定积分的计算方法总结
- 格式:docx
- 大小:15.95 KB
- 文档页数:2
总结定积分的求解方法定积分是微积分中的一个重要概念,它是对函数在一个闭区间上的积分运算。
在实际问题中,我们经常需要求解定积分,因此掌握定积分的求解方法是非常重要的。
一、基本思想定积分的基本思想是将区间分割成若干个小区间,然后对每个小区间进行近似计算,最后将这些近似值相加得到最终结果。
具体而言,定积分可以通过以下几种方法来求解。
二、几何意义定积分的几何意义是曲线与坐标轴所围成的面积。
当函数为正时,定积分表示曲线所在区间上方的面积;当函数为负时,定积分表示曲线所在区间下方的面积。
因此,定积分可以用来求解曲线所围成的面积问题。
三、定积分的求解方法1. 利用定积分的定义公式根据定积分的定义公式,可以直接计算出定积分的值。
定积分的定义公式为:∫[a,b] f(x)dx = lim(n→∞) ∑[i=1,n] f(xi)Δx其中,[a,b]表示积分区间,f(x)表示被积函数,dx表示微元,xi表示小区间的中点,Δx表示小区间的长度。
通过将区间进行分割,计算每个小区间上的函数值与长度的乘积,再将这些乘积相加,即可得到定积分的近似值。
2. 利用定积分的性质定积分具有一些重要的性质,利用这些性质可以简化定积分的求解过程。
常见的定积分性质有:(1)线性性质:∫[a,b] (f(x)+g(x))dx = ∫[a,b] f(x)dx + ∫[a,b] g(x)dx(2)积分区间的可加性:∫[a,b] f(x)dx = ∫[a,c] f(x)dx + ∫[c,b] f(x)dx(3)定积分的换元法:∫[a,b] f(g(x))g'(x)dx = ∫[g(a),g(b)] f(u)du通过利用这些性质,我们可以将复杂的定积分转化为简单的定积分,从而简化计算过程。
3. 利用定积分的常用公式对于一些常见的函数,存在一些常用的定积分公式,可以直接使用这些公式来求解定积分。
例如,对于幂函数,可以使用幂函数的积分公式来求解;对于三角函数,可以使用三角函数的积分公式来求解。
定积分的计算方法总结引言定积分是微积分中重要的概念之一,它可以用于求取曲线下的面积、求解物理问题中的积分以及解决各种与变化量有关的问题。
本文将总结定积分计算的常用方法,包括基本定积分公式、换元积分法和分部积分法。
基本定积分公式基本定积分公式是计算定积分时最基础也是最常用的方法之一。
以下为常见的基本定积分公式:1.$\\int x^m dx = \\frac{1}{m+1}x^{m+1}$,其中m为常数,m eq−1。
2.$\\int \\frac{1}{x} dx = \\ln|x|$,其中x为正实数。
3.$\\int e^x dx = e^x$。
4.$\\int \\sin x dx = -\\cos x$。
5.$\\int \\cos x dx = \\sin x$。
6.$\\int \\tan x dx = -\\ln|\\cos x|$。
换元积分法换元积分法是一种常用的定积分计算方法,它通过引入一个新的变量来简化被积函数的形式。
具体步骤如下:1.选择一个适当的变量代换,通常选择与题目给定的被积函数中具有根号、三角函数等特殊形式相关的变量。
2.根据选择的变量代换,将被积函数中的所有变量都用新的变量表示。
3.计算新的被积函数的导数,并将被积函数转换为对新变量的积分。
4.计算新的积分。
以下是换元积分法的一个例子:求解定积分$\\int 2x(x^2+1)^3 dx$。
解:设u=x2+1,则du=2xdx。
将被积函数中的所有x用u表示,则原积分变为$\\int u^3 du$。
计算新的积分得$\\frac{1}{4}u^4 + C$,其中C为常数。
最后,将u替换回x得到最终结果$\\frac{1}{4}(x^2+1)^4 + C$。
分部积分法分部积分法是解决定积分问题中的另一种常用方法,它是利用乘积的导数公式来简化积分计算的步骤。
具体步骤如下:1.选择一个适当的分部积分公式。
