不可能在第三象限.故选C.二、填空题(共5小题,每小题4分,共计20分)11.(2021·浙江金华市·中考真题)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)______.【答案】-1(答案不唯一,负数即可)【分析】根据第二象限的点符号是“-,+”,m取负数即可.【详解】∵点P(m,2)在第二象限内,m ,∴0m取负数即可,如m=-1,故答案为:-1(答案不唯一,负数即可).12.(2021·江苏连云港市·中考真题)如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3,9)、(12,9),则顶点A的坐标为________.【答案】(15,3)【分析】先根据条件,算出每个正方形的边长,再根据坐标的变换计算出点A的坐标即可.【详解】解:设正方形的边长为a,a=-则由题设条件可知:3123a=解得:3∴点A的横坐标为:12315-⨯=+=,点A的纵坐标为:9323故点A的坐标为(15,3).故答案为:(15,3).13.(2021·黑龙江大庆市·中考真题)点(2,3)关于y轴对称的点的坐标为_____.【答案】(﹣2,3)【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【详解】点(2,3)关于y 轴对称的点的坐标是(﹣2,3),故答案为:(﹣2,3).14.(2017·湖北荆州市·中考真题)将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为____.【答案】4【解析】试题分析:先根据一次函数平移规律得出直线y=x+b 沿y 轴向下平移3个单位长度后的直线解析式y=x+b ﹣3,再把点A (﹣1,2)关于y 轴的对称点(1,2)代入y=x+b ﹣3,得1+b ﹣3=2,解得b=4.故答案为4.15.(2021·宁夏中考模拟)点 P (a ,a -3)在第四象限,则a 的取值范围是_____.【答案】0<a <3【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】∵点P (a ,a -3)在第四象限,∴a 0{a 30>-<,解得0<a <3. 三、解答题(共5小题,每小题10分,共计50分)16.(2021·广西中考真题)如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是2,1,1,()()2,3,3()A B C ---(1)将ABC ∆向上平移4个单位长度得到111A B C ∆,请画出111A B C ∆;(2)请画出与ABC ∆关于y 轴对称的222A B C ∆; (3)请写出12A A 、的坐标.【答案】(1)如图所示:111A B C ∆,即为所求;见解析;(2)如图所示:222A B C ∆,即为所求;见解析;(3)122,3,),1(()2A A --.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案; (2)直接利用轴对称的性质得出对应点位置进而得出答案; (3)利用所画图象得出对应点坐标.【详解】(1)如图所示:111A B C ∆,即为所求; (2)如图所示:222A B C ∆,即为所求;(3)122,3,),1(()2A A --.17.(2021·安徽中考模拟)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A 1(,)、A 3(,)、A 12(,);(2)写出点A 4n 的坐标(n 是正整数);(3)指出蚂蚁从点A 100到点A 101的移动方向.【答案】⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0)⑶从下向上【解析】试题分析:(1)在平面直角坐标系中可以直接找出答案;(2)根据求出的各点坐标,得出规律;(3)点A 100中的n 正好是4的倍数,根据第二问的答案可以分别得出点A 100和A 101的坐标,所以可以得到蚂蚁从点A 100到A 101的移动方向.解:(1)A 1(0,1),A 3(1,0),A 12(6,0);(2)当n=1时,A 4(2,0),当n=2时,A 8(4,0),当n=3时,A 12(6,0),所以A 4n (2n ,0);(3)点A 100中的n 正好是4的倍数,所以点A 100和A 101的坐标分别是A 100(50,0),A 101的(50,1),所以蚂蚁从点A 100到A 101的移动方向是从下向上.18.(2021·沭阳县修远中学中考模拟)如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC 平移至A '的位置,使点A 与A '对应,得到△A B C ''';(2)图中可用字母表示,与线段AA '平行且相等的线有:________;(3)求四边形ACC A ''的面积.【答案】(1)见解析;(2);BB CC '';(3)14.【详解】(1)根据图形可得,点A 向右平移5个单位,向上平移4个单位,分别将B 、C 按照点A 平移的路径进行平移,然后顺次连接,则△A B C '''即为所求.(2)根据平移可得线段AA′与线段CC′、BB′相互平行且相等,故答案为BB′、CC′(3)S 四边形ACC′A′=6×6-(12×4×5+12×2×1)×2=14.19.(2021·江苏中考模拟)如图,在平面直角坐标系xOy中,矩形ABCD各边都平行于坐标轴,且A(-2,2),C(3,-2).