穿层瓦斯抽放钻孔参数计算表
- 格式:xls
- 大小:3.66 MB
- 文档页数:11
10403回风巷瓦斯抽放钻孔参数表
10403运输巷、回风巷瓦斯抽放钻孔参数表
10403运输巷掘进工作面瓦斯抽放钻孔参数表(自煤仓口以里28米处)
10403运输巷下帮钻场瓦斯抽放钻孔参数表(10404回风巷条带预抽)
预测(效检)钻孔参数表(表一)
预测(效检)钻孔参数表(表二)
10403回风巷顺层条带瓦斯抽放钻孔参数表(两帮钻场边抽边掘,12号钻场)
10403采面顺层下行瓦斯抽放钻孔参数表(10403采面预抽)
10501运输巷上帮瓦斯抽放钻孔参数表(自开口19m-25m巷道上帮)
10501运输巷顺层条带瓦斯抽放钻孔参数表(迎头抽放)
10403开切眼顺层条带瓦斯抽放钻孔参数表(迎头抽放先抽后掘)
10401(西)回风巷运输联络上山瓦斯抽放钻孔参数表(迎头抽放先抽后掘)
预测(效检)钻孔参数表(表一)
预测(效检)钻孔参数表(表二)
10401(西)回风巷运输联络上山瓦斯排放钻孔参数表
10403开切眼掘进工作面瓦斯排放钻孔参数表
10501巷掘进工作面瓦斯排放钻孔参数表
10501运输巷顺层条带瓦斯抽放钻孔参数表(表一)
(迎头抽放先抽后掘,自开口处)
10501运输巷顺层条带瓦斯抽放钻孔参数表(表二)
(迎头抽放先抽后掘,自开口处)
10501运输巷顺层条带瓦斯抽放钻孔参数表(两帮钻场)
10403运输巷穿层瓦斯抽放钻孔参数表(顶板穿层)(迎头抽放先抽后掘,自开口315M处)。
10403回风巷瓦斯抽放钻孔参数表10403运输巷、回风巷瓦斯抽放钻孔参数表10501运输巷掘进工作面探放水钻孔参数表10403运输巷掘进工作面瓦斯抽放钻孔参数表(自煤仓口以里28米处)10403运输巷下帮钻场瓦斯抽放钻孔参数表(10404回风巷条带预抽)预测(效检)钻孔参数表(表一)预测(效检)钻孔参数表(表二)10403回风巷顺层条带瓦斯抽放钻孔参数表(两帮钻场边抽边掘,12号钻场)10403采面顺层下行瓦斯抽放钻孔参数表(10403采面预抽)10501运输巷上帮瓦斯抽放钻孔参数表(自开口19m-25m巷道上帮)10501运输巷顺层条带瓦斯抽放钻孔参数表(迎头抽放)10403开切眼顺层条带瓦斯抽放钻孔参数表(迎头抽放先抽后掘)10401(西)回风巷运输联络上山瓦斯抽放钻孔参数表(迎头抽放先抽后掘)预测(效检)钻孔参数表(表一)预测(效检)钻孔参数表(表二)10403开切眼掘进工作面探放水钻孔参数表10401(西)回风巷运输联络上山掘进工作面探放水钻孔参数表+1151轨道石门掘进工作面探放水钻孔参数表10401(西)回风巷运输联络上山瓦斯排放钻孔参数表10403开切眼掘进工作面瓦斯排放钻孔参数表10501巷掘进工作面瓦斯排放钻孔参数表10501运输巷顺层条带瓦斯抽放钻孔参数表(表一)(迎头抽放先抽后掘,自开口138.5M处)10501运输巷顺层条带瓦斯抽放钻孔参数表(表二)(迎头抽放先抽后掘,自开口138.5M处)10501运输巷顺层条带瓦斯抽放钻孔参数表(两帮钻场)10403运输巷穿层瓦斯抽放钻孔参数表(顶板穿层)(迎头抽放先抽后掘,自开口315M处)精品文档word文档可以编辑!谢谢下载!。
3.4 瓦斯抽采3.4.1 瓦斯储量 1、瓦斯储量计算范围矿井可采煤层及受采动影响的围岩。
