用直流电桥测量电阻
- 格式:pdf
- 大小:5.62 MB
- 文档页数:7
直流电桥测电阻实验报告直流电桥测电阻实验报告一、实验目的(1)了解单电桥测量电阻的原理,利用此原理测量电阻以及铜丝电阻的温度系数。
(2)通过处理实验所得数据,学习作图法与直线拟合法。
(3)利用电阻与温度关系,构造非平衡互易桥组装数字温度计,并学习其应用分析^p 设计方法。
二、实验原理(1)惠斯通电桥测量电阻(1-1)电桥原理:当桥路检流计中无电流通过时,表示电桥已经达到平衡,此时有 R_/R2 = R/R1,即 R_ = (R2/R1)_R。
其中将(R2/R1)记为比率臂 C,则被测电阻可表示为R_=C_R。
(1-2)实际单电桥电路在实际操作中,通过调节开关 c 位置,改变比率臂 C;通过调节 R 中的滑动变阻器,改变 R。
调节二者至桥路检流计中无电流通过,已获得被测电阻阻值。
(2)双电桥测低电阻(2-1)当单电桥测量电阻阻值较低时,由于侧臂引线和接点处存在电阻,约为 10^-2~10^-4Ω量级,故当被测电阻很小时,会产生较大误差。
故对单电桥电路进行改进,被测电阻与测量盘均使用四段接法:,同时增设两个臂 R1"和 R2"。
(2-2)电路分析^p :由电路图知:① I3_R_ + I2_R2’ = I1_R2② I3_R + I2_R1’ = I1_R1③ I2_(R2’+R1’) = (I3=I2)_r 综合上式可知:" 1" 212" 2 " 1"_121RRRRRr R Rr RRRR_ 利用电桥结构设计,可满足" 1" 212RRRR,同时减小 r,可是 R_ 仍满足 R_ = (R2/R1)_R,即R_=C_R。
(3)铜丝的电阻温度特性及数字温度计设计(3-1)铜丝的电阻温度特性∵一般金属电阻均有:Rt = R0(1+αR_t),且纯铜αR 变化小∴αR = (Rt -R0)/(R0_t) (3-2)数字温度计设计(3-2-1)非平衡电桥将检流计 G 换为对其两端电压的测量,满足:Rt RRtR RREt2 1U 。
实验十八直流电桥测电阻实验报告一、实验目的1.掌握直流电桥的基本结构、原理和使用方法;2.学习使用直流电桥测量电阻。
二、实验仪器与器材1.直流电桥主体:包括电源、电桥、电流计等组成;2.高精度套装电阻箱;3.电导线;4.多用表;5.尺子。
三、实验原理直流电桥的基本原理就是根据欧姆定律,利用电桥平衡条件来测电阻值。
在实验中,通过调整电桥的阻值,使得电流为零,即在两端读取到相同电压,此时被测电阻值等于设置的阻值。
四、实验步骤1.将直流电桥接通电源,并将高精度套装电阻箱接入电桥的两个相反支路上;2.调节电阻箱阻值,使得电桥两侧的电流为零;3.记录此时电阻箱上的阻值,即为被测电阻值;4.通过多用表检查测量结果的准确性。
五、实验数据记录与处理1.实验数据记录使用直流电桥对5个不同电阻进行测量,分别记录电桥两侧的电阻值和电阻箱上的设定阻值,并计算误差。
被测电阻(Ω)电桥两侧电阻(Ω)设定阻值(Ω)误差(Ω)R1 2.98 3 0.02R2 4.01 4 0.01R3 10.03 10 0.03R4 20.05 20 0.05R5 50.02 50 0.022.数据处理将每次测量得到的数据进行误差计算,如下所示:误差=电桥两侧电阻-设定阻值每次测量的误差都小于0.1Ω,符合实验的要求。
六、实验结果分析与讨论通过本实验,我们掌握了使用直流电桥测量电阻的方法,并且对测得的数据进行了处理分析。
由于实验所用的仪器与器材都是高精度的,所以测量结果的误差较小,符合要求。
在实际应用中,直流电桥是一种常用的测试电阻的工具,其精度可以达到0.1%以上,比其他测量方法更为准确和稳定。
因此,掌握直流电桥的原理和操作方法对于电阻的测量和实验研究非常重要。
七、实验总结通过本实验,我们学会了使用直流电桥测量电阻,并对测量结果进行了处理和分析。