分部积分公式为$\\int u dv = uv -\\int v du$。
定积分计算方法总结定积分是微积分中的一种重要概念,用于计算曲线与x轴之间的面积、曲线的弧长、质量、质心等物理量。
本文将总结定积分的计算方法,包括基本定积分的计算、换元积分法、分部积分法等。
一、基本定积分的计算基本定积分是指形如∫f(x)dx的定积分,其中f(x)为已知函数。
基本定积分的计算方法主要包括常数法、分段法和凑微分法。
1. 常数法:当被积函数为常数函数时,可以直接利用积分性质计算。
如∫kdx=kx+C,其中k为常数,C为积分常数。
2. 分段法:当被积函数在不同区间上有不同的表达式时,可以将积分区间划分为不同的子区间,在每个子区间上分别计算积分,然后再求和得到整个区间上的积分值。
3. 凑微分法:当被积函数可以通过凑微分的方式转化为已知函数的微分形式时,可以利用凑微分法进行计算。
凑微分法的关键是找到合适的凑微分项,使得被积函数可以表示为一个函数的微分。
例如,对于∫x^2dx,可以将其转化为∫(x^2+1-1)dx,然后利用积分性质计算。
二、换元积分法换元积分法是一种常用的定积分计算方法,通过引入新的变量进行替换,将原来的积分转化为更容易计算的形式。
换元积分法的关键是选择合适的换元变量和适当的换元公式。
1. 一般换元法:当被积函数中存在形如f(g(x))g'(x)的部分时,可以选择g(x)作为新的变量进行替换。
然后利用链式法则计算新的微分形式,将原来的积分转化为新变量的积分。
2. 三角换元法:当被积函数中存在形如sin(x)或cos(x)等三角函数时,可以选择三角函数的反函数作为新的变量进行替换。
然后利用三角函数的导数和反函数的导数计算新的微分形式,将原来的积分转化为新变量的积分。
三、分部积分法分部积分法是一种常用的定积分计算方法,通过将积分中的乘积拆解为两个函数的乘积,利用分部积分公式进行计算。
分部积分法的关键是选择合适的分部函数和求导函数。
分部积分公式为∫u(x)v'(x)dx=u(x)v(x)-∫v(x)u'(x)dx。
定积分的求解技巧总结定积分是微积分中的重要概念之一,它在物理、经济、工程等领域中具有广泛的应用。
在求解定积分的过程中,我们需要掌握一些技巧和方法,以便快速有效地求解定积分问题。
下面是关于定积分求解技巧的总结。
1. 凑微分法:凑微分是一种常见的定积分求解技巧,它通过巧妙地选择变量代换,将被积函数转化为易于求解的形式。
凑微分法的关键是选择合适的代换变量,使得被积函数中有微分的部分能够与代换变量的微分形式完全匹配。
例如,当被积函数为形如$f(x)g'(x)$的形式时,我们可以选择合适的代换变量,使得$g'(x)$变为某个函数$u$的微分形式$du$,然后利用凑微分法将被积函数变为$udu$的形式,进而方便地求解。
2. 分部积分法:分部积分法是定积分求解中最常用的一种技巧之一。
它通过对被积函数中的某一项进行分部积分,并利用积分的性质将被积函数转化为易于求解的形式。
分部积分法的基本公式为$\\int{u dv} = uv - \\int{v du}$,其中$u$和$v$是可以求导或可积的函数。
通过不断应用该公式,我们可以将被积函数中的一项转化为另一项的积分形式,从而简化求解过程。
3. 换元法:换元法是求解定积分的另一种常用技巧,它通过选择合适的代换变量,将被积函数转化为易于求解的形式。
换元法的关键是选择合适的代换变量和对应的微分形式。
通常情况下,我们选择代换变量$y = f(x)$,然后计算其导数$dy$,将原定积分转化为新的定积分。
选择合适的代换变量是换元法的关键,需要根据被积函数的特点进行选择,以便简化求解过程。
4. 奇偶性:奇偶性是定积分求解中常用的一种简化技巧。
通过判断被积函数的奇偶性,可以将定积分的求解范围缩小一半,从而简化求解过程。
如果被积函数$f(x)$具有奇函数的性质,即$f(-x) = - f(x)$,那么在对称区间上的定积分可以简化为单侧的定积分。