对矩形ABCD及其内部的点进行如下操作:把每个点的横坐标乘以a,纵坐标乘以b,将得到的点再向右平移k()个单位,得到矩形及其内部的点(分别与ABCD对应).E(2,1)经过上述操作后的对应点记为.(1)点D的坐标为,若a=2,b=-3,k=2,则点的坐标为;(2)若(1,4),(6,-4),求点的坐标.【答案】(1)(3,2),(8,-6);(2)E′(5,2).【解析】(1)∵矩形ABCD各边都平行于坐标轴,且A(-2,2),C(3,-2),∴D(3,2),∵对矩形ABCD及其内部的点进行如下操作:把每个点的横坐标乘以a,纵坐标乘以b,将得到的点再向右平移k(k>0)个单位,得到矩形A′B′C′D′及其内部的点(A′B′C′D′分别与ABCD对应),E(2,1)经过上述操作后的对应点记为E′.∴若a=2,b=-3,k=2,则D′(8,-6);(2)依题可列:,解得:,故2b=4,则b=2,∵点E(2,1),∴E′(5,2).20.(2021·广东中考模拟)在平面直角坐标系中,点M的坐标为(a,1-2a).(1)当a=-1时,点M在坐标系的第___________象限(直接填写答案);(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.【答案】(1)第二象限(2).【详解】(1)把把a=-1代入点M的坐标得(-1,3),故在第二象限;(2)∵点M(a,1-2a)平移后的点N的坐标为(a-2,1-2a+1),依题意得解得.。
初中数学函数之平面直角坐标系知识点训练及答案(1)一、选择题1.若点P(a ,b)在第二象限,则点Q(b ,1﹣a)所在象限应该是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】先根据点P(a ,b)在第二象限判断出a <0,b >0,据此可得1﹣a >0,从而得出答案.【详解】∵若点P(a ,b)在第二象限,∴a <0,b >0,则1﹣a >0,∴点Q(b ,1-a)所在象限应该是第一象限,故选:A .【点睛】本题是象限的考查,解题关键是判断横、纵坐标的正负2.若点P(x ,y)在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是( )A .(-2,3)B .(-2,-3)C .(2,-3)D .(2,3)【答案】B【解析】【分析】根据点P 到x 轴的距离为3,则这一点的纵坐标是3或-3,到y 轴的距离为2,那么它的横坐标是2或-2,再根据点P 所处的象限即可确定点P 的坐标.【详解】∵点P 到x 轴的距离为3,∴点的纵坐标是3或-3,∵点P 到y 轴的距离为2,∴点的横坐标是2或-2,又∵点P 在第三象限,∴点P 的坐标为:(-2,-3),故选B.【点睛】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.3.如图,在平面直角坐标系中,()11A ,,()11B ,-,()12C --,,()12D -,,把一条长为2019个单位长度且没有弹性的细线(线的粗细不略不计)的一端固定在点A 处,并按A B C D A -----…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(1,0)B .(1,1)C .(-1,1)D .(-1,-2)【答案】A【解析】【分析】 根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A (1,1),B (-1,1),C (-1,-2),D (1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即细线另一端所在位置的点的坐标是(1,0).故选:A .【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.4.如图,ABCDEF 是中心为原点O ,顶点A ,D 在x 轴上,半径为4的正六边形,则顶点F 的坐标为( )A .(2,23B .()2,2-C .(2,23-D .(3- 【答案】C【解析】连接OF ,设EF 交y 轴于G ,那么∠GOF=30°;在Rt △GOF 中,根据30°角的性质求出GF ,根据勾股定理求出OG 即可.【详解】解:连接OF ,在Rt △OFG 中,∠GOF=13603026⨯=oo ,OF=4. ∴GF=2,3∴F (-2,3).故选C .【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.5.已知直线y x m =-+与直线1y x =-的交点在第四象限,则m 的取值范围是( ) A .1m >-B .1m <C .11m -<<D .11m -≤≤【答案】C【解析】【分析】解方程组求出交点坐标,根据交点在第四象限得到不等式组,即可求出答案.【详解】 解方程组1y x m y x =-+⎧⎨=-⎩,得1212m x m y +⎧=⎪⎪⎨-⎪=⎪⎩, ∴直线y x m =-+与直线1y x =-的交点坐标是(12+m ,12m - ), ∵交点在第四象限, ∴102102m m +⎧>⎪⎪⎨-⎪<⎪⎩,故选:C.【点睛】此题考查一次函数交点与二元一次方程组的关系:交点的横纵坐标即是方程组的解,直角坐标系中点的坐标的特点,熟记每个象限内点的坐标特点是解题的关键.6.平面直角坐标系中,P (-2a -6,a -5)在第三象限,则a 的取值范围是( ) A .a >5B .a <-3C .-3≤a ≤5D .-3<a <5【答案】D【解析】【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a 的取值范围即可.