数值计算方法-插值法 共53页
- 格式:ppt
- 大小:1.11 MB
- 文档页数:53
插值法的最简单计算公式全文共四篇示例,供读者参考第一篇示例:插值法是一种常用的数值计算方法,用于通过已知数据点推断出未知数据点的值。
在实际问题中,往往会遇到数据点不连续或者缺失的情况,这时就需要通过插值法来填补这些数据点,以便更准确地进行计算和分析。
插值法的最简单计算公式是线性插值法。
线性插值法假设数据点之间的变化是线性的,通过已知的两个数据点来推断出中间的未知数据点的值。
其计算公式为:设已知数据点为(x0, y0)和(x1, y1),需要插值的点为x,其在(x0, x1)之间,且x0 < x < x1,插值公式为:y = y0 + (y1 - y0) * (x - x0) / (x1 - x0)y为插值点x对应的值,y0和y1分别为已知数据点x0和x1对应的值。
通过这个线性插值公式,可以方便地计算出中间未知点的值。
举一个简单的例子来说明线性插值法的应用。
假设有一组数据点为(1, 2)和(3, 6),现在需要插值得到x=2时的值。
根据线性插值公式,我们可以计算出:y = 2 + (6 - 2) * (2 - 1) / (3 - 1) = 2 + 4 * 1 / 2 = 2 + 2 = 4当x=2时,线性插值法得到的值为4。
通过这个简单的例子,可以看出线性插值法的计算公式的简单易懂,适用于很多实际问题中的插值计算。
除了线性插值法,还有其他更复杂的插值方法,如多项式插值、样条插值等,它们能够更精确地拟合数据并减小误差。
在一些简单的情况下,线性插值法已经足够满足需求,并且计算起来更加直观和方便。
在实际应用中,插值法经常用于图像处理、信号处理、数据分析等领域。
通过插值法,可以将不连续的数据点连接起来,填补缺失的数据,使得数据更加完整和连续,方便后续的处理和分析。
插值法是一种简单而有效的数值计算方法,其中线性插值法是最简单的计算公式之一。
通过这个简单的公式,可以方便地推断出未知数据点的值,并在实际应用中发挥重要作用。
插值法数学计算方法插值法是一种数学计算方法,用于在已知数据点的基础上,通过构建一条插值曲线来估计未知数据点的值。
插值法可以应用于各种数学问题中,例如逼近函数、插值多项式、差值等。
本文将详细介绍插值法的原理和常见的插值方法。
一、插值法的原理插值法的基本思想是通过已知数据点的函数值来构建一个函数表达式,该函数可以通过插值曲线来估计任意点的函数值。
根据已知数据点的数量和分布,插值法可以采用不同的插值方法来构建插值函数。
插值法的原理可以用以下几个步骤来描述:1.收集已知数据点:首先,需要收集一组已知的数据点。
这些数据点可以是实际测量得到的,也可以是其他方式获得的。
2.选择插值方法:根据问题的特性和数据点的分布,选择适合的插值方法。
常见的插值方法包括拉格朗日插值法、牛顿插值法、埃尔米特插值法等。
3.构建插值函数:通过已知数据点,利用选择的插值方法构建插值函数。
这个函数可以拟合已知数据点,并通过插值曲线来估计未知数据点。
4.估计未知数据点:利用构建的插值函数,可以估计任意点的函数值。
通过插值曲线,可以对未知数据点进行预测,获得相应的数值结果。
二、常见的插值方法1.拉格朗日插值法:拉格朗日插值法基于拉格朗日多项式,通过构建一个具有多项式形式的插值函数来逼近已知数据点。
插值函数可以通过拉格朗日基函数计算得到,式子如下:P(x) = ∑[f(xi) * l(x)], i=0 to n其中,P(x)表示插值函数,f(xi)表示已知数据点的函数值,l(x)表示拉格朗日基函数。
2.牛顿插值法:牛顿插值法基于牛顿差商公式,通过构建一个递归的差商表来逼近已知数据点。
插值函数可以通过牛顿插值多项式计算得到,式子如下:P(x) = f(x0) + ∑[(f[x0, x1, ..., xi] * (x - x0) * (x - x1)* ... * (x - xi-1)] , i=1 to n其中,P(x)表示插值函数,f[x0, x1, ..., xi]表示xi对应的差商。
数值计算中的插值方法与误差分析数值计算是一门应用数学学科,广泛应用于科学与工程领域。
在实际问题中,我们常常需要通过已知的离散数据点来估计未知的数值。
插值方法就是为了解决这个问题而设计的。
插值方法是一种基于已知数据点,推断出未知数据点的数值计算方法。
常见的插值方法有拉格朗日插值、牛顿插值等。
下面我们将重点介绍这两种方法。
1. 拉格朗日插值法拉格朗日插值法是插值方法中最常见的一种。
它是基于拉格朗日多项式的思想。
假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。