类似地,如果被积函数$f(x)$具有偶函数的性质,即$f(-x) = f(x)$,那么在对称区间上的定积分可以简化为两侧定积分的加和。
定积分计算方法总结定积分是微积分中的重要概念之一,也是计算与物理、经济、工程等领域中的许多实际问题时常用到的方法。
本文将对定积分的计算方法进行总结,包括基本的方法、常用的变换、一些特殊的技巧等。
一、基本的定积分计算方法定积分的计算可以通过求解不定积分的方法进行。
不定积分是定积分的逆运算,即通过求解导数为被积函数的函数,然后在积分区间上进行计算。
在计算不定积分时,可以利用基本积分公式进行运算。
常见的基本积分公式包括:幂函数积分公式、三角函数积分公式、指数函数积分公式等。
熟练掌握这些基本的积分公式对于定积分的计算非常有帮助。
另外,还可以通过换元积分法、分部积分法等方法进行计算。
换元积分法是将被积函数中的自变量进行变换,以便简化积分的计算。
分部积分法则是通过对被积函数进行分解,将积分转化为两个函数之积的积分。
二、常用的定积分变换在定积分的计算中,常常需要进行变量替换或区间转化,以便于计算或简化问题。
一种常用的变换是变量替换法。
通过将积分中的自变量进行替换,可以将原本复杂的积分转化为更简单的形式。
常见的变量替换包括:三角函数替换、指数函数替换、倒数替换等。
这些替换方法可以根据问题的需求,适时选择。
另外,还有区间转化的方法。
在求解定积分时,有时需要将原本的积分区间进行转化。
这种转化可以将积分的计算变得更加简便,也有助于利用基本积分公式进行计算。
常见的区间转化方法包括:对称性转化、变量代换转化等。
三、特殊的定积分计算技巧在定积分的计算中,还存在一些特殊的技巧可以加快计算的速度,提高效率。
一种常见的技巧是分割区间法。
当被积函数在积分区间上具有不同的特性时,可以将区间进行分割,对不同的子区间采取不同的计算方法。
这样可以减少对复杂函数进行计算的难度,提高计算的准确性。
另外,还有用和差化积、凑微分等技巧。
和差化积是通过将被积函数进行展开重新组合,以简化积分的计算。
凑微分则是通过对被积函数进行一些巧妙的变换,以便进行积分。
定积分计算方法总结定积分是微积分中的一个重要概念,用于计算曲线与坐标轴之间的面积、曲线长度、质量、动量等问题。
本文将总结几种常见的定积分计算方法。
1.基本积分法:也称为不定积分法,是定积分的基础。
通过求导的逆过程,可以将一些简单的函数反求积分。
例如,对于常数函数、幂函数、指数函数、三角函数等,都可以直接得到不定积分的表达式。
但对于复杂函数,基本积分法可能不适用。
2. 牛顿-莱布尼茨公式:也称为换元积分法。
该方法通过引入新的变量,将原积分转化为更简单的形式。
常见的换元变量有正弦函数、指数函数、幂函数等。
换元积分法的关键在于选择合适的换元变量,使得被积函数的形式变得更简单。
例如,对于∫sin(2x)dx,可以通过令u=2x进行换元,得到新的积分∫sin(u)du,再求解即可。
3. 分部积分法:也称为乘法积分法,是对乘积形式的积分进行处理的方法。
通过对乘积函数中的一个函数求导,另一个函数积分,可以将原积分转化为更简单的形式。
分部积分法的公式为∫udv=uv-∫vdu,其中u和v是可以求导或积分的函数。
该方法适用于许多复杂函数的积分计算,例如多项式函数与指数函数的积分。
4. 凑微分法:也称为凑常数法,是对积分式进行代换,使得被积函数的微分形式展开后更简单,从而进行积分的方法。
例如,对于∫x/(1+x^2)dx,可以通过令u=1+x^2进行代换,得到新的积分∫(1/u)du,再求解即可。
5. 变限积分法:该方法常用于计算曲线与坐标轴之间的面积。
当被积函数为连续函数时,可以通过使用反函数求解,将定积分转化为一系列不定积分的差值。
例如,对于求解曲线y=f(x)与x轴所围成的面积,可以将其表示为∫[a,b]f(x)dx=[F(x)]a^b,其中F(x)是f(x)的原函数。
通过求F(x)的反函数,可以将定积分简化为计算两个不定积分的差值。
6. 参数方程法:该方法适用于计算平面曲线围成的面积。