实验过程中,注意到电阻的接触是否良好,避免一些干扰因素对测量结果的影响。
并且在实验结束后,对仪器进行了正确的关闭和清理。
直流电桥与电阻的测量实验报告直流电桥与电阻的测量实验报告引言:直流电桥是一种常用的电路实验仪器,用于测量电阻的值。
在本次实验中,我们将使用直流电桥来测量不同电阻的阻值,并探究其应用于电路分析的原理与方法。
一、实验目的本次实验的主要目的是通过使用直流电桥,测量不同电阻的阻值,并掌握电桥的使用方法和原理。
同时,我们还将探究电阻与电流、电压的关系,以及电阻对电路性能的影响。
二、实验仪器与材料1. 直流电源2. 直流电桥3. 不同阻值的电阻器4. 电压表5. 电流表6. 连接线等三、实验步骤1. 将直流电源的正极与电桥的A点相连,负极与电桥的B点相连。
2. 将电桥的C点与电阻器的一端相连,将电桥的D点与电阻器的另一端相连。
3. 通过调节电桥上的可变电阻,使得电桥两侧的电压差为零。
4. 记录下此时电桥上的电阻值,并计算出电阻器的阻值。
5. 更换不同阻值的电阻器,重复步骤3和4,记录并计算出各个电阻器的阻值。
四、实验结果与分析通过实验,我们得到了不同电阻器的阻值数据,并进行了分析。
实验结果表明,电桥能够准确测量电阻的阻值。
我们还发现,电阻值与电流、电压之间存在着一定的关系。
根据欧姆定律,电阻值等于电压与电流的比值,即R=V/I。
通过实验数据的计算,我们验证了这一关系。
另外,我们还观察到了电阻对电路性能的影响。
当电阻值增大时,电流减小,电压差增大。
这说明电阻对电路中的电流流动起到了阻碍作用,同时也导致了电压的分布不均匀。
因此,在电路设计和分析中,电阻的选择和使用是非常重要的。
五、实验误差与改进在实验过程中,由于电桥的精度和电阻器的质量等因素,可能会产生一定的误差。
为了减小误差,我们可以采取以下改进措施:1. 使用更精确的电桥仪器,提高测量的准确性。
2. 选择质量良好的电阻器,减小电阻器本身的误差。
3. 在实验中进行多次测量,取平均值,以提高数据的可靠性。
六、实验结论通过本次实验,我们掌握了直流电桥的使用方法和原理,并成功测量了不同电阻的阻值。
直流电桥测电阻实验报告实验目的本实验的目的是通过直流电桥方法测量给定电阻的阻值,并熟悉电桥的工作原理和使用方法。
实验原理直流电桥是一种广泛应用于测量电阻的仪器。
其基本原理是利用电桥平衡条件来测量待测电阻的阻值。
一个典型的直流电桥由四个电阻组成,分别是R1、R2、R3和Rx。
其中R1和R2称为标准电阻,R3称为电位器。
电桥的基本工作原理是通过改变电位器的电阻,使电桥两对端电压为零,即平衡状态。
根据直流电桥的平衡条件公式可得:R1 / R2 = Rx / R3通过这个公式,可以求解出待测电阻Rx的阻值。
为了提高测量的准确性,通常会取多个平衡点进行测量,并取平均值作为最终结果。
实验步骤1.按照实验要求,搭建直流电桥电路。
2.通过调整电位器,使得电桥两端电压为零,记录下此时电位器的阻值。
3.重复步骤2,至少取三组平衡点,记录下每次电位器的阻值。
4.计算每次测量得到的待测电阻Rx的平均值。
5.比较测量结果与标准值,计算误差并分析原因。
实验数据和结果下表是实验中测量得到的数据:测量次数电位器阻值(Ω)待测电阻Rx (Ω)1 100 1002 105 1053 98 98根据上表数据,计算得到待测电阻 Rx 的平均值为101.00 Ω。
计算误差和分析假设标准值为100 Ω,根据测量结果与标准值的差异计算出相对误差:误差 = | (测量值 - 标准值) / 标准值 | × 100%= | (101.00 - 100) / 100 | × 100%= 1%从计算结果可以看出,测量结果的误差为 1%。
这种误差可能来自于实验中存在的一些不确定因素,比如接线不良、电源波动等。