2、瓦斯储量矿井瓦斯储量按下式计算:321w w w w ++=式中:W —矿井地质资源/储量,Mm 3; W 1—矿井可采煤层瓦斯储量,M m 3;∑=⨯=ni iiw Aw 1111式中:A 1i —矿井i 可采煤层的地质储量, M t; W 1i —矿井i 可采煤层的瓦斯含量, m 3 /t ;W 2—受采动影响后能够向开采空间排放的各不可采煤层的瓦斯储量,M m 3;∑=⨯=ni iiw Aw 1222式中:A 2i —受采动影响后能够向开采空间排放的i 不可采煤层的地质储量,M m 3; W 2i —受采动影响后能够向开采空间排放的i 不可采煤层的瓦斯储量, m 3/t; 因为地质报告没有提供不可采煤层的地质储量,因此受采动影响后能够向开采空间排放的各不可采煤层的瓦斯储量按可采煤层瓦斯储量10%计算。
W 3--受采动影响后能够向开采空间排放的岩层瓦斯储量,M m 3;)(213w w k w +=k —围岩瓦斯储量系数,一般取K=0.05—0.20,取K=0.1。
个煤层采用两个采区瓦斯含量的平均值计算矿井瓦斯储量和可抽采量。
经计算矿井区域内地质瓦斯储量为301.85Mm 3,计算结果见表3-4-1。
表3-4-1 矿井地质瓦斯储量计算表煤层 可采煤层 瓦斯含量(m 3/t) 可采煤层地质储量(万吨) 可采煤层地质储量(Mm 3) 不可采煤层 的瓦斯储量 (Mm 3) 受采动影响能向开采空间 排放的岩层瓦斯储量 (Mm 3) 矿井地质储量(Mm 3)3 12.29 192 23.64 12.8 171 21.89 912.75 167 21.3 10 13.05 276 36.02 12 15.01 230 34.52 17 15.34 306 46.94 18 15.42 263 40.55 19 15.5 159 24.64 总计249.4624.9527.44301.853、可抽放量 (1)瓦斯抽放率根据本章叙述,矿井瓦斯抽放率为61%。
矿井瓦斯抽放管理规范(国家安全生产行业标准AQ1027-2006,国家安全生产监督管理总局2006年11月2日发布,2006年12月1日实施)一、范围本标准规定了建立矿井瓦斯抽放系统的条件及工程设计要求、瓦斯抽放方法、瓦斯抽放管理及职责、瓦斯利用、瓦斯抽放系统的报废程序,以及瓦斯抽放基础参数的测算方法、各类瓦斯抽放方法的抽放率、瓦斯抽放监控系统监测参数的指标要求和瓦斯抽放工程设计有关计算方法。
本标准适用于全国煤矿企业、管理部门及有关事业单位。
二、规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款:——MT5018—96矿井抽放瓦斯工程设计规范。
——《煤矿安全规程》(2004年版)。
——《煤矿瓦斯抽放管理规范》(1997年版)。
——GB50187—1993工业企业总平面设计规范。
——GB50215—2005煤炭工业矿井设计规范。
三、定义下列术语和定义适用于本标准:(一)瓦斯抽放:采用专用设备和管路把煤层、岩层和采空区中的瓦斯抽出或排出的措施。
(二)未卸压抽放瓦斯:抽放未受采动影响和未经人为松动卸压煤(岩)层的瓦斯,亦称为预抽。
(三)卸压抽放瓦斯:抽放受采动影响和经人为松动卸压煤(岩)层的瓦斯。
(四)本煤层抽放瓦斯:抽放开采煤层的瓦斯。
(五)邻近层抽放瓦斯:抽放受开采层采动影响的上、下邻近煤层(可采煤层、不可采煤层、煤线、岩层)的瓦斯。
(六)采空区抽放瓦斯:抽放现采工作面采空区和老采空区的瓦斯。
前者称现采空区(半封闭式)抽放,后者称老采空区(全封闭式)抽放。
(七)围岩瓦斯抽放:抽放开采层围岩内的瓦斯。
(八)地面瓦斯抽放:在地面向井下煤(岩)层打钻孔抽放瓦斯。
(九)综合抽放瓦斯:在一个抽放瓦斯工作面同时采用2种或者2种以上方法进行抽放瓦斯。