当曲线由参数方程给出时,可以通过将x或y表示为参数的函数,进而将面积转化为定积分的形式。
定积分计算方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
定积分计算方法总结
一、不定积分计算方法
1.凑微分法
2.裂项法
3.变量代换法
1)三角代换
2)根幂代换
3)倒代换
4.配方后积分
5.有理化
6.和差化积法
7.分部积分法(反、对、幂、指、三)
8.降幂法
二、定积分的计算方法
1.利用函数奇偶性
2.利用函数周期性
3.参考不定积分计算方法
三、定积分与极限
1.积和式极限
2.利用积分中值定理或微分中值定理求极限
3.洛必达法则
4.等价无穷小
四、定积分的估值及其不等式的应用
1.不计算积分,比较积分值的大小
1)比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则>=dx
2)利用被积函数所满足的不等式比较之
a)
b)当0<x<兀/2时,2/兀<<1
2.估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最
大值为M,最小值为m则
M(b-a)<=<=M(b-a)
3.具体函数的定积分不等式证法
1)积分估值定理
2)放缩法
3)柯西积分不等式
4.抽象函数的定积分不等式的证法
1)拉格朗日中值定理和导数的有界性
2)积分中值定理
3)常数变易法
4)利用泰勒公式展开法
五、变限积分的导数方法。
定积分计算方法总结定积分是微积分中的重要概念,用于计算曲线下方的面积、变量间的平均值、曲线的长度等问题。
在计算定积分时,有几种常见的方法可以使用。
一、基本定积分计算方法1.函数不可导情况下的计算方法:当函数在闭区间上不可导时,可以将该区间划分成多个子区间,然后在各子区间上分别求积,最后求和。
2. 函数可导情况下的计算方法:对于可导函数,可以使用Newton-Leibniz公式求解定积分。
若函数F(x)是f(x)的一个原函数,即F'(x) = f(x),则有∫[a,b] f(x) dx = F(b) - F(a)。
二、几何意义的计算方法1.面积计算:当被积函数为非负函数时,定积分表示积分区间上的曲线与x轴之间的面积。
使用定积分计算面积时,要先找到积分区间,并选择一个适当的被积函数。
2.长度计算:当被积函数为非负函数时,定积分可以表示曲线的弧长。
通过将曲线分成小线段,并用小线段长度之和逼近曲线的弧长,然后取极限即可得到曲线的弧长。
三、换元法换元法是一种常用的定积分计算方法,通过代换变量的方式来简化被积函数。
具体步骤如下:1.将被积分函数中的变量替换为一个新的变量,使得替换后的函数能够更容易积分。
2. 计算新变量的微分形式dx,然后求解出新的积分上下限。
3.将原函数转化为新变量的函数,并根据新的上下限计算定积分。
4.最后要将新变量换回原变量的形式。
四、分部积分法分部积分法是通过Leibniz公式的一个特殊情况来进行定积分计算的方法。
具体步骤如下:1. 选择u和dv,其中u是整个被积函数的一个部分,dv是剩余的部分。
2. 求解du和v分别对x的积分。
3. 将原函数表示为uv积分减去∫vdu,其中v需要对x进行积分。
4.根据上述公式计算定积分。
五、极坐标下的计算方法当被积函数围成的区域具有对称性或者特殊的形状时,可以使用极坐标进行计算。
1.将被积函数与曲线转化为极坐标形式,即用r和θ表示。
2. 根据极坐标的面积元素dA=rdrdθ,计算出面积元素dA。
不定积分计算方法
7. 分
部定积分计算方法总结
1. 凑微分法
2. 裂项法
3. 变量代换法
1) 三角代换
2) 根幕代换
3)倒代换
4. 配方后积分
5. 有理化
6. 和差化积法
&降幕法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
三、定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
二、 定积分的计算方法
4.等价无穷小
