纳米材料与纳米结构复习内容
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
纳米材料复习题纳米材料复习题一、纳米材料的定义和特点纳米材料是指在至少一维尺度上具有纳米级别尺寸的材料。
其特点包括:1. 尺寸效应:纳米材料的尺寸与其物理、化学性质密切相关。
例如,纳米颗粒的表面积相对较大,导致其具有更高的活性和反应性。
2. 量子效应:纳米材料的电子结构受到量子效应的影响,其光学、电学、磁学等性质与宏观材料有所不同。
3. 界面效应:纳米材料的界面处存在着相互作用和相变,这些效应对其性能和应用具有重要影响。
二、纳米材料的制备方法1. 碳纳米管的制备:碳纳米管可以通过电弧放电、化学气相沉积、热解等方法制备。
2. 金属纳米颗粒的合成:金属纳米颗粒可以通过化学还原、溶胶凝胶法、热分解等方法制备。
3. 量子点的制备:量子点可以通过溶液法、气相法、热分解法等方法制备。
4. 纳米薄膜的制备:纳米薄膜可以通过物理气相沉积、化学气相沉积、溶液法等方法制备。
三、纳米材料的应用领域1. 纳米电子学:纳米材料在电子器件中的应用具有重要意义。
例如,纳米晶体管可以实现更高的电子迁移率和更小的功耗。
2. 纳米医学:纳米材料在医学领域的应用包括药物传递、生物成像和癌症治疗等。
纳米颗粒可以作为药物载体,实现精确的靶向治疗。
3. 纳米能源:纳米材料在能源领域的应用包括太阳能电池、燃料电池和储能材料等。
纳米结构可以提高能量转换效率和储存密度。
4. 纳米传感器:纳米材料可以制备成高灵敏度的传感器,用于检测环境中的化学物质、生物分子和物理参数等。
四、纳米材料的挑战和前景1. 安全性问题:纳米材料的生物毒性和环境风险需要重视。
在纳米材料的应用过程中,需要对其安全性进行评估和监测。
2. 大规模制备:纳米材料的大规模制备是一个挑战。
目前,研究人员正在探索高效、低成本的纳米材料制备方法。
3. 多功能性:纳米材料的多功能性使其在各个领域具有广泛的应用前景。
未来,纳米材料的研究将更加注重材料的设计和功能的定制。
总结:纳米材料作为一种新兴的材料,具有独特的特点和广泛的应用前景。
一、1、纳米科技:研究由尺寸在0.1—100nm之间的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。
2、纳米固体材料:又可称为纳米结构材料或纳米材料,它是由颗粒或晶粒尺寸为1~100nm的粒子凝聚而成的三维块体。
3、量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象,以及纳米半导体微粒存在比连续的最高被占据分子轨道和最低未被占据的分子轨道能级,这些能隙变宽现象。
4、表面效应:表面原子的活性不但引起纳米粒子表面原子的变化,同时也引起表面电子自旋构象和电子能谱的变化。
5、宏观量子隧道效应:某些宏观量如颗粒的磁化强度,量子相干器件中的磁通量等具有贯穿势垒的能力,称为宏观量子隧道效应。
6、纳米材料(广义):晶粒或晶界等显微构造能达到纳米尺寸水平的材料。
7、原子团簇:由多个原子组成的小粒子。
它们比无机分子大,但比具有平移对称性的块体材料小,它们的原子结构(键长、键角和对称性等)和电子结构不同于分子,也不同于块体。
8、Kubo理论:颗粒尺寸进入纳米级时,靠近费米面附近的能级由原来的准连续变为离散能级。
9、小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。
10、纳米结构材料:由颗粒或晶粒尺寸为1~100nm的粒子形成的三维块体称为纳米固体(结构)材料。
其晶粒尺寸、晶界宽度、析出相分布、气孔尺寸和缺陷尺寸都在纳米数量级。
二、简答题1、冷冻干燥法制备纳米颗粒的基本原理。
先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,再通过热处理得到所需的物质。