(十)强化抽放:针对一些透气性低、采用常规的预抽方法难以奏效的煤层而采取的特殊抽放方式。
(十一)预抽:在煤层未受采动以前进行的瓦斯抽放。
(十二)瓦斯储量:煤田开采过程中,能够向开采空间排放瓦斯的煤层和岩层中赋存瓦斯的总量。
瓦斯抽采钻孔参数计算方法总结与应用刘涛(平安煤矿瓦斯治理国家工程研究中心有限责任公司,安徽淮南232001)摘要:归纳总结瓦斯抽采钻孔设计程序及方法,通过结合钻孔平面设计图和剖面设计图对钻孔设计参数的计算方法进行归纳总结,计算规程中利用Excel电子表格对钻孔参数计算进行简化,并应用在本煤层钻孔、地质前探钻孔、石门揭煤穿层钻孔等设计中。
关键词:钻孔设计;设计程序及步骤;钻孔参数计算;Excel中图分类号:TD712+.6文献标识码:B文章编号:1006-2572(2017)04-0095-08 Summarization and Application of Calculation Method of Gas Extraction Drilling ParametersLiu Tao(National Engineering Research Center Co.,Ltd.of Safety Colliery and Gas Control,Huainan,Anhui,232001) Abstract:Based on the design procedure and method of gas drainage drilling,the author summarizes the calculation method of drilling design parameters by combining the drilling plane design and the profile design,in which the Excel is used to simplify the drilling parameter calculation and also applied in the designs of coal bed drilling,geological forepole drilling and perforated drilling in uncovering coal in crosscut.Key words:drilling design;design procedure;calculation of drilling parameter;Excel钻孔设计是瓦斯抽采设计中重要环节之一,钻孔参数设计是钻孔设计的关键部分,钻孔参数设计的科学性准确性关系瓦斯治理工程的落实及瓦斯治理的效果。
第一章矿井瓦斯抽放方法一、瓦斯抽放的概念、目的和意义1.概念为了减少和解除矿井瓦斯对煤矿安全生产的威胁,利用机械设备和专用管道造成的负压,将煤层中存在或释放出的瓦斯抽出来,输送到地面或其他安全地点的做法,叫做瓦斯抽放。
2.目的减少和消除瓦斯威胁,保证煤矿生产安全。
3.意义①可以减少开采时的瓦斯涌出量,从而减少瓦斯隐患和各种瓦斯事故。
②可减少通风费用,解决通风难以解决的难题。
③用瓦斯作为原料和燃料,能化害为利、变废为宝,可节约煤炭、保护环境和可观的经济效益。
二、矿井瓦斯抽放方法瓦斯抽放的方式和方法多种多样,一般有3种分类方法,见表1-1。
表1-1 矿井瓦斯抽放方法分类瓦斯抽放方法虽然有上述不同分类方法和种类,但现场应用时,往往是互相结合、不能截然分开的。
如本煤层抽放中包括巷道预抽法、钻孔预抽法及边采(掘)边抽法;而钻孔法又应用于本煤层抽放、邻近层抽放及预抽、边抽等。