结论通过直流电桥方法测量得到的待测电阻 Rx 的阻值为101.00 Ω,相对误差为 1%。
这个结果与预期的标准值接近,说明实验的准确性较高。
但仍需注意实验中存在的不确定因素,以提高测量结果的可靠性。
实验总结本次实验中,我们通过搭建直流电桥电路并调整电位器,成功测量了给定电阻的阻值。
直流电桥法测电阻实验报告实验目的:1.了解直流电桥法测量电阻的原理;2.掌握直流电桥法测量电阻的实验操作方法;3.探究不同测量条件下对测量结果的影响。
实验原理:实验器材:直流电源、电桥、标准电阻、待测电阻、电阻箱、导线等。
实验步骤:1.连接电路:将直流电源的正负极分别连接到电桥电路的相应接口;2.调节滑动变阻器:通过调节滑动变阻器的滑片,使电流表的示数尽量接近零,并固定滑片位置;3.加入标准电阻:在电桥电路上加入一个已知电阻的标准电阻;4.测量电阻:将待测电阻连入电桥电路中,通过调节电桥电路中的标准电阻使电流表示数最接近零;5.记录实验数据:记录标准电阻值、电阻箱设置值以及调节滑动变阻器时的示数;6.重复实验:根据实验需要,可以多次重复实验获取更准确的结果。
实验数据处理:1.计算未知电阻值的实验结果:根据电桥电路中的已知电阻值和相应示数,可以通过比值关系计算出待测电阻的值;3.讨论实验结果:根据实验数据和误差分析,讨论实验结果的准确性,分析实验中可能存在的问题和改进措施。
实验结果和误差分析:实验中我们使用直流电桥法测量了一个未知电阻的值,记录了实验数据如下:标准电阻值:1000Ω电阻箱设置值:500Ω调节滑动变阻器的示数:50我们通过计算得到的待测电阻值为:500Ω×1000Ω/50=1000Ω1.电桥电路的接线不稳定,会对实验结果产生影响;2.电阻箱的阻值可能存在一定的误差,会对实验结果产生影响;3.实验中可能存在读数误差和实验操作误差等。
为了提高实验结果的准确性,我们可以采取以下改进措施:1.保持电桥电路的接线稳定,并检查电路中的连接情况;3.实验中要仔细读数,减小读数误差的影响;4.多次重复实验,取平均值来减小随机误差的影响。
结论:。
直流电桥测量电阻实验报告直流电桥测量电阻实验报告引言:直流电桥是一种常见的电路实验仪器,用于测量电阻值。
本次实验旨在通过直流电桥测量电阻的方法,探究其原理和应用。
一、实验目的本实验的目的是通过直流电桥测量电阻的方法,了解电桥的工作原理,掌握电桥测量电阻的操作技巧,以及理解电桥在电阻测量中的应用。
二、实验原理直流电桥是一种基于电位差平衡原理的仪器,常用于测量电阻值。
其基本原理是通过调节电桥中的电阻值,使得电桥两个对角线上的电位差为零,从而达到测量电阻的目的。
电桥的基本结构包括电源、电阻箱、待测电阻和检流计。
三、实验步骤1. 将电桥的电源接入电源插座,并确保电源稳定。
2. 调节电阻箱的阻值,使得待测电阻与电阻箱的总阻值相等。
3. 将待测电阻与电阻箱连接至电桥的两个对角线上。
4. 调节电阻箱的阻值,使得电桥两个对角线上的电位差为零。
5. 读取电阻箱上的阻值,即为待测电阻的阻值。
四、实验注意事项1. 在操作电桥时,应注意电源的稳定性,避免电阻值的误差。
2. 调节电阻箱时,应缓慢调节,以免产生过大的电位差。
3. 在读取电阻值时,应注意读数的准确性,避免误差的出现。
五、实验结果与分析通过本次实验,我们测量了几个不同电阻值的待测电阻,并记录下了实验结果。
根据实验数据,我们可以计算出待测电阻的准确阻值,并与理论值进行对比。
通过比较实验结果与理论值的差异,我们可以评估实验的准确性和精度。
六、实验总结本次实验通过直流电桥测量电阻的方法,深入了解了电桥的工作原理和应用。
通过实际操作,我们掌握了电桥测量电阻的操作技巧,并且了解了电桥在电阻测量中的重要性。
实验结果与理论值的对比,也让我们认识到实验误差的存在,并且提醒我们在实验中要注意准确性和精度。
七、实验改进与展望在实验过程中,我们发现电源的稳定性对实验结果有一定的影响。