【详解】∵点P 在第三象限, ∴26050a a --<⎧⎨-<⎩, 解得:-3<a<5,故选D.【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a 的取值范围.7.下列结论:①坐标为3-的点在经过点(3,0)-且平行于y 轴的直线上;②0m ≠时,点()2,P m m -在第四象限;③点()3,4-关于y 轴对称的点的坐标是(3,4)--;④在第一象限的点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标为(2,1). 其中正确的是( ).A .①③B .②④C .①④D .②③ 【答案】C【解析】【分析】依据点的坐标的概念,关于坐标轴对称的点的特征以及不同象限内点的坐标特征,即可得到正确结论.【详解】①横坐标为3-的点在经过点(3,0)-且平等于y 轴的直线上,故正确;②当0m ≠时,点()2,P m m -在第四象限或第一象限,故错误;③与点()3,4 关于y 对称点的坐标是(3,4),故错误;④在第一象限的点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标为(2,1),故正确.故选:C .【点睛】本题考查了点的坐标的概念,关于坐标轴对称的点的特征以及不同象限内点的坐标特征.8.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为,表示点B 的坐标为,则表示其他位置的点的坐标正确的是( )A .B .C .D .【答案】B【解析】【分析】 正确建立平面直角坐标系,根据平面直角坐标系,找出相应的位置,然后写出坐标即可.【详解】建立平面直角坐标系,如图:则.表示正确的点的坐标是点D.故选B.【点睛】 本题主要考查坐标确定位置,确定坐标原点和x ,y 轴的位置及方向,正确建立平面直角坐标系是解题关键.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C.(﹣2016,3)D.(﹣2016,﹣3)【答案】D【解析】【分析】首先由正方形ABCD,顶点A(1,1)、B(3,1)、C(3,3),然后根据题意求得第1次、2次、3次变换后的点C的对应点的坐标,即可得规律:第n次变换后的点C的对应点的为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3),继而求得把正方形ABCD连续经过2019次这样的变换得到正方形ABCD的点C的坐标.【详解】∵正方形ABCD,顶点A(1,1)、B(3,1),∴C(3,3).根据题意得:第1次变换后的点C的对应点的坐标为(3﹣1,﹣3),即(2,﹣3),第2次变换后的点C的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n次变换后的点C的对应点的为:当n为奇数时为(3﹣n,﹣3),当n为偶数时为(3﹣n,3),∴连续经过2019次变换后,正方形ABCD的点C的坐标变为(﹣2016,﹣3).故选D.【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点C的对应点的坐标为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3)是解此题的关键.10.如果点P在第三象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(﹣5,4)D.(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第三象限的点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是﹣5,纵坐标是﹣4,∴点P的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.11.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第100个点的坐标为()A.(14,8)B.(13,0)C.(100,99)D.(15,14)【答案】A【解析】【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故选A.【点睛】本题主要考查了根据图形的变化找规律的方法,首先要分析图形中每一列的点人个数的变化规律是,1,2,3,4,5,…,由此找出第100个点所在的列,再根据奇数列是从上往下依次增加1,偶数列是从下往上依次增加1,由此即可找到第100个点所对应的坐标.13.在平面直角坐标系中,点P(-3,4)到x轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【解析】【分析】纵坐标的绝对值就是点到x轴的距离.【详解】∵|4|=4,∴点P(-3,4)到x轴距离为4.故选C.14.如图所示,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A.(2,0) B.(-1,-1) C.( -2,1) D.(-1, 1)【答案】D【解析】【分析】利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.15.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限A .一B .二C .三D .四【答案】D【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b -在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.16.