煤层抽放瓦斯难易程度分级表四角田煤矿煤层透气性系数8.79×10-4m2/MPa2·d三、本煤层瓦斯抽放及抽放方法1.概念本煤层瓦斯抽放是指采用送道或打钻的方式直接抽放开采煤层内含有的瓦斯的方法。
2.方法按照抽放与采掘的时间关系,本煤层抽放可分为“预抽”和“边抽”两种方法。
所谓“预抽”,就是在开采之前预先抽出媒体中的瓦斯。
“预抽”又可分为巷道预抽和钻孔预抽2种;所谓“边抽”是指边生产边抽放瓦斯,即生产和抽放同时进行。
“边抽”又包括边采边抽和边掘边抽2种。
四、预抽本煤层瓦斯施工方法及优缺点预抽本煤层瓦斯(分巷道预抽和钻孔预抽)的施工方法及优缺点如下:1.巷道预抽本煤层瓦斯即在回采之前事先掘出瓦斯巷道(因同时要考虑采煤工作需要,因此也叫采准巷道),然后,将巷道密闭,在密闭处接设管路进行抽放,直到回采时为止。
这种方法的优点:煤体卸压范围大,煤的暴露面积大,有利于瓦斯释放。
缺点:提前送巷道,开采时巷道维修量大;高瓦斯煤层掘进施工困难;若密闭不严易进气,抽出的瓦斯浓度低;且巷内易引起自然发火。
1.煤层基础参数现场测定实验方案1.1煤层瓦斯压力1.1.1测试原理直接测定法是用钻机由岩层巷道或煤层巷道向预定测量瓦斯地点打一钻孔,然后在钻孔中放置测压装置、再将钻孔严密封闭堵塞并将压力表和测压装置相连来测出瓦斯压力。
如果在测定中能保证钻孔封闭严密不漏气,则压力表显示的数值即为测点的实际瓦斯压力,直接测定法的关键是封闭钻孔的质量。
根据封孔原理的不同,一般将封孔方法分为被动式与主动式。
本次采用主动式封孔技术。
主动式封孔测压其基本原理是:固体封液体、液体封气体,即采用液体作为封孔介质,以解决固体物不能严密封闭钻孔周边裂隙孔道的困难,并保持封孔液体的压力在测定过程中始终大于瓦斯压力,粘液在压力作用下渗入钻孔周边裂隙,杜绝瓦斯的泄漏;为了维持封孔液体的压力和防止液体向钻孔内渗透,在封孔液体段的两端用固体封闭钻孔,形成用固体封液体、用液体封气体的封孔系统。
实践表明:在石灰岩、砂岩和页岩岩层的钻孔中,均能严密封闭钻孔,准确测得煤层的瓦斯压力。
经过几十年的发展,目前主动式瓦斯测压封孔装置主要有:普通胶圈-压力粘液封孔测压仪、可变形胶圈-压力粘液封孔测压仪、胶囊-压力粘液封孔测压仪、胶圈(囊)-三相泡沫密封液测压仪等。
MWYZ系列化主动式煤层瓦斯压力测定仪主要由钢丝胶囊、护管和连接罐、尼龙压力管(瓦斯管、胶囊液管和压力粘液管)、储能罐和压力粘液罐、手动试压泵、粘液封孔材料以及测压仪表等配件组成。
1.1.2测定仪器测试仪器选用华北科技学院研发的MWYZ-IV型和MWYZ-III型主动式煤层瓦斯压力测定仪各一套。
具体技术参数如表1.1所示。
表1.1 测压仪参数表1.1.3测点布置为了最大限度反应原始状态下的瓦斯压力,选择测压地点时可参考以下原则:1)目标煤层周围无采空区,尽量选取在最近几年新开拓的岩石巷道;2)瓦斯压力测量地点一般选择在岩石比较完整,周边地质结构单一的岩巷中进行;测压钻孔及其见煤点应避开地质构造裂隙带、巷道的卸压圈和采动影响范围,测压煤层周围岩石致密完整、无破碎带;3)煤层50m范围内无断层和大的裂隙;岩层无淋水,岩柱(垂高)至少大于10m;4)同一地点测压应打两个测压钻孔,钻孔口距离应在其相互影响范围外,其见煤点的距离除石门测压外应不小于20 m。
义煤集团瓦斯抽放工程设计施工技术标准为认真贯彻执行《防突规定》中有关瓦斯抽放的各项规定,加强集团公司瓦斯抽放技术管理,提高瓦斯抽放钻孔的施工质量,使各矿在设计和施工抽放钻孔时有据可依,结合集团公司实际,特制定本标准。