四、定积分的估值及其不等式的应用
1・不计算积分,比较积分值的大小
1)比较定理:若在同一区间[a, b]上,总有f
(x) >=g(x),则f f O)d尤>=[: 9O)dx
2)利用被积函数所满足的不等式比较之
a)当0〈x〈兀/2 时,2/兀<sinx/x<l
2.估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则
M(b-a) <=『/(x)dx<=M(b-a)
3.具体函数的定积分不等式证法
1)积分估值定理
2)放缩法
/(x)^(x)dx
3)柯西积分不等式
*2
f (/(%)) * 2 dx [ g(x)%2dx
丿a 丿a
4.抽象函数的定积分不等式的证法
1)拉格朗日中值定理和导数的有界性
2)积分中值定理
3)常数变易法
4)利用泰勒公式展开法五、变限积分的导数方法。
定积分计算方法总结
一、不定积分计算方法
1.凑微分法
2.裂项法
3.变量代换法
1)三角代换
2)根幂代换
3)倒代换
4.配方后积分
5.有理化
6.和差化积法
7.分部积分法(反、对、幂、指、三)
8.降幂法
二、定积分的计算方法
1.利用函数奇偶性
2.利用函数周期性
3.参考不定积分计算方法
三、定积分与极限
1.积和式极限
2.利用积分中值定理或微分中值定理求极限
3.洛必达法则
4.等价无穷小
四、定积分的估值及其不等式的应用
1.不计算积分,比较积分值的大小
1)比较定理:若在同一区间[a,b]上,总有f
(x)>=g(x),则〉=dx
2)利用被积函数所满足的不等式比较之
a)当0〈x〈兀/2时,2/兀〈〈1
2.估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其
最大值为M,最小值为m则
M(b-a)<=<=M(b-a)
3.具体函数的定积分不等式证法
1)积分估值定理
2)放缩法
3)柯西积分不等式
4.抽象函数的定积分不等式的证法
1)拉格朗日中值定理和导数的有界性
2)积分中值定理
3)常数变易法
4)利用泰勒公式展开法
五、变限积分的导数方法。
(本文档仅供参考用途,所载资料皆来自整理,欢迎大家分享交流)
定积分计算方法总结、定积分的计算方法
1.利用函数奇偶性
2.利用函数周期性
3.参考不定积分计算方法
二、定积分与极限
1.积和式极限
2.利用积分中值定理或微分中值定理求极限
3.洛必达法则
4.等价无穷小
三、定积分的估值及其不等式的应用
1.不计算积分,比较积分值的大小
1)比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则>=()dx
2)利用被积函数所满足的不等式比较之a)
b)当0<x<兀/2时,2/兀<<1
2.估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则
1。
定积分计算方法总结
一、不定积分计算方法
1.凑微分法
2.裂项法
3.变量代换法
1)三角代换
2)根幂代换
3)倒代换
4.配方后积分
5.有理化
6.和差化积法
7.分部积分法(反、对、幂、指、三)
8.降幂法
二、定积分的计算方法
1.利用函数奇偶性
2.利用函数周期性
3.参考不定积分计算方法
三、定积分与极限
1.积和式极限
2.利用积分中值定理或微分中值定理求极限
3.洛必达法则
4.等价无穷小
四、定积分的估值及其不等式的应用
1.不计算积分,比较积分值的大小
1)比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则>=dx
a)利用被积函数所满足的不等式比较之
b)当0<x<兀/2时,2/兀<<1
2.估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其
最大值为M,最小值为m则
M(b-a)<=<=M(b-a)
3.具体函数的定积分不等式证法
1)积分估值定理
2)放缩法
4.柯西积分不等式
5.