如图,在直角坐标系内,正方形如图摆放,已知顶点 A(a ,0),B(0,b) ,则顶点C 的坐标为( )A .(-b ,a + b)B .(-b ,b - a)C .(-a ,b - a)D .(b ,b -a)【答案】B【解析】【分析】 根据题意首先过点C 作CE ⊥y 轴于点E ,易得△AOB ≌△BEC ,然后由全等三角形的性质,证得CE=OB=b ,BE=OA=a ,继而分析求得答案.【详解】解:如图,过点C 作CE ⊥y 轴于点E ,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠ABO+∠BAO=90°,∴∠CBE=∠BAO ,在△ABO 和△BCE 中,90AOB CEB BAO CBEAB BC ⎧⎪⎨⎪∠∠︒∠∠⎩==== ∴△AOB ≌△BEC (AAS ),∴BE=OA=a ,CE=OB=b ,∴OE=OB-BE=b-a ,∴顶点C 的坐标为:(-b ,b-a ).故选:B .【点睛】本题考查正方形的性质以及全等三角形的判定与性质.注意掌握辅助线的作法以及注意掌握数形结合思想的应用.17.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′的坐标是( )A.(2,3) B.(6,1) C.(2,1) D.(3,3)【答案】A【解析】【分析】先写出点A的坐标为(6,3),纵坐标保持不变,横坐标变为原来的13,即可判断出答案.【详解】点A变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′坐标是(2,3).故选A.【点睛】本题考查的是坐标,熟练掌握坐标是解题的关键.18.如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)【答案】C【解析】【分析】根据“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴,根据“炮”的位置,可得答案.【详解】解:根据题意可建立如图所示坐标系,由坐标系知炮位于点(﹣2,1),故选:C.【点睛】本题考查了坐标确定位置,利用“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴是解题关键.19.会议室2排3号记作(2,3),那么3排2号记作()A.(3,2)B.(2,3)C.(-3,-2) D.(-2,-3)【答案】A【解析】【分析】根据有序数对的意义求解.【详解】会议室2排3号记作(2,3),那么3排2号记作(3,2).故选:A【点睛】关键是理解题意,理解有序数对的意义..20.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【答案】B【解析】【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.【详解】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.。
中考数学真题练习卷:平面直角坐标系与函数一、选择题1.已知函数,则自变量的取值范围是()A. B. 且C.D.【答案】B2.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B.C.D.【答案】C3.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定高度,则下图能反映弹簧秤的读数(单位)与铁块被提起的高度(单位)之间的函数关系的大致图象是()A. B. C.D.【答案】C4.如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数( )A. 当时,随的增大而增大B. 当时,随的增大而减小C. 当时,随的增大而增大D. 当时,随的增大而减小【答案】A5.如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A(-1,2),B(1,3),C(2,1),D (6,5),则此函数()A. 当x<1,y随x的增大而增大 B. 当x<1,y随x的增大而减小C. 当x>1,y随x的增大而增大 D. 当x>1,y随x的增大而减小【答案】A6.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)【答案】B7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10) C. (9,10) D. (10,10)【答案】C二、填空题8.两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有________千米.【答案】909.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。