第一章瓦斯抽放钻孔设计标准一、本煤层抽放钻孔㈠、本煤层抽放钻孔设计标准在设计工作面巷道布置的同时,必须设计该地区瓦斯抽放工程。
1、瓦斯抽放工程设计原则:⑴钻孔间距要根据实测的钻孔抽放半径来确定,无实测的钻孔抽放半径时,钻孔孔底间距不得大于3m,钻孔排距根据煤层厚度确定,煤层厚小于3m时仅施工一排钻孔,煤层厚度3~5m时施工两排钻孔,煤层厚度5~8m时施工三排钻孔,煤层厚度大于8m时施工四排钻孔,且吨煤钻孔工程量不得小于0.05m/t。
(见图1)图1 本煤层平行抽放钻孔布置示意图⑵工作面综合抽放率不得小于30%。
⑶工作面预抽期不少于3个月。
⑷本煤层钻孔孔径不小于75mm。
深度根据工作面的倾向长度确定,上、下巷施工的本煤层抽放钻孔必须交手,且交手距离不得小于10m;穿层钻孔孔深以穿透全煤层为标准。
⑸利用巷帮抽放钻场扇形布孔时,必须对两个钻场中间的空白三角区进行补孔(见图2),不得预留空白带。
图2 钻场中扇形抽放钻孔布置示意图㈡、采煤工作面瓦斯抽放设计包括以下内容:1、采面巷道布置、平均走向长度、倾向长度、全层煤厚、煤炭储量、巷道掘进起止时间等。
2、瓦斯抽放管路布置(包括抽放管路的管径、长度、敷设位置、放水器、观察孔、调节闸门等附属设施)。
3、钻场、钻孔布置(包括钻场规格、数量、钻场间距及钻孔数量、方位、角度、孔径、孔深、结构、钻孔间距等),且必须有钻场、钻孔布置图等。
4、钻孔总工程量(包括本煤层钻孔、穿层钻孔、高位裂隙钻孔等)、吨煤钻孔工程量、工作面投产时间等。
5、瓦斯储量、预抽瓦斯量、预抽期、预抽率等。
二、顶、底板巷穿层抽放钻孔㈠、顶、底板巷穿层抽放钻孔设计标准对于突出危险性较大的矿井或工作面,可施工顶、底板巷采取区域防突措施,在设计顶、底板巷的同时必须进行顶、底板巷穿层抽放设计。
S cience & T echnology | 科学技术中国煤炭工业 2019/0457煤矿安全生产中,瓦斯超限是井下事故发生的主要原因之一,瓦斯抽采既能达到控制煤矿瓦斯灾害的效果,又能将瓦斯能源充分利用。
而瓦斯抽采方法的合理性直接决定抽采效果的好坏。
目前,在煤巷条带瓦斯治理过程中,多采用穿层钻孔预抽煤层瓦斯。
穿层钻孔的不同钻孔之间抽采效果存在差异,从本质上来看,主要是由于钻孔倾角不同,受应力影响的程度不同,导致瓦斯抽采半径不同,从而导致不同的抽采效果。
为进一步考察穿层钻孔倾角对瓦斯抽采的影响,在前人研究的基础上,以平煤十二矿第四瓦斯治理巷穿层预抽钻孔整体布置为工程背景,采用COMSOL数值模拟软件建立煤体流固耦合模型,基于煤体变形方程和瓦斯流动方程,分析穿层钻孔倾角对瓦斯抽采半径的影响规律,并通过孔内裂隙窥视分析验证数值模拟规律,为矿井采用穿层钻孔预抽煤层瓦斯实践提供有益借鉴。
一、模拟钻孔参数本次模拟以平煤十二矿西翼第四瓦斯治理巷治理己15-31020采面下部穿层预抽钻孔为参考。
穿层预抽钻孔主要用来掩护己15煤层掘进头掘进,钻孔设计剖面图如图1所示,每组扇形钻孔共计18个,钻孔直径为89mm,倾角各不相同。
此外,煤层倾角为12°,并假设煤层倾角在模拟区域内为定值,钻孔倾角在19°~87°之间。
钻孔瓦斯抽采模型尺寸为20m ×20m ×20m,同时将模型的底部和其他三个边界分别设置为固定和水平方向位置约束,地应力根据现场实际情况设置为10MPa,四周的水平应力设置为6MPa。
煤层的原始瓦斯压力设置为2MPa,瓦斯抽采负压为15kPa。
数值模型采用的理论模型及其关键计算参数,参考了有关学者关于穿层钻孔周围应力变化特征及其对瓦斯抽采的影响研究资料。