抽象函数的定积分不等式的证法
1)拉格朗日中值定理和导数的有界性
2)积分中值定理
3)常数变易法
4)利用泰勒公式展开法
变限积分的导数方法
十你想过普通的生活,就会遇到普通的挫折。
你想过最好的生活,就一定会遇上最强的伤害。
定积分常用公式总结归纳在数学中,定积分是微积分中的重要概念之一,它广泛应用于求曲线下面积、求物理量以及解决各种数学问题。
而为了更好地应用定积分,了解和掌握常用的定积分公式是非常必要的。
本文将对一些常用的定积分公式进行总结和归纳,以帮助读者更好地理解和应用定积分。
一、常数函数定积分公式:对于一个常数函数f(x)=c,其中c为常数,它的定积分公式为:∫_[a]^[b] cdx = c(b-a)二、幂函数定积分公式:1. 对于幂函数f(x)=x^n,其中n≠-1,它的定积分公式为:∫_[a]^[b] x^n dx = [1/(n+1)]*[x^(n+1)]_[a]^[b]2. 对于特殊的幂函数f(x)=x^{-1},也就是倒数函数,它的定积分公式为:∫_[a]^[b] (1/x)dx = ln|x|_[a]^[b]三、指数函数定积分公式:1. 对于指数函数f(x)=e^x,它的定积分公式为:∫_[a]^[b] e^x dx = e^x_[a]^[b]2. 对于指数函数的倍数f(x)=ce^x,其中c为常数,它的定积分公式为:∫_[a]^[b] ce^x dx = c*e^x_[a]^[b]四、三角函数定积分公式:1. 对于正弦函数f(x)=sin(x),它的定积分公式为:∫_[a]^[b] sin(x) dx = -cos(x)_[a]^[b]2. 对于余弦函数f(x)=cos(x),它的定积分公式为:∫_[a]^[b] cos(x) dx = sin(x)_[a]^[b]3. 对于正切函数f(x)=tan(x),它的定积分公式为:∫_[a]^[b] tan(x) dx = -ln|cos(x)|_[a]^[b]五、换元法定积分公式:换元法是解决一些较为复杂的定积分问题的常用方法,根据变量替换的不同,其定积分公式也会有所变化。
1. 对于一般形式的换元法,设y=g(x)为一可导函数,其反函数x=h(y),则有:∫_[a]^[b] f(g(x))g'(x)dx = ∫_[g(a)]^[g(b)] f(y)dy2. 对于三角函数的换元法,设y=asin(x)或y=acos(x)时,其中a为常数,有:∫_[a]^[b] f(asin(x))cos(x)dx = ∫_[f(asin(a))]^[f(asin(b))] f(y)dy∫_[a]^[b] f(acos(x))(-sin(x))dx = ∫_[f(acos(a))]^[f(acos(b))] f(y)dy3. 对于指数函数的换元法,设y=ln(x)时,有:∫_[a]^[b] f(e^x)dx = ∫_[ln(a)]^[ln(b)] f(y)e^ydy以上列举的只是一部分常用的定积分公式,实际上还有很多其他的定积分公式可以应用。
定积分计算方法总结
一、不定积分计算方法
1.凑微分法
2.裂项法
3.变量代换法
1)三角代换
2)根幂代换
3)倒代换
4.配方后积分
5.有理化
6.和差化积法
7.分部积分法(反、对、幂、指、三)
8.降幂法
二、定积分的计算方法
1.利用函数奇偶性
2.利用函数周期性
3.参考不定积分计算方法
三、定积分与极限
1.积和式极限
2.利用积分中值定理或微分中值定理求极限
3.洛必达法则
4.等价无穷小
四、定积分的估值及其不等式的应用
1.不计算积分,比较积分值的大小
1)比较定理:若在同一区间[a,b]上,总有f
(x)>=g(x),则〉=dx
2)利用被积函数所满足的不等式比较之
a)
b)当0<x<兀/2时,2/兀<〈1
2.估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其
最大值为M,最小值为m则
M(b—a)<=<=M(b—a)
3.具体函数的定积分不等式证法
1)积分估值定理
2)放缩法
3)柯西积分不等式
4.抽象函数的定积分不等式的证法
1)拉格朗日中值定理和导数的有界性
2)积分中值定理
3)常数变易法
4)利用泰勒公式展开法
五、变限积分的导数方法。
三一文库()/总结
〔定积分计算方法总结〕
导语:学习需要总结,只有总结,才能真正学有所成。
以下是定积分计算方法总结,供各位阅读和参考。
一▲、定积分的计算方法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
▲二、定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
4. 等价无穷小