(专题精选)初中数学函数之平面直角坐标系经典测试题附答案一、选择题1.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( )A .()2,3-B .()2,3--C .(2,3)-D .(3,2)--【答案】B【解析】【分析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.2.在平面直角坐标系中,过点2)A -画直线a x ⊥轴,过点(B -画直线b y ⊥轴,直线,a b 相交于点P ,则点P 的坐标是( )A .B .C .)1-D .(- 【答案】A【解析】【分析】根据过点2)A -画直线a x ⊥轴可以知道P 点的横坐标,根据过点(B -画直线b y ⊥轴可以知道p 点的纵坐标,由点P 的横纵坐标即可得到答案.【详解】解:∵点p 是通过点2)A -画直线a x ⊥轴,过点(B -画直线b y ⊥轴得到的交点,∴点P 的横坐标与点A点P 的纵坐标与点B ,因此,点p 的坐标为, 故A 为答案.【点睛】本题主要考查了与直角坐标系有关的知识,掌握向x 轴画垂线得到的点横坐标相同,向y轴作垂线得到的点纵坐标相同是解题的关键.3.若点P(x ,y)在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是( )A .(-2,3)B .(-2,-3)C .(2,-3)D .(2,3)【答案】B【解析】【分析】根据点P 到x 轴的距离为3,则这一点的纵坐标是3或-3,到y 轴的距离为2,那么它的横坐标是2或-2,再根据点P 所处的象限即可确定点P 的坐标.【详解】∵点P 到x 轴的距离为3,∴点的纵坐标是3或-3,∵点P 到y 轴的距离为2,∴点的横坐标是2或-2,又∵点P 在第三象限,∴点P 的坐标为:(-2,-3),故选B.【点睛】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.4.点P(1﹣2x ,5x ﹣1)在第四象限,则x 的范围是( )A .15x <B .12x <C .1152x <<D .12x > 【答案】A【解析】【分析】根据点的位置得出不等式组,求出不等式组的解集即可.【详解】解:∵点P (1﹣2x ,5x ﹣1)在第四象限,120510x x ->⎧∴⎨-<⎩, 解得:15x <, 故选:A .【点睛】本题考查了点的位置和解一元一次不等式组,能根据题意得出不等式组是解此题的关键.5.如果点P (3x+9,12x ﹣2)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为( )A .B .C .D .【答案】C【解析】解:由点P(3x+9,1 2 x﹣2)在平面直角坐标系的第四象限内,得:3901202xx+⎧⎪⎨-⎪⎩><.解得:﹣3<x<4,在数轴上表示为:故选C.6.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A.()2,23B.()2,2-C.()2,23-D.()1,3-【答案】C【解析】【分析】连接OF,设EF交y轴于G,那么∠GOF=30°;在Rt△GOF中,根据30°角的性质求出GF,根据勾股定理求出OG即可.【详解】解:连接OF,在Rt△OFG中,∠GOF=13603026⨯=oo,OF=4.∴GF=2,∴F(-2,).故选C.【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.7.已知点A的坐标为(a+1,3﹣a),下列说法正确的是()A.若点A在y轴上,则a=3B.若点A在一三象限角平分线上,则a=1C.若点A到x轴的距离是3,则a=±6D.若点A在第四象限,则a的值可以为﹣2【答案】B【解析】【分析】依据坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,即可得出结论.【详解】解:A.若点A在y轴上,则a+1=0,解得a=﹣1,故本选项错误;B.若点A在一三象限角平分线上,则a+1=3﹣a,解得a=1,故本选项正确;C.若点A到x轴的距离是3,则|3﹣a|=3,解得a=6或0,故本选项错误;D.若点A在第四象限,则a+1>0,且3﹣a<0,解得a>3,故a的值不可以为﹣2;故选:B.【点睛】本题主要考查了坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,解题时注意:横轴上点的纵坐标为0,纵轴上点的横坐标为0.8.在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点一定不在()A.直线y=-x上B.直线y=x上C.双曲线y=1xD.抛物线y=x2上【答案】C【解析】【分析】【详解】解:A、若此点坐标是(0,0)时,在直线y=-x上,故本选项错误;B、若此点坐标是(0,0)时,在直线y=x上,故本选项错误;C、因为双曲线y=1x上的点必须符合xy=1,故x、y同号与已知矛盾,故本选项正确;D 、若此点坐标是(0,0)时,在抛物线y=x 2上,故本选项错误.故选C .【点睛】本题考查反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.9.如图,在平面直角坐标系上有个点(1,0)P ,点P 第1次向上跳动1个单位至点1(1,1)P ,紧接着第2次向左跳动2个单位至点2(1,1)P -,第3次向上跳动1个单位到达3(1,2)P -,第4次向右跳动3个单位到达4(2,2)P ,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点2019P 的坐标为( ).A .(505,1010)B .(505,505)-C .(505,1010)-D .(505,505)-【答案】C【解析】【分析】 设第n 次跳动至点Pn ,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)”,依此规律结合2019=504×4+3即可得出点P 2019的坐标.