二、钻孔抽采影响因素1. 钻孔抽采影响半径与钻孔倾角的关系以往很多研究人员在研究瓦斯抽采的影响因素时,通常假定钻孔与煤层垂直(穿层钻孔)或平行(顺层孔),而对钻孔倾角对瓦斯穿层钻孔倾角对瓦斯抽采影响的数值模拟研究文/棘理想 朱传杰 任 洁抽采的影响研究较少。
1.煤层基础参数现场测定实验方案1.1煤层瓦斯压力1.1.1测试原理直接测定法是用钻机由岩层巷道或煤层巷道向预定测量瓦斯地点打一钻孔,然后在钻孔中放置测压装置、再将钻孔严密封闭堵塞并将压力表和测压装置相连来测出瓦斯压力。
如果在测定中能保证钻孔封闭严密不漏气,则压力表显示的数值即为测点的实际瓦斯压力,直接测定法的关键是封闭钻孔的质量。
根据封孔原理的不同,一般将封孔方法分为被动式与主动式。
本次采用主动式封孔技术。
主动式封孔测压其基本原理是:固体封液体、液体封气体,即采用液体作为封孔介质,以解决固体物不能严密封闭钻孔周边裂隙孔道的困难,并保持封孔液体的压力在测定过程中始终大于瓦斯压力,粘液在压力作用下渗入钻孔周边裂隙,杜绝瓦斯的泄漏;为了维持封孔液体的压力和防止液体向钻孔内渗透,在封孔液体段的两端用固体封闭钻孔,形成用固体封液体、用液体封气体的封孔系统。
实践表明:在石灰岩、砂岩和页岩岩层的钻孔中,均能严密封闭钻孔,准确测得煤层的瓦斯压力。
经过几十年的发展,目前主动式瓦斯测压封孔装置主要有:普通胶圈-压力粘液封孔测压仪、可变形胶圈-压力粘液封孔测压仪、胶囊-压力粘液封孔测压仪、胶圈(囊)-三相泡沫密封液测压仪等。
MWYZ系列化主动式煤层瓦斯压力测定仪主要由钢丝胶囊、护管和连接罐、尼龙压力管(瓦斯管、胶囊液管和压力粘液管)、储能罐和压力粘液罐、手动试压泵、粘液封孔材料以及测压仪表等配件组成。
1.1.2测定仪器测试仪器选用华北科技学院研发的MWYZ-IV型和MWYZ-III型主动式煤层瓦斯压力测定仪各一套。
具体技术参数如表1.1所示。
表1.1 测压仪参数表1.1.3测点布置为了最大限度反应原始状态下的瓦斯压力,选择测压地点时可参考以下原则:1)目标煤层周围无采空区,尽量选取在最近几年新开拓的岩石巷道;2)瓦斯压力测量地点一般选择在岩石比较完整,周边地质结构单一的岩巷中进行;测压钻孔及其见煤点应避开地质构造裂隙带、巷道的卸压圈和采动影响范围,测压煤层周围岩石致密完整、无破碎带;3)煤层50m范围内无断层和大的裂隙;岩层无淋水,岩柱(垂高)至少大于10m;4)同一地点测压应打两个测压钻孔,钻孔口距离应在其相互影响范围外,其见煤点的距离除石门测压外应不小于20 m。
仁寿县复合能源集团有限公司8237回采工作面瓦斯钻孔设计编制单位:技术科编制人员:姜永正编制日期:2013年8月16日会审签字单仁寿县复合能源集团有限公司8237回采工作面瓦斯钻孔设计一、钻孔布置原则回采工作面瓦斯抽采主要以穿层钻孔抽采布置方式,钻孔从开孔位置呈放射状进入邻近层,边回采边抽采破坏裂隙带。
随着煤层开采的推进,在受卸压影响和瓦斯压力作用下向采空大量释放瓦斯。
根据柱状图岩层性质和经验数据,破坏裂隙带一般为采高的10—30倍。
我矿开采层为1.5m左右,故钻孔终孔层位在垂高30m左右。
布置穿层钻孔抽采裂隙的瓦斯时,钻孔的倾斜长度不宜超过70m。
以确保抽采钻孔的抽采效果和钻孔覆盖率的要求。
钻孔间距应合理确定,一般为30米,布置抽放钻孔。
二、工作面穿层钻孔布置方式根据矿井整合工程初步设计的开拓布置,矿井接替工作面布置在290东翼8237采煤工作面。
煤层厚1.2~1.5m,平均厚1.35m。
工作面倾斜长780m,走向宽100m。
根据8237采煤工作面的煤层赋存情况,设计在采煤工作面回风巷中布置穿层向上钻孔抽采煤工作面的破坏裂隙带瓦斯。