2、气相合成法制备纳米颗粒的主要过程有哪些?利用两种以上物质之间的气相化学反应,在高温下合成出相应的化合物,再经过快速冷凝,从而制备各类物质的纳米粒子。
纳米材料和纳米结构1.纳米材料的概念:纳米材料是指至少在一维尺寸(长度、宽度或厚度)上具有纳米级尺寸的材料。
一般而言,纳米材料的尺寸在1到100纳米之间。
由于其尺寸处于纳米级别,纳米材料的物理、化学和生物学性质通常与宏观材料有显著的差异,具有更高的比表面积、改变了能带结构以及大量的界面等特殊性质。
2.纳米结构的概念:纳米结构是指由多个纳米尺寸的单元组成的结构。
一般而言,纳米结构的尺寸在1到100纳米之间。
与纳米材料相比,纳米结构更注重材料的组织和排列方式。
通过控制纳米材料的组织结构,可以调控纳米材料的性质和功能。
3.纳米材料的制备方法:纳米材料的制备方法非常多样,常见的方法有物理方法、化学方法和生物方法等。
物理方法包括溅射法、化学气相沉积法、溶胶凝胶法和机械法等。
这些方法主要是通过物理手段控制材料原子或分子的排列方式,从而获得纳米级尺寸的材料。
化学方法包括溶剂热法、水热法、水热合成法和溶胶-凝胶法等。
这些方法主要是通过化学反应调控材料的成核和生长过程,从而制备出具有纳米级尺寸的材料。
生物方法包括生物合成法和生物模板法等。
这些方法利用生物体或其产物作为模板,通过生物体内的生物酶或有机物质参与反应,可以制备出纳米级尺寸的材料。
4.纳米材料的性质:纳米材料由于其尺寸与宏观材料相比的差异,具备许多独特的性质。
首先,由于纳米材料的比表面积很大,表面原子和分子数目较多,使得纳米材料具有更高的催化活性,可以应用于催化剂和催化反应加速剂等领域。
其次,纳米材料的能带结构由于量子效应的影响而发生改变,出现了与宏观材料不同的能带分布和能带宽度,导致纳米材料的光学、电学和磁学性质产生变化。
这一特性使得纳米材料在光催化、光电子器件和磁性材料等领域有着广泛的应用。
另外,纳米材料中存在着大量的界面,这些界面可以提高材料的强度和硬度,改善材料的力学性能。
同时,纳米材料的特殊界面还可以实现对材料的精确控制,从而获得更多样的物理和化学性质。
纳米材料复习题1、简单论述纳米材料的定义与分类。
2、什么是原子团簇? 谈谈它的分类。
3、通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径?4、论述碳纳米管的生长机理(图)。
答:碳纳米管的生长机理包括V-L-S机理、表面(六元环)生长机理。
(1)V-L-S机理:金属和碳原子形成液滴合金,当碳原子在液滴中达到饱和后开始析出来形成纳米碳管。
根据催化剂在反应过程中的位置将其分为顶端生长机理、根部生长机理。
①顶端生长机理:在碳纳米管顶部,催化剂微粒没有被碳覆盖的的部分,吸附并催化裂解碳氢分子而产生碳原子,碳原子在催化剂表面扩散或穿过催化剂进入碳纳米管与催化剂接触的开口处,实现碳纳米管的生长,在碳纳米管的生长过程中,催化剂始终在碳纳米管的顶端,随着碳纳米管的生长而迁移;②根部生长机理:碳原子从碳管的底部扩散进入石墨层网络,挤压而形成碳纳米管,底部生长机理最主要的特征是:碳管一末端与催化剂微粒相连,另一端是不含有金属微粒的封闭端;(2)表面(六元环)生长机理:碳原子直接在催化剂的表面生长形成碳管,不形成合金。
①表面扩散机理:用苯环坐原料来生长碳纳米管,如果苯环进入催化剂内部,会被分解而产生碳氢化合物和氢气同时副产物的检测结果为只有氢气而没有碳氢化化物。
说明苯环没有进入催化剂液滴内部,而只是在催化剂表面脱氢生长,也符合“帽式”生长机理。
5、论述气相和溶液法生长纳米线的生长机理。
(1)气相法反应机理包括:V-L-S机理、V-S机理、碳纳米管模板法、金属原位生长。
①V-L-S机理:反应物在高温下蒸发,在温度降低时与催化剂形成低共熔液滴,小液滴相互聚合形成大液滴,并且共熔体液滴在端部不断吸收粒子和小的液滴,最后由于微粒的过饱和而凝固形成纳米线。
②V-S机理:首先沉底经过处理,在其表面形成许多纳米尺度的凹坑蚀丘,这些凹坑蚀丘为纳米丝提供了成核位置,并且它的尺寸限定了纳米丝的临界成核直径,从而使生长的丝为纳米级。