拉格朗日插值法的基本思想是通过插值多项式来逼近原函数。
具体步骤如下:(1)根据已知数据点构造Lagrange插值多项式:L(x) = Σ(yi * Li(x)), i = 0, 1, ..., n其中,Li(x) = Π((x-xj)/(xi-xj)), j ≠ i(2)计算未知点x对应的函数值y:y = L(x)拉格朗日插值法的优点是简单易懂,计算方便。
然而,它也存在着一些问题,比如插值多项式的次数较高时,多项式在插值区间外的振荡现象明显,容易引起插值误差。
2. 牛顿插值法牛顿插值法是另一种常见的插值方法。
它是基于差商的思想。
假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。
牛顿插值法的基本思想是通过插值多项式来逼近原函数。
具体步骤如下:(1)计算差商:f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ..., xi+k-1]) / (xi+k - xi)(2)根据已知数据点构造Newton插值多项式:N(x) = f[x0] + Σ(f[x0, x1, ..., xi] * Π(x - xj)), i = 0, 1, ..., n-1(3)计算未知点x对应的函数值y:y = N(x)牛顿插值法的优点是适用范围广,可以方便地添加新的数据点进行插值。
数值计算方法数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
它包括了数值分析、数值逼近、数值代数、数值微分方程等多个领域。
数值计算方法在科学工程领域有着广泛的应用,例如在物理学、化学、生物学、经济学和工程学等领域都有着重要的地位。
本文将介绍数值计算方法的基本原理和常用技术,并探讨其在实际问题中的应用。
一、数值计算方法的基本原理。
数值计算方法的基本原理是将实际问题转化为数学模型,然后通过计算机算法来求解这个数学模型。
在实际问题中,往往会遇到一些复杂的方程或者函数,无法通过解析方法求解。
这时就需要借助数值计算方法来进行近似求解。
数值计算方法主要包括了离散化、逼近和求解三个步骤。
1. 离散化。
离散化是将连续的问题转化为离散的问题。
在实际问题中,往往会遇到一些连续的函数或者方程,无法直接求解。
这时就需要将连续的问题转化为离散的问题,然后通过计算机算法来求解。
离散化的方法有很多种,比如有限差分法、有限元法、谱方法等。
2. 逼近。
逼近是指通过一些简单的函数或者多项式来近似表示复杂的函数或者方程。
在实际问题中,往往会遇到一些复杂的函数或者方程,无法直接求解。
这时就需要通过逼近的方法来近似表示这个函数或者方程,然后通过计算机算法来求解。
逼近的方法有很多种,比如插值法、拟合法、最小二乘法等。
3. 求解。
求解是指通过计算机算法来求解离散化的问题或者逼近的问题。
在实际问题中,往往会遇到一些复杂的离散化问题或者逼近问题,无法直接求解。
这时就需要通过计算机算法来求解这个离散化问题或者逼近问题。
求解的方法有很多种,比如迭代法、直接法、迭代法等。
二、数值计算方法的常用技术。
数值计算方法有很多种常用技术,下面将介绍一些常用的技术。
1. 有限差分法。
有限差分法是一种常用的离散化方法,它将微分方程转化为差分方程,然后通过计算机算法来求解。
有限差分法的基本思想是将函数在一些离散点上进行逼近,然后通过差分近似来求解微分方程。
复习:1.数值计算方法的含义 2.误差及误差限 3.误差与有效数字4.数值计算中应注意的问题第二章 插值方法一.插值的含义 问题提出:已知函数()y f x =在n+1个点01,,,n x x x 上的函数值01,,,n y y y ,求任意一点x '的函数值()f x '。
说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。
解决方法:构造一个简单函数()P x 来替代未知(或复杂)函数()y f x =,则用()P x '作为函数值()f x '的近似值。
二、泰勒(Taylor )插值 1.问题提出:已知复杂函数()y f x =在0x 点的函数值()0f x ,求0x 附近另一点0x h +的函数值()0f x h +。
2.解决方法:构造一个代数多项式函数()n P x ,使得()n P x 与()f x 在0x x =点充分逼近。
泰勒多项式为:()()()()()()()()()200000002!!n n n f x f x P x f x f x x x x x x x n '''=+-+-++-显然,()n P x 与()f x 在0x x =点,具有相同的i 阶导数值(i=0,1,…,n )。