钻孔具体布置为在采煤工作面运输巷中沿煤层倾向上布置单排钻孔,钻孔方位迎向工作面,与工作面呈10°夹角,钻孔倾角同煤层倾角,钻孔间距3米,单个钻孔长度75m~90m左右。
8237采煤工作面走向长约490米,设计钻孔个数164个,实际施工时可根据现场情况对钻孔参数进行适当调整。
钻孔布置详见参数表及附图。
采煤工作面顺煤层钻孔参数表三封孔方式、材料及工艺(一)、采用聚氨酯人工封孔1、采用聚氨酯人工封孔。
钻孔内抽放管选用长8m直径25mm 的抽放管,为防止堵塞,抽放管顶端钻10个直径10mm小孔,最好用双层铁筛网包扎好。
用聚氨酯封孔,封孔长度8m。
2、封孔材料钻孔采用聚氨酯封孔,对于井下封孔而言,主要要求聚氨酯在发泡后,其内所形成的孔为封闭孔,另外对发泡时间、发泡倍数、固化后的强度,可塑性等均有一定的要求。
附件:区域瓦斯抽放钻孔封孔管理办法(试行)为规范我公司区域瓦斯抽放钻孔封孔管理,提高封孔质量,保证瓦斯抽放效果,特制定本办法:一、一般规定1、区域瓦斯抽采钻孔包括顺层及穿层抽采钻孔。
2、钻孔孔径要求:顺层及穿层抽采钻孔孔径不小于89mm;水力冲孔钻孔孔径不得小于113mm。
3、顺层钻孔必须在成孔后立即封孔连管抽放,穿层钻孔应设置专人每天对当天施工的钻孔集中封孔。
二、封孔准备工作1、打钻过程中施工人员必须详细记录“卡、顶、喷”及钻孔的煤、岩段长度等钻孔施工情况。
2、顺层钻孔施工至设计位置后,钻机应空转3分钟,用压风排净孔内煤(岩)粉后方可退钻,在退钻过程中必须连接压风不间断清理孔内煤粉。
3、封孔前,必须将注浆泵、封孔管、注浆管、封孔药液等材料准备到位,同时检查封孔材料的质量、筛眼部位透气性、注浆泵的完好性,如发现封孔管、注浆管、囊袋有堵塞、破损或注浆泵不完好的,应立即处理。
4、封孔前应先进行清孔,必须保证先钻孔内无煤粉堆积或积水的情况方可封孔。
三、封孔工艺1、穿层钻孔:一1一(1)封孔采用专用封孔器,管径Φ50mm。
封孔时,将囊袋固定在距孔口1.2m位置,然后用注浆泵与孔外预留注浆管连接进行注浆,注浆量以孔内封孔管返浆为止。
(2)穿层钻孔必须全程下封孔管,封孔段长度为整个岩孔段(实管),煤孔段全部为筛管。
(3)封孔前,封孔人员必须查看钻孔施工记录,掌握钻孔煤、岩段长度,确定实管和筛管长度。
(4)水泥、水配比为1:0.8~1:1,并应保证水泥浆搅拌后均匀。
第一次注浆后间隔30分钟进行二次注浆,使水泥浆充分封堵封孔段孔壁,封孔结束后使用水泥砂浆封堵孔口,长度不得小于0.3米,见图1。
图1:穿层钻孔注浆封孔示意图2、顺层钻孔(1)封孔采用专用封孔器,管径Φ50毫米,封孔时埋管长度为26米,前端为4米筛管;18-22米为囊袋,采用聚氨酯封孔;0-17m 一2一段为实管,使用水泥浆封孔,详见图2。
(2)封孔步骤:①将封孔管按连接顺序牢靠连接后送入钻孔内。
跌毛沟煤矿M17、 M18 煤穿层预抽条带设计M17、M18 穿层预抽设计第一章工作概况和瓦斯地质第1节 工作概况一、概况 2152 运巷位于矿井西翼,2152 运巷标高+1442 米,在 2152 运巷布置穿层钻孔,钻孔 穿透 M17、M18 煤层。
从而实现对 M17、M18 煤层的区域瓦斯抽放,降低 M17、M18 煤层的突 出危险性危害。
二、设计依据 1、 《煤矿安全规程》 ; 2.《防治煤与瓦斯突出规定》; 3、 《迭毛沟煤矿开采设计专篇》 。