因此,今后可以尝试使用更稳定的电源设备,以提高实验的准确性。
此外,可以进一步研究电桥的其他应用,如测量电容和电感等,以扩展实验的深度和广度。
直流电桥测电阻实验报告数据引言在电路中,电阻是一个常见的基本元件。
为了准确地测量电阻的数值,我们可以使用直流电桥实验进行测量。
本实验通过搭建直流电桥电路,利用桥臂上的电阻和未知电阻之间的平衡条件,来测量未知电阻的数值。
本报告将详细介绍直流电桥测电阻实验所需的设备、步骤以及实验数据和分析结果。
设备和材料1.直流电源2.可变直流电阻箱3.直流电桥仪器4.待测电阻5.探针线6.电阻测量表实验步骤1.搭建直流电桥电路:将直流电源的正极和负极分别与直流电桥的相应接口相连。
将可变直流电阻箱的两个端子分别与两个桥臂的接口相连。
2.设置初始条件:将电桥的比例臂的可调换接点连接到负载电极,并逐渐增加电流,观察电流显示器上的电流值,并调整可变直流电阻箱的电阻以使电流达到合适数值。
3.调节电阻值:将电桥的辅助臂的可调换接点连接到待测电阻的两端,并通过调节可变直流电阻箱的电阻,使电流显示器上的电流值为零。
4.记录电阻数值:此时,可变直流电阻箱上显示的电阻数值即为待测电阻的数值。
实验数据序号可变直流电阻箱电阻(Ω)电桥电流值(A)1 100 0.182 200 0.123 300 0.08序号可变直流电阻箱电阻(Ω)电桥电流值(A)4 400 0.065 500 0.04数据分析根据测量数据,我们可以绘制电桥电流和可变直流电阻箱电阻之间的关系图。
通过观察图表,可以发现电桥电流随着可变直流电阻箱电阻的增加而减小。
通过这个关系图,我们可以确定待测电阻的数值。
结论根据实验数据和数据分析的结果,我们可以得出待测电阻的数值为300Ω。
实验误差分析实验中可能存在一些误差,可能的误差来源包括仪器误差、连接线路的电阻和温度的影响等。
为了减小误差的影响,我们可以使用更精确的仪器、保持连接线路的良好接触以及进行温度补偿等措施。
实验总结通过本实验,我们学习了如何使用直流电桥进行电阻测量。
我们了解了电桥电路的搭建方法和测量步骤,并通过实验数据和数据分析,成功地测量出待测电阻的数值。
直流电桥测电阻实验报告
实验目的,通过直流电桥测量电阻,掌握使用直流电桥测量电阻的方法和技巧,加深对电阻测量原理的理解。
实验仪器,直流电桥、待测电阻、电源、导线等。
实验原理,直流电桥是一种用来测量电阻值的仪器,其基本原理是利用电桥平
衡条件来测量待测电阻的值。
当电桥平衡时,电桥两侧电压相等,即
R1/R2=R3/R4,通过改变已知电阻R3或R4的值,使得电桥平衡,从而可以计算
出待测电阻的值。
实验步骤:
1. 搭建电路,将待测电阻连接到直流电桥的两个端子上,接通电源,调节电桥
的平衡臂,使得电桥平衡。
2. 测量电阻值,记录下电桥平衡时已知电阻R3或R4的值,根据电桥平衡条
件计算出待测电阻的值。
3. 反复测量,反复进行电桥测量,取多组数据,计算出待测电阻的平均值,提
高测量的准确性。
实验结果与分析:
通过多次测量,我们得到了待测电阻的平均值为R=XXΩ。
在测量过程中,我
们发现影响测量准确性的因素有很多,比如连接线路的接触不良、电源电压波动等,需要注意这些因素对测量结果的影响。
结论:
通过本次实验,我们掌握了使用直流电桥测量电阻的方法和技巧,加深了对电阻测量原理的理解。
同时,我们也意识到在实际测量中需要注意各种因素对测量结果的影响,提高测量的准确性。
实验总结:
本次实验通过直流电桥测量电阻,我们对电桥测量原理有了更深入的理解,同时也掌握了一种新的测量方法。
在今后的实验中,我们将继续加强对测量原理的理解,提高实验操作的熟练度,不断提高实验数据的准确性和可靠性。
实验五 直流电桥测电阻电桥是一种利用电位比较的方法进行测量的仪器,因为具有很高的灵敏度和准确性,在电测技术和自动控制测量应用极为广泛。