3.几何意义为:()n P x 与()f x 都过点()()00,x f x ;()n P x 与()f x 在点()()00,x f x 处的切线重合; ()n P x 与()f x 在点()()00,x f x 处具有相同的凹凸性;其几何意义可以由下图描述,显然函数()3f x 能相对较好地在0x 点逼近()f x 。
4.误差分析(泰勒余项定理):()()()()()()1101!n n n f P x f x x x n ξ++-=-+,其中ξ在0x 与x 之间。
5.举例:已知函数()f x ()115f 。
数值分析常用的插值方法数值分析中常用的插值方法有线性插值、拉格朗日插值、分段线性插值、Newton插值、Hermite插值、样条插值等。
下面将对这些插值方法进行详细介绍。
一、线性插值(linear interpolation)线性插值是最简单的插值方法之一、假设已知函数在两个点上的函数值,通过这两个点之间的直线来估计中间点的函数值。
线性插值公式为:f(x)=f(x0)+(x-x0)*(f(x1)-f(x0))/(x1-x0)其中,f(x)表示要求的插值点的函数值,f(x0)和f(x1)是已知的两个点上的函数值,x0和x1是已知的两个点的横坐标。
二、拉格朗日插值(Lagrange interpolation)拉格朗日插值是一种基于多项式的插值方法。
它通过多个已知点的函数值构造一个多项式,并利用这个多项式来估计其他点的函数值。
拉格朗日插值多项式的一般形式为:f(x) = Σ[f(xi) * Li(x)] (i=0,1,2,...,n)其中,f(x)表示要求的插值点的函数值,f(xi)是已知的多个点的函数值,Li(x)是拉格朗日基函数。
拉格朗日基函数的表达式为:Li(x) = Π[(x-xj)/(xi-xj)] (i≠j,i,j=0,1,2,...,n)三、分段线性插值(piecewise linear interpolation)分段线性插值是一种逐段线性近似函数的方法。
通过将整个插值区间分成多个小段,在每个小段上使用线性插值来估计函数的值。
分段线性插值的过程分为两步:首先确定要插值的点所在的小段,在小段上进行线性插值来估计函数值。
四、Newton插值(Newton interpolation)Newton插值也是一种基于多项式的插值方法。
利用差商的概念来构造插值多项式。
Newton插值多项式的一般形式为:f(x)=f(x0)+(x-x0)*f[x0,x1]+(x-x0)*(x-x1)*f[x0,x1,x2]+...其中,f(x)表示要求的插值点的函数值,f(x0)是已知的一个点的函数值,f[xi,xi+1,...,xi+k]是k阶差商。
第二章插值法2.在区间[-1,1]上分别取n=10,20用两组等距节点对龙哥函数f(x)=1/(1+25*x^2)做多项式插值及三次样条插值,对每个n值,分别画出插值函数及f(x)的图形。
(1)多项式插值①先建立一个多项式插值的M-file;输入如下的命令(如牛顿插值公式):function [C,D]=newpoly(X,Y)n=length(X);D=zeros(n,n)D(:,1)=Y'for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)))m=length(C);C(m)= C(m)+D(k,k);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.2:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.2:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:③当n=20时,我们在命令窗口中输入以下的命令:clear,clf,hold on;X=-1:0.1:1;Y=1./(1+25*X.