4、 《迭毛够煤矿防突专项设计》 三、地质特征及煤层赋存情况 1)煤层赋存情况 根据贵州省盘县煤田宏成煤矿(即迭毛沟煤矿)勘查地质报告(2003)及贵州省 煤矿设计研究院 2008 年 12 月编制的《盘县柏果镇迭毛沟煤矿勘查地质报告(补充),井田 》 内含煤地层为上二叠统龙潭组,含煤 13 层,可采层 4 层(西部井田煤层自上而下的顺序为: M18、M17、M15、M12;东部井田煤层自上而下的顺序为:M12、M18) ,厚度约 26.47m,其余 煤层均不可采。
各可采煤层主要特征见表。
表 1—1—1 断层特征表 断层产状 断层名 称 长度 (m) 走向 倾向 倾角 落 差 (m )描述F1 走向逆 断层1400北 38°西南西80°300位于井田西部边界附近。
地面茅口 组灰岩中部与峨眉山玄武岩组中部 接触。
断裂位置可靠。
推测落差约 300m 左右。
纵切井田中部,将井田切成东西两 个块段。
东块段地层倾向北东,倾 角 35°—40°,层序正常;西块段 地层倾向南西,倾角 60°—70°, 倒转层序。
断裂线多被掩盖,无出 露,有一定的摆动。
位于井田南部。
断裂线不清,北盘 17、18 号煤层与南盘玄武岩接触。
断裂线及断层产状均为推测。
位于井田东南部。
地面龙潭组上部 地层与南盘玄武岩组接触。
瓦斯抽采水力压裂增透技术六枝工矿(集团)化处煤炭分公司2015年4月一、矿井煤层瓦斯赋存情况化处煤炭分公司为六枝工矿(集团)有限责任公司下属公司(以下简称化处煤矿),位于大煤山背斜西翼,矿区总面积11.1698km2,主采7号煤层。
设计生产能力30万t/a,核定生产能力36万t/a。
7号煤层厚度为0.33~9.80m,一般3~4m,平均倾角22°,瓦斯放散初速度为16、煤层透气性系数为0.3262~0.7601m2/(MPa2.d)、钻孔瓦斯流量衰减系数为0.0562~0.8167d-1、坚固性系数为0.11。
煤层瓦斯压力超过1.3MPa,瓦斯含量超过15m3/t。
7号煤层煤尘有爆炸危险,自燃倾向等级为二类自燃,最短发火期为1个月。
二、瓦斯抽采水力压裂增透技术应用1、水力压裂增透技术实施背景化处煤矿单一开采7号煤层,不具备保护层开采条件,煤层透气性差,常规瓦斯抽采技术预抽困难,煤层松软,钻孔塌孔、卡钻、喷孔现象严重,钻孔流量不稳定、衰减速度快,难以保证抽采效果,瓦斯治理投入大等。
为解决上述问题,于2010年底分别在2372机巷、机巷迎头和1470底板抽放巷实施了本煤层和底板穿层水力压裂增透技术。
2、压裂钻孔的布置及参数⑴2372机巷施工本煤层上行钻孔1#、2#、3#,压裂孔间距依次为25m 和30.6m,3个压裂孔控制压裂区域110米左右如图2-1,钻孔参数如表2-1。
2#、3#压裂孔间施工9个抽采孔,1#、2#压裂孔间施工8个,1#、3#压裂孔外各施工5个,抽采孔间距由2米提高到3米。
⑵2372机巷迎头施工4#、5#压裂孔如图2-2,钻孔参数如表2-2。
⑶在1470中巷19#、20#、21#钻场施工1个压裂孔、1个卸压孔,并在钻场间巷道中部施工高角度孔各1个,共计5个压裂孔如图2-3,钻孔参数如表2-3。
图2-2 2372机巷迎头水力压裂钻孔布置图表2-2 2372机巷迎头水力压裂钻孔参数图2-3 1470中巷水力压裂钻孔布置图19#钻场图2-4 19#钻场钻孔布置剖面示意图表2-4 1470中巷水力压裂钻孔参数3、压裂范围的确定⑴每组压裂孔设计3个,每组压裂钻孔间距为30m,1号孔为压裂孔,设计在1470机巷掘进条巷道中间,2号为卸压孔,设计在1470机巷掘进巷道上帮轮廓线往上20m位置,3号孔为卸压孔,设计在1470机巷掘进巷道下帮轮廓线往下20m位置,压裂孔压裂半径为:纵向40m,横向30m。