第一章纳米结构单元一、零维单元1.团簇(cluster)2.纳米微粒3.人造原子二、一维单元1.碳纳米管2.纳米棒、丝、线3.同轴纳米电缆4.纳米带5.纳米线研究进展一、零维单元1.团簇(cluster)(1)定义:是一类化学物种,指几到几百个原子的聚集体,粒径尺度小于1nm。
是介于单个原子与固态之间的原子集合体。
(2)组成:一元(含金属、非金属团簇),二元及多元原子团簇,原子团簇化合物(3)结构:以化学键紧密结合(除惰性气体外),球状、骨架状、四面体、葱状及线、管、层状等。
(4)物理性质:表面效应、量子尺寸、几何尺寸效应、掺杂物性等(5)研究:多学科交叉C60:寻找星际间分子而发现2.纳米微粒:超微粒子(ultra-fine particle)(1) 定义:尺寸在nm量级的超细微粒,尺度在1~100nm 之间,大于原子团簇,小于通常的微粒。
尺寸为红血球和细菌的几分之一,与病毒大小相当。
“要用TEM才能看到的微粒。
”(2) 性质:由微观到宏观世界的过渡区域,具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等。
特殊的微观机制→影响宏观性质(生物活性由此产生)(3) 研究:制备、合成和应用。
3.人造原子(artificial atom, super-atom)(1) 定义:尺寸小于100nm的、由一定数量的实际原子组成的聚集体。
包括:准0维的量子点、准1维的量子棒、准2维的量子圆盘、及100nm左右的量子器件(2) 特性:(量子效应)i) 与原子相似之处:a. 离散的能级和电荷b. 电子填充服从洪德定律ii) 与原子的差别:a. 含有一定数量的原子b. 形状、对称性多种多样c. 电子间的相互作用复杂d. 电子在抛物线形的势阱中,上层电子束缚弱(3) 应用:体系的尺度与物理特征量相当量子效应→新原理、新结构二、一维单元1.碳纳米管(Bucky Tube巴基管)发现:1991年,日本电气公司(NEC)高级研究员、名城大学教授饭岛澄男(Sumio Iijima)利用透射电镜首次观察到碳纳米管。
1、纳米尺度是指1-100nm。
2、纳米科学是研究纳米尺度内原子、分子和其他类型物质运动和变化的科学。
3、纳米技术是在纳米尺度范围内对原子、分子等进行操纵和加工的技术。
4、纳米材料的定义:把组成相或晶粒结构的尺寸控制在100纳米以下具有特殊功能的材料称为纳米材料。
从狭义上说,就是有关原子团簇、纳米颗粒、纳米线、纳米薄膜、纳米碳管和纳米固体材料的总称。
5、纳米材料的分类:原子团簇,纳米颗粒与粉体(零维),纳米线与纳米管(一维),纳米带(二维),纳米薄膜和纳米涂层(二维),纳米固体材料,纳米复合材料(三维)。
6、纳米固体材料是具有纳米特征结构的固体材料。
7、纳米复合材料:增强相为纳米颗粒、纳米晶须、纳米晶片、纳米纤维的复合材料。
8、原子团簇是指几个至几百个原子的聚集体。
9、纳米材料的结构缺陷有三种类型:点缺陷、线缺陷、面缺陷。
10、纳米材料具有高比例的内界面,包括晶界,相界,畴界。
11、研究纳米的重要工具扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。
12、化学气相反应法制备纳米微粒包括:气相分解法,气相合成法,气—固反应法。
13、液相法制备纳米微粒分为:沉淀法,水热法,溶胶凝胶法,冷冻干燥法,喷雾法。
14、在制备氧化物薄膜的溶胶—凝胶方法中,有浸渍提拉法、旋覆法、喷涂法及简单的刷涂等。
15、纳米薄膜的制备方法包括物理法包括:真空蒸发制膜,分子束外延制膜,溅射制膜。
化学法包括:化学气相沉积,溶胶-凝胶法,电镀法。
16、光致发光指在一定波长光照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程。
仅在激发过程中发射的光为荧光。
在激发停止后还继续发射一定时间的光为磷光。