^2);[C,D]=newpoly(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.1:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到插值函数和f(x)图形:(2)三次样条插值①先建立一个多项式插值的M-file;输入如下的命令:function S=csfit(X,Y,dx0,dxn)N=length(X)-1;H=diff(X);D=diff(Y)./H;A=H(2:N-1);B=2*(H(1:N-1)+H(2:N));C=H(2:N);U=6*diff(D);B(1)=B(1)-H(1)/2;U(1)=U(1)-3*(D(1));B(N-1)=B(N-1)-H(N)/2;U(N-1)=U(N-1)-3*(-D(N));for k=2:N-1temp=A(k-1)/B(k-1);B(k)=B(k)-temp*C(k-1);U(k)=U(k)-temp*U(k-1);endM(N)=U(N-1)/B(N-1);for k=N-2:-1:1M(k+1)=(U(k)-C(k)*M(k+2))/B(k);endM(1)=3*(D(1)-dx0)/H(1)-M(2)/2;M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;for k=0:N-1S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1));S(k+1,2)=M(k+1)/2;S(k+1,3)=D(k+1)-H(k+1)*(2*M(k+1)+M(k+2))/6;S(k+1,4)=Y(k+1);end②当n=10时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.2:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:②当n=20时,我们在命令窗口中输入以下的命令:clear,clcX=-1:0.1:1;Y=1./(25*X.^2+1);dx0= 0.0739644970414201;dxn= -0.0739644970414201; S=csfit(X,Y,dx0,dxn)x1=-1:0.01:-0.5;y1=polyval(S(1,:),x1-X(1));x2=-0.5:0.01:0;y2=polyval(S(2,:),x2-X(2));x3=0:0.01:0.5; y3=polyval(S(3,:),x3-X(3));x4=0.5:0.01:1;y4=polyval(S(4,:),x4-X(4));plot(x1,y1,x2,y2,x3,y3,x4,y4, X,Y,'.')结果如图:第三章函数逼近与快速傅里叶变换2. 由实验给出数据表x 0.0 0.1 0.2 0.3 0.5 0.8 1.0y 1.0 0.41 0.50 0.61 0.91 2.02 2.46试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线,用图示数据曲线及相应的三种拟合曲线。
第二章 插值法教学目的与要求:了解插值问题的提法,掌握插值多项式的定义。
了解多项式插值、插值多项式的截断误差、余项和Lagrange 插值多项式的定义,理解插值多项式的唯一性、插值基函数的定义,掌握插值余项定理的证明、线性插值、抛物插值以及一般Lagrange 插值多项式的推导。
重点与难点:基函数思想及Lagrange 插值多项式■ 教学内容:§ 1 插值问题与插值多项式一、插值问题 插值的基本思想 二、插值函数的定义§ 2 Lagrange 插值一、多项式插值1.多项式插值的定义:用多项式函数来近似代替的插值方法,称之为多项式插值式 )(x f 2.插值多项式的唯一性 二、插值多项式的误差估计1.定义:若在上用],[b a )(x n ϕ近似,则)(x f )()()(x x f x R n n ϕ−=称为插值多项式的截断误差,又称为插值多项式的余项。
关于插值余项的估计有下面的定理。
2.误差估计定理 定理2.1 设在区间上连续,在内存在,是区间上的互异节点,)()(x fn ],[b a )()1(x f n +),(b a n x x x ,,,10L ],[b a )(x n ϕ是满足插值条件的插值多项式,则对任意的],[b a x ∈,插值余项)()!1()()()()(1)1(x n f x x f x R n n n n +++=−=ωξϕ,其中的],[b a ∈ξ且依赖于x ,。
∏=+−=ni i n x x x 01)()(ω三、Lagrange 插值多项式1.线性插值 2.插值基函数3.Lagrange 插值多项式小结:1. 插值的基本思想;2. 插值多项式的存在性;3. Lagrange 插值多项式:注意它的规律;4. Lagrange 插值的余项和误差估计问题。
作业:习题2 第1、2题。
§ 3 Newton 插值教学目的与要求:了解Newton 插值的多项式的产生基础,理解差商的定义及性质、差分的定义及性质,掌握Newton 插值和等距结点插值多项式的推倒过程。