【详解】设第n 次跳动至点Pn ,观察发现:P (1,0),P 1(1,1),P 2(−1,1),P 3(−1,2),P 4(2,2),P 5(2,3),P 6(−2,3),P 7(−2,4),P 8(3,4),P 9(3,5),…,∴P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数).∵2019=504×4+3,∴P 2019(-504-1,504×2+2),即(505,1010)-.故选:C .【点睛】本题考查了规律型中点的坐标,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数)”是解题的关键.10.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.11.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.12.在平面直角坐标系中,点P(0,﹣4)在()A.x轴上B.y轴上C.原点D.与x轴平行的直线上【答案】B【解析】【分析】根据点P的坐标为(0,﹣4)即可判断点P(0,﹣4)在y轴上.【详解】在平面直角坐标系中,点P(0,﹣4)在y轴上,故选:B.【点睛】本题考查了坐标与图形性质,熟练掌握坐标轴上点的坐标特征是解题的关键.13.在平面直角坐标系中,点(-1, 3)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据各象限内点的坐标特征解答.【详解】解:点(-1, 3)在第二象限故选B.【点睛】本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P (2m-4,2m+4)在y 轴上,其横坐标为0,列式可得m 的值.【详解】∵P (2m-4,2m+4)在y 轴上,∴2m-4=0,解得m=2,故选:A .【点睛】此题考查点的坐标,解题关键在于掌握y 轴上点的横坐标为0.15.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.16.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限A .一B .二C .三D .四【答案】D【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b -在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.17.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b),如f(1,2)=(-1,2);②g(a,b)=(b,a),如g(1,2)=(2,1);③h(a,b)=(-a,-b),如h(1,2)=(-1,-2);按照以上变换有:g(h(f (1,2)))=g(h(-1,2))=g(1,-2)=(-2,1),那么h(f(g(3,-4)))等于()A.(4,-3)B.(-4,3)C.(-4,-3)D.(4,3)【答案】C【解析】【分析】根据f(a,b)=(-a,b).g(a,b)=(b,a).h(a,b)=(-a,-b),可得答案.【详解】由已知条件可得h(f(g(3,-4)))= h(f(-4,3))= h(4,3)=(-4,-3)故选:C【点睛】本题考查了点的坐标,利用f(a,b)=(-a,b).g(a,b)=(b,a).h(a,b)=(-a,-b)是解题关键.18.若点A(a+2,b-1)在第二象限,则点B(-a,b-1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】【详解】解:因为点A(a+2,b-1)在第二象限,所以a+2<0,b-1>0,则-a>2,,b-1>0,即点B的横坐标为正数,纵坐标为正数,所以点B在第一象限,故选A19.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2), ,则表示棋子“馬”的点的坐标为()(2,0)A.(4,2)B.(2,4)C.(3,2)D.(2, 1)【答案】A【解析】【分析】根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.20.若点M 的坐标为2-a b |+1),则下列说法中正确的是 ( )A .点M 在x 轴正半轴上B .点M 在x 轴负半轴上C .点M 在y 轴正半轴上D .点M 在y 轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M 的横、纵坐标的符号; 然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】 2a -有意义,则-a 2≥0,∴a =0.∵|b |≥0,∴|b |+1>0,∴点M 在y 轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.。
2018 初三数学中考复习平面直角坐标系与函数专题复习训练题1.如图,在平面直角坐标系中,点P的坐标为( )
A.(3,-2) B.(-2,3) C.(-3,2) D.(2,-3)
2. 下列各曲线中表示y是x的函数的是( )
3. 在平面直角坐标系中,点P(2,-3)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( ) A.(-2,-3) B.(2,-3) C.(-3,-2) D.(3,-2)
5.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )
A.(-3,3) B.(3,2) C.(0,3) D.(1,3)