▲三、定积分的估值及其不等式的应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)=g(x),则 = ()dx
2) 利用被积函数所满足的不等式比较之 a)
第1页共3页
b) 当0x兀/2时,2/兀1
2. 估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为,
最小值为则
(b-a)= =(b-a)
3. 具体函数的定积分不等式证法
1) 积分估值定理
2) 放缩法
3) 柯西积分不等式
≤ %
4. 抽象函数的定积分不等式的证法
1) 拉格朗日中值定理和导数的有界性
2) 积分中值定理
3) 常数变易法
4) 利用泰勒公式展开法
▲四、不定积分计算方法
1. 凑微分法
2. 裂项法
3. 变量代换法
1) 三角代换
2) 根幂代换
3) 倒代换
23。
定积分计算方法总结
一、不定积分计算方法
1.凑微分法
2.裂项法
3.变量代换法
1)三角代换
2)根幂代换
3)倒代换
4.配方后积分
5.有理化
6.和差化积法
7.分部积分法(反、对、幂、指、三)
8.降幂法
二、定积分的计算方法
1.利用函数奇偶性
2.利用函数周期性
3.参考不定积分计算方法
三、定积分与极限
1.积和式极限
2.利用积分中值定理或微分中值定理求极限
3.洛必达法则
4.等价无穷小
四、 定积分的估值及其不等式的应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则∫f (x )dx b a >=∫g(x)b a dx
2) 利用被积函数所满足的不等式比较之 a) 当0<x<兀/2时,2/兀<sinx x ⁄<1
2. 估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M ,最小值为m 则
M(b-a)<=∫f (x )dx b a <=M(b-a)
3. 具体函数的定积分不等式证法
1) 积分估值定理
2) 放缩法
3) 柯西积分不等式
[∫f (x )g (x )dx b
a ]∗2
≤∫(f (x ))∗2b a dx ∫g (x )%2dx b
a
4. 抽象函数的定积分不等式的证法
1) 拉格朗日中值定理和导数的有界性
2) 积分中值定理
3) 常数变易法
4)利用泰勒公式展开法
五、变限积分的导数方法。
定积分的计算方法总结
定积分的计算方法总结
总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们总结以往思想,发扬成绩,是时候写一份总结了。
总结怎么写才能发挥它的作用呢?下面是小编为大家整理的定积分的计算方法总结,希望对大家有所帮助。
定积分
1、定积分解决的典型问题
(1)曲边梯形的面积
(2)变速直线运动的路程
2、函数可积的充分条件
定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。
定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f (x)在区间[a,b]上可积。
3、定积分的若干重要性质
性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。
推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg (x)dx。
推论|∫abf(x)dx|≤∫ab|f(x)|dx。
性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b—a)≤∫abf(x)dx≤M(b—a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。
性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b—a)。
4、关于广义积分
设函数f(x)在区间[a,b]上除点c(a<c<b)外连续,而在点c
的邻域内无界,如果两个广义积分∫acf(x)dx与∫cbf(x)dx都收敛,则定义∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx,否则(只要其中一个发散)就称广义积分∫abf(x)dx发散。
定积分的应用
1、求平面图形的'面积(曲线围成的面积)
直角坐标系下(含参数与不含参数)
极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)
旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)
功、水压力、引力
函数的平均值(平均值y=1/(b—a)*∫abf(x)dx)。