电桥可分为直流电桥与交流电桥。
直流电桥又分直流单电桥和直流双电桥。
直流单电桥(惠斯通电桥)适于测量10~106Ω中阻值电阻。
直流双电桥(开尔文电桥)适于测量10-5~10Ω低阻值电阻。
【实验目的】:1.了解直流单电桥和双电桥的结构及工作原理;2.掌握电桥测电阻的方法;【实验原理】1.单电桥测电阻原理惠斯通电桥是最常用的直流电桥。
由三个精密电阻及一个待测电阻组成四个桥臂。
对角A 、C 两端接电源,B 、D 之间连接一个检流计作"桥",直接比较两端的电位。
当达到平衡时桥两端电位相等,I g =0。
此时12R RR R X =。
根据电桥的平衡条件,若已知其中三个臂的电阻,就可以计算出另一个桥臂的电阻CR R R R R X ==122.双电桥测低电阻的原理单电桥测几欧姆的低电阻时,由于引线电阻和接触电阻(约10-2~10-4Ω),已经不可忽略,致使测量值误差较大。
改进办法是将其中的低电阻桥臂改为四端接法,并增接一对高电阻(如图5-3)。
改用四线接法后的等效电路为图3。
r 1,r 2串联在电源回路中,其影响可忽略。
r 3,r 4接高电阻,其影响也可忽略。
实际的电路如图5-4。
由电路方程解得)''('''121221112x R R R R r R R rR R R R R -+++=使r 尽量小,并将两对比率臂做成联动机构,尽量使12'1'2R R R R = 则CR R R R R X==12。
【实验仪器】1.QJ-23型携带式单电桥臂(1)刻度盘示值12R R C =,分为0.001.0.01.0.1.1.10.100.1000共七档。
C图5-4 双臂电桥原理图1'R x 12 P 1 P 2 图5-2四线接法r 1r 4 图5-3 四线接法等效电路图(2)测量臂R:由四个十进位电阻盘组成×1000,×100,×10,×1。
用直流电桥测量电阻实验报告在这个电气实验的世界里,直流电桥就像一位老朋友,随叫随到,随时准备帮你解决电阻测量的烦恼。
大家好,今天咱们聊聊这个电桥测量电阻的实验报告。
想想吧,拿起那根电线,连接好设备,就像搭积木一样,心里就有点小激动,感觉自己要变身为科学家了!咱们得准备好工具,直流电桥、标准电阻、万用表,最好还有一颗好奇心,哈哈,这可真是“万事俱备,只欠东风”呀。
实验开始时,得先把设备都接好。
电桥的原理其实不复杂,想象一下,在电路里,一边是未知电阻,另一边是已知的标准电阻。
就像一场比赛,俩选手在较量,谁能赢得最终的胜利?调节电桥的平衡,让指针指向零,就像调音一样,找到那个完美的音符,心里那个爽啊!这时候,大家可能会想,这指针的变化就像生活的起伏,有高兴有低谷,得耐心等待,别着急,慢慢来。
咱们要注意调节那个可调电阻了。
调到合适的值,指针稳稳地指向零,简直像是给这场比赛画上了圆满的句号。
此时,你可能会感叹,这直流电桥真是个好帮手,帮我们把复杂的电阻测量变得简单又有趣。
想象一下,调节过程中,那些小细节就像烹饪时掌握火候,过了头就糊了,没到位又难以入味。
忍不住想说,真是“细节决定成败”啊。
然后,记得记录下每一个测量值,这可是我们这场实验的“战果”呀!电桥的使用,仿佛是一场“科学的盛宴”,每一次的调整,每一个数据,都是我们追求真理的脚步。
我们得把这些值整理成表格,像做家务一样,把一切归类,井井有条。
看到那一列列数据,心里又是一阵小得意,嘿嘿,感觉像是在研究大自然的奥秘。
哦,对了,实验的过程中,千万别忽略了安全问题!电流、电压这些可都是“危险品”,搞不好就会有“触电”的风险。
想象一下,一不小心像电视剧里的角色一样,尖叫着躲避,实在是没必要的恐慌啊。
所以,实验前做好安全准备,穿上绝缘手套,确保一切万无一失,真是“安全第一”嘛。
完成实验后,得分析一下数据。
哎,这可真是个“技术活”,要把每一个值、每一组数据仔细对比。