17、1988年,法国的费尔在铁、铬相间的多层膜电阻中发现,微弱的磁场变化可以导致电阻大小的急剧变化,其变化的幅度比通常高十几倍,他把这种效应命名为巨磁电阻效应。
18、纳米粒子体积极小,所包含的原子数很少。
纳米材料与纳米结构纳米科技的快速发展,带来了纳米材料与纳米结构的重要研究与应用。
本文将探讨纳米材料的定义、制备方法以及纳米结构对材料性能的影响。
一、纳米材料的定义纳米材料是指至少有一个尺寸在1到100纳米之间的物质。
由于纳米尺度下,材料的量子效应和表面效应等特性显著改变,纳米材料具有独特的物理、化学和生物学性质。
纳米材料广泛应用于能源、电子、生物医学等领域。
二、纳米材料的制备方法1. 气相法:纳米材料的制备方法之一是气相法,通过高温热分解或物理液相法将气体或液体材料转化为纳米尺度的固体颗粒。
常见的气相法有碳热反应、溅射、蒸发凝聚等。
2. 溶剂法:溶剂法是常用的制备纳米材料的方法之一,它包括溶胶-凝胶法、溶液法、共沉淀法等。
通过溶剂法可以控制纳米材料的形状和尺寸,并调控其性能。
3. 机械法:机械法是指通过力学作用将普通材料研磨、球磨等处理,使其颗粒尺寸达到纳米级别。
机械法适用于硬脆材料的制备,例如金属粉末和陶瓷粉末。
三、纳米结构对材料性能的影响纳米结构对材料性能的影响主要体现在以下几个方面:1. 界面效应:纳米材料中的界面效应显著增加了材料的比表面积,导致其物理和化学性质的变化。
例如,纳米材料的光学性质、磁性和电子传输性能等与普通材料存在明显差异。
2. 量子效应:由于尺寸效应,纳米材料在量子力学范围内显示出与宏观材料不同的性质。
量子效应是指在纳米尺度下,材料的能带结构和电子能级被限制在某些禁带之内,导致电子输运性质和光学性质的发生改变。
3. 热稳定性:纳米材料的热稳定性较差,容易发生晶粒生长和固溶体相分解。
纳米结构可以通过控制晶体生长机制和晶体缺陷来提高纳米材料的热稳定性。
4. 力学性能:纳米材料由于其尺寸效应的存在,具有优异的力学性能,如高强度、高韧性和良好的塑性。
纳米结构可以通过材料的纤维、膜等形式来进一步提高力学性能。
综上所述,纳米材料与纳米结构在当今科技发展中起到了至关重要的作用。
对纳米材料的深入研究与应用,有助于我们开发新型材料、改进现有材料,并推动科技创新。
纳米材料和纳米结构第六讲纳米材料和纳米结构是当今科技领域中备受关注的领域。
纳米结构是在纳米尺度上具有特定功能和特性的物质结构,而纳米材料则是由纳米尺度上的纳米结构组成的材料。
通过研究和应用纳米材料和纳米结构,可以改善现有材料的性能,并开发出具有全新特性和功能的材料。
纳米材料和纳米结构展现出与宏观材料截然不同的特性和行为,这主要源于其大比表面积和量子尺度效应。
由于纳米材料的粒径通常在纳米级别,因此其比表面积很大,具有更多的原子和分子相互作用位点。
这使得纳米材料在催化反应、吸附性能和传输性能等方面显示出独特优势。
同时,量子尺度效应也会对纳米材料的光学、电学和磁学等性质产生显著影响,导致纳米材料与其宏观对应物不同的行为。
研究纳米材料和纳米结构的过程中,人们发现了许多新奇的特性和应用。
例如,在纳米尺度上,金属材料的熔点可以显著降低,而半导体材料的能带禁带宽度也会变化。
这些特性使得纳米材料有望应用于低温材料和器件、光电器件等领域。
此外,纳米材料还具有优异的机械性能、化学稳定性和生物相容性,这些特点为纳米材料在纳米传感器、纳米医学和能源材料等领域的应用提供了广阔的发展空间。
纳米材料和纳米结构的制备方法多种多样,包括物理法、化学法和生物法等。
物理法主要包括机械制备、热力学制备和放电制备等,化学法主要包括溶胶-凝胶法、溶剂热法和化学还原法等,生物法则通过生物分子或生物体来制备纳米材料。
这些方法的选择取决于目标材料的种类和所需的制备精度。
然而,纳米材料和纳米结构的研究也面临着一些挑战和问题。
由于其特殊的性质和行为,纳米材料的表征和测试也变得更加复杂和困难。
同时,纳米材料的制备和合成方法也需要不断地改进和创新,以满足不同材料和应用领域的需求。
