软启动、伺服系统、编码器
- 格式:doc
- 大小:110.00 KB
- 文档页数:16
电梯运行速度的监测与调整方法电梯作为一种常见的交通工具,在现代社会中扮演着重要的角色。
然而,电梯的运行速度对于乘梯的用户来说至关重要。
在这篇文章中,我们将探讨电梯运行速度的监测与调整方法。
一、电梯运行速度的监测方法要确保电梯的安全与舒适,监测电梯运行速度是至关重要的。
以下是几种常见的电梯运行速度监测方法:1. 速度传感器:安装在电梯驱动系统中的速度传感器,可以实时测量电梯的运行速度。
通过监测传感器输出的信号,工作人员可以及时了解电梯的运行状态。
2. 编码器:编码器可用于测量电梯电机的旋转速度,从而计算出电梯的运行速度。
这种监测方法可以提供更准确的速度数据,并且对于较高速度的电梯尤为重要。
3. 加速度传感器:加速度传感器可以测量电梯的加速度,通过对加速度数据进行分析,可以计算出电梯的实际运行速度。
这种监测方法在某些特殊情况下更为适用,例如电梯的启动过程。
二、电梯运行速度的调整方法在监测到电梯运行速度存在问题时,需要及时采取措施进行调整。
以下是几种常见的电梯运行速度调整方法:1. 频率调速器:通过控制电梯电机的输出频率,可以调整电梯运行速度。
频率调速器可以根据实际需要进行精确的速度控制,使电梯保持稳定的运行速度。
2. 载重调整:根据电梯的载重情况,可以调整电梯的运行速度。
例如,当电梯满载时,可以适当降低运行速度,以保证乘梯的安全与舒适。
3. 软启动与软停止:采用软启动与软停止的方式,可以减少电梯的冲击力,提高乘梯的舒适性。
通过控制电梯的启动与停止过程,可以间接调整电梯的运行速度。
三、电梯运行速度的优化方法除了监测和调整电梯的运行速度,还可以通过优化措施来改善电梯的运行效果。
以下是几种常见的电梯运行速度优化方法:1. 路程规划:通过合理规划电梯的路程,可以使电梯的行驶距离最短,从而减少运行时间。
这需要综合考虑电梯的乘客需求、楼层分布等因素。
2. 虚拟轿厢:使用虚拟轿厢技术,可以将多个电梯视为一个整体进行调度。
对风机偏航系统的理解作者:国电联合动力技术(连云港)有限公司技术部张超产偏航系统的作用偏航系统是风力发电机组特有的伺服系统。
它主要有两个功能:一是使风轮跟踪变化稳定的风向;二是当风力发电机组由于偏航作用,机舱内引出的电缆发生缠绕时,自动解缆。
偏航控制系统偏航系统是一个随动系统,风向仪将采集的信号传送给机舱柜的PLC的I/O板,计算10分钟平均风向,与偏航角度绝对值编码器比较,输出指令驱动四台偏航电机(带失电制动),将机头朝正对风的方向调整,并记录当前调整的角度,调整完毕电机停转并启动偏航制动。
偏航控制系统框图如下图所示:下文将对偏航控制系统的各机构进行分析:1、风速仪风力发电机组应有两个可加热式风速计。
在正常运行或风速大于最小极限风速时,风速计程序连续检查和监视所有风速计的同步运行。
计算机每秒采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别起动风速和停机风速。
测量数据的差值应在差值极限1.5m/s以内。
如果所有风速计发送的都是合理信号,控制系统将取一个平均值。
2、风向标风向标安装在机舱顶部两侧,主要测量风向与机舱中心线的偏差角。
一般采用两个风向标,以便互相校验,排除可能产生的误信号。
控制器根据风向信号,起动偏航系统。
当两个风向标不一致时,偏航会自动中断。
当风速低于3m/s时,偏航系统不会起动。
3、扭揽开关扭缆开关是通过齿轮咬合机械装置将信号传递PLC进行处理和发出指令进行工作的。
除了在控制软件上编入调向记数程序外,一般在电缆处安装行程开关,当其触点与电缆束连接,当电缆束随机舱转动到一定程度即启动开关。
以国内某知名公司生产的1.5MW风机为例,当机身在同一方向己旋转2转(720度),且风力机不处在工作区域(即10分钟平均风速低于切入风速) 系统进入解缆程序。