6.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为( )
A.(-2,-1) B.(-1,0) C.(-1,-1) D.(-2,0)
7.函数y=x+2
x
的自变量x的取值范围是( )
A.x≥-2 B.x≥-2且x≠0 C.x≠0 D.x>0且x≠-2 8.下列曲线中,不能表示y是x的函数的是( )
9.对任意实数x,点P(x,x2-2x)一定不在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( ) A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)
11.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )
12.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:
①打电话时,小刚和妈妈的距离为1 250米;
②打完电话后,经过23分钟小刚到达学校;
③小刚和妈妈相遇后,妈妈回家的速度为150米/分;
④小刚家与学校的距离为2550米.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
13. 在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度得到点A′,则点A′的坐标是( )
A.(-1,1) B.(-1,-2) C.(-1,2) D.(1,2)
14. 如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为( )
A.(2,-1) B.(2,3) C.(0,1) D.(4,1)
15. 函数y=
x
x-2
的自变量x的取值范围是( )
A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>2 16.点P(x-2,x+3)在第一象限,则x的取值范围是___.
17.在函数y=3x+1
x-2
中,自变量x的取值范围是____.
18.点P(1,2)关于直线y=1对称点的坐标是____.
19.如图,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AOB.若将A点表示为(3,30°),B点表示为(1,120°),则C点可表示为____.
20.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动,图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程s(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶____千米.
21.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则P60的坐标是____.
22. 函数y=
x
2x-1
中,自变量x的取值范围是.
23. 点P(2,-3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是.
24. 若函数y=x-1在实数范围内有意义,则x的取值范围是____.
25. 若点A(x,2)在第二象限,则x的取值范围是____.
26. 已知y=-2x+4,且-1≤x<3,求函数值y的取值范围.
27. 某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:
(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
28.如图,在平面直角坐标系中,A(-3,-2),B(-1,-4)
(1)直接写出:S△OAB=__5__;
(2)延长AB交y轴于P点,求P点坐标;
(3)Q点在y轴上,以A,B,O,Q为顶点的四边形面积为6,求Q点坐标.
参考答案:
1---15 ADDAD CBDCC CCAAA 16. x >2
17. x ≥-1
3且x ≠2
18. (1,0) 19. (2,75°) 20. 35
21. (20,0) 22. x≠1
2
23. (-2,-2) 24. x≥1 25. x <0
26. 解:解法一:∵-1≤x<3,∴2≥-2x >-6,
∴2+4≥-2x +4>-6+4,即6≥-2x +4>-2. ∵y=-2x +4,∴6≥y >-2,即-2<y≤6 解法二:∵y=-2x +4,∴x =4-y
2
.∵-1≤x<3,
∴-1≤4-y
2
<3,∴-2≤4-y <6,
∴-2-4≤-y <6-4,-6≤-y <2,∴-2<y≤6
27. 解:(1)由图象得:出租车的起步价是8元,设当x >3时,y 与x 的函数
关系式为y =kx +b ,由函数图象得⎩
⎪⎨⎪⎧8=3k +b ,12=5k +b ,解得 ⎩⎪⎨⎪⎧k =2,b =2,
故y 与x 的函数关系式为y =2x +2 (2)当y =32时,32=2x +2,x =15,答:这位乘客乘车的里程是15 km
28. (1) 5
(2)(0,-5)
(3)当Q 在y 轴的正半轴上时,∵S 四边形ABOQ =S △AOB +S △AOQ ,∴S △AOQ =6-5=1,∴12
×3×OQ =1,解得OQ =23,则此时Q 点的坐标为(0,23
);当Q 在y 轴的负半轴上时,∵S 四边形ABQO =S △AOB +S △BOQ ,∴S △BOQ =1,∴12
×1×OQ =1,解得OQ =2,则此时Q 点的坐标为(0,-2),即Q 点坐标为(0,23
)或(0,-2)。