纳米材料和纳米结构是一门充满潜力的研究领域,其具有广泛的应用前景。
通过深入研究纳米材料和纳米结构的特性和行为,可以为现有材料的改进和新材料的开发提供重要的理论基础和实践指导。
相信在不久的将来,纳米材料和纳米结构将为人类生活和工业生产带来更多的革新和突破。
《纳米材料与纳米结构》课程复习题1.纳米颗粒有哪些基本的效应?久保理论;尺寸效应;表面与界面效应;体积效应;量子尺寸效应;宏观量子隧道效应2.什么是超顺磁性?讨论产生超顺磁性的原因。
磁性材料的磁性随温度的变化而变化,当温度低于居里点时,材料的磁性很难被改变;而当温度高于居里点时,材料将变成“顺磁体”(paramagnetic),其磁性很容易随周围的磁场改变而改变。
如果温度进一步提高,或者磁性颗粒的粒度很小时,即便在常温下,磁体的极性也呈现出随意性,难以保持稳定的磁性能,这种现象被就是所谓超顺磁效应。
超顺磁状态的起源可归为以下原因:在小尺寸下,当各向异性能减小到与热运动能可相比拟时,磁化方向就不再固定在一个易磁化方向,易磁化方向做无规律的变化,结果导致超顺磁性的出现。
不同种类的纳米磁性微粒显现超顺磁的临界尺寸是不相同的3.用机械法来制备纳米颗粒有什么优点和缺点?优点:过程简单,大规模生产容易,花费少,不污染环境,没有后续过程的问题缺点:能源消耗高,难以控制粒子形貌,夹有杂质4.纳米颗粒材料与相同块体材料的光学性质有何差异?纳米固体的光吸收具有常规粗晶不具备的一些新特点。
金属纳米固体等离子共振吸收峰变得很弱,甚至消失。
半导体纳米固体中粒子半径小于或等于激子玻尔半径时,会出现激子(Wannier激子)光吸收带(例如,粒径为4.5 nm的CdSexS 1-x,在波长约450 nm处呈现一光吸收带)。
相对常规粗晶材料,纳米固体的光吸收带往往会出现蓝移或红移。
例如,纳米NiO块体的4个光吸收带(3.30,2.99,2.78,2.25 eV)发生蓝移,三个光吸收带(1.92,1.72,1.03 eV)发生红移,与纳米粉体相类似。
纳米结构材料由于颗粒很小,这样由于小尺寸会导致量子限域效应,界面结构的无序性使激子,特别是表面激子很容易形成;界面所占的体积很大,界面中存在大量缺陷,例如悬键,不饱和键和杂质等,这就可能在能隙中产生许多附加能隙;纳米结构材料中由于平移周期的破坏,在动量空间(k空间)常规材料中电子跃迁的选择定则对纳米材料很可能不适用,这些就会导致纳米结构材料的发光不同于常规材料,有自己新的特点。
纳米材料与纳米结构复习题
1.简单论述纳米材料的定义与分类。
2.什么是原子团簇? 谈谈它的分类.
3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径?
4.论述碳纳米管的生长机理。
5.论述气相和溶液法生长纳米线的生长机理。
6.解释纳米颗粒红外吸收宽化和蓝移的原因。
7.论述光催化的基本原理以及提高光催化活性的途径。
8.什么是库仑堵塞效应以及观察到的条件?
9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。
10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。
11.论述制备纳米材料的气相法和湿化学法。
12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。
13.简单讨论纳米颗粒的组装方法
14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。
15.简单讨论纳米材料的磁学性能。
16.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理
17.简述光子晶体的概念及其结构
18.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。
并说明那些纳米结构应该具有增强物理和化学性能。
19.简单论述单电子晶体管的原理。