解缆过程中,当风力机回到工作区域(即10分钟平均风速高于切入风速),系统停止解缆程序,进入发电程序,但当机身在同一方向己旋转2.5转(900度)偏航限位动作扭缆保护,系统强行进入解缆程序,此时系统停止全部工作,直至解缆完成。
作者:西安西普电力电子有限公司王栋西安建筑科技大学信息与控制学院刘利1 引言交流感应电动机在各个行业中的应用非常广泛,但由于它在起动过程中会产生过大的起动电流,会对电网和其他用电设备造成冲击,受电网容量限制和保护其他用电设备正常工作的需要,应当在电机起动过程中采取必要的措施控制其起动过程。
传统的降压起动方式,如串电阻起动、星三角起动、磁控式降压起动、自耦变压器起动等,要么起动电流和机械冲击过大,要么体积庞大笨重。
随着电力电子技术和微机技术、现代控制技术的发展,电机软起动器技术出现并引起了人们的广泛重视。
它不仅有效的解决了上述问题,还可以根据应用条件的不同设置其工作状态,有很强的灵活性和适用性。
目前国内外市场上出现了形形色色的软起动器产品,它们的结构形式和控制方式花样繁多、特点各异。
2 软起动器基本原理根据感应电机的等效电路,在忽略激磁电流im的条件下,可以得出异步电机的定子电流公式:(1)根据(1)式可知,如不采取任何措施而直接投入电网起动时,会产生起动电流过大的问题。
这是由于起动时,n=0,s=1,旋转磁场以同步转速切割转子,在转子绕组中感应很大的电势和电流,同时转子等效阻抗很小,则与之平衡的定子电流的负载分量也随之急剧增大,随着转速的提高,转子等效阻抗逐渐变大,相应的定子电流也随之减小。
针对以上分析,注意到感应电机的转子阻抗虽无法改变,但由(1)式可知定子电流与定子端电压成正比,因此减小端电压也可以相应的减小定子电流。
晶闸管软起动器是应用晶闸管相控调压的原理,利用晶闸管的可控导通特性,通过改变相控角a来改变加在定子上的电压均方根值。
感应电机在不同电压下的机械特性曲线如图1中1、2、3、4和5曲线,图1中p1为恒转矩负载特性曲线,p2为平方转矩负载特性曲线,虚线为电动机起动曲线。
可以看出,宜选取e点所对应的电压作为起始电压,这样,既保证了足够的起始转矩,而且由于起始电压较小,有效的限制了起动电流。
可编程控制器当前的⼏个主要发展趋势1. 向⾼集成、⾼性能、⾼速度,⼤容量发展微处理器技术、存储技术的发展⼗分迅猛,功能更强⼤,价格更便宜,研发的微处理器针对性更强。
这为可编程序控制器的发展提供了良好的环境。
⼤型可编程序控制器⼤多采⽤多CPU结构,不断地向⾼性能、⾼速度和⼤容量⽅向发展。
在模拟量控制⽅⾯,除了专门⽤于模拟量闭环控制的PID指令和智能PID模块,某些可编程序控制器还具有模糊控制、⾃适应、参数⾃整定功能,使调试时间减少,控制精度提⾼。
2. 向普及化⽅向发展由于微型可编程序控制器的价格便宜,体积⼩、重量轻、能耗低,很适合于单机⾃动化,它的外部接线简单,容易实现或组成控制系统等优点,在很多控制领域中得到⼴泛应⽤。
3. 向模块化、智能化发展可编程序控制器采⽤模块化的结构,⽅便了使⽤和维护。
智能I/O模块主要有模拟量I/O、⾼速计数输⼈、中断输⼊、机械运动控制、热电偶输⼊、热电阻输⼊、条形码阅读器、多路BCD码输⼈/输出、模糊控制器、PID回路控制、通信等模块。
智能I/O模块本⾝就是⼀个⼩的微型计算机系统,有很强的信息处理能⼒和控制功能,有的模块甚⾄可以⾃成系统,单独⼯作。
它们可以完成可编程序控制器的主CPU难以兼顾的功能,简化了某些控制领域的系统设计和编程,提⾼了可编程序控制器的适应性和可靠性。
4. 向软件化发展编程软件可以对可编程序控制器控制系统的硬件组态,即设置硬件的结构和参数,例如设置各框架各个插槽上模块的型号、模块的参数、各串⾏通信接⼝的参数等。
在屏幕上可以直接⽣成和编辑梯形图、指令表、功能块图和顺序功能图程序,并可以实现不同编程语⾔的相互转换。
可编程序控制器编程软件有调试和监控功能,可以在梯形图中显⽰触点的通断和线圈的通电情况,查找复杂电路的故障⾮常⽅便。
历史数据可以存盘或打印,通过⽹络或Modem卡,还可以实现远程编程和传送。
个⼈计算机(PC)的价格便宜,有很强的数学运算、数据处理、通信和⼈机交互的功能。
电力拖动自动控制系统(名词解释)一、名词解释:1.G-M系统(旋转变流机组):由交流电动机拖动直流发电机G实现变流,由G给需要调速的直流电动机M供电,调节G的励磁If即改变其输出电压U,从而调节电动机的转速n,这样的调速系统简称G-M系统,国际上统称Ward-Leonard系统。
2.V-M 系统(晶闸管-电动机调速系统):通过调解器触发装置GT的控制电压Uc来移动触发脉冲的相位,即可改变平均整流电压Ud,从而实现评平滑调速,这样的系统叫V-M系统。
3. (SPWM):按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波雨期望波的争先等效,这种调制方法称作正弦波脉宽调制(SPWM)。
4.(旋转编码器的测速方法)M法测速——在一定时间Tc内测取旋转编码器输出的脉冲个数M1,用以计算这段时间内的平均转速,称作M法测速。
T法测速——在编码器两个相邻输出脉冲间隔时间内,,用一个计数器对已知频率为f0的高频时钟脉冲进行计数,并由此来计算转速,称作T法测速。
M/T法测速——既检测Tc时间内旋转编码器输出的脉冲个数M1,又检测用一时间间隔的高频时钟脉冲个数M2,用来计算转速,称作M/T法测速。
5.无刷电动机:磁极仍为永磁材料,但输出方波电流,气隙磁场呈梯形波分布,这样就更接近于直流电动机,但没有电刷,故称无刷电动机(梯形波永磁同步电动机)。
6.DTC(直接转矩控制系统):它是利用转矩反馈直接控制电机的电磁转矩,是既矢量控制系统之后发展起来的另一种高动态性能的交流电动机变压变频调速系统。
7.恒Eg/f1=C控制:对于三相异步电动机,要保持气隙磁通不变,当频率从额定值向下调节时,必须同时降低气隙磁通在在定子每相中感应电动势的有效值Eg,使Eg/f1=恒定值,像这样的控制方法叫恒Eg/f1=C控制。
(譬如,对于异步电动机,如果在电压-频率协调控制中,恰当地提高电压Us的数值,使它在克服钉子阻抗压降以后,能维持Eg/f1为恒值,这种控制方法叫Eg/f1=C控制。
前言感谢您选用欧瑞传动伺服驱动器!同时,您将享受到我们为您提供的全面、真诚的服务!本手册将为您提供安装调试、操作使用、故障诊断及日常维护的有关注意事项,在安装、使用前请仔细阅读。
本手册随驱动器一起提供,请妥善保管,以备以后查阅和维护使用。
当您在使用中发现任何问题,而本手册无法为您提供解答时,请与本公司各地经销商或直接与本公司联系咨询。
我们的专业技术服务人员将竭诚为您服务,并希望您能继续选用我们的产品,敬请提出宝贵的意见和建议!本公司致力于产品的不断改善和功能升级,手册提供资料如有变更,恕不一一通知。
最新及详细版使用手册会在公司网站()上进行公布。
版权所有,保留一切权利。
开箱验货:在开箱时,请认真确认:■ 安全标识本产品的安全运行取决于正确的安装和操作以及运输与保养维护,请务必遵守本手册中使用的如下安全标识:错误的操作将引发危险情况,导致人身伤亡。
错误的操作将引发危险情况,导致轻度或中度人身伤害,损坏设备。
另外,该标识中所述事项有时也可能造成严重的后果。
驱动器外壳上标识符的意义如下:电压高,有电击危险。
表面热,禁止触摸。
■ IEC 标准本产品严格按照最新国际标准进行测试生产:IEC/EN 61800-5-1:2007—可调速电气传动系统安全要求IEC/EN 61800-3:2004/+A1:2012—可调速电气传动系统,第三部分:产品的电磁兼容性标准及其特定的试验方法注意危险本手册使用须知:■基本用语除特殊说明,本手册中使用如下专有名词:伺服驱动器:用来驱动和控制伺服电机。
伺服系统:伺服驱动器、伺服电机、指令控制器以及外围装置构成的伺服控制系统。
用户参数:用于监控或设定驱动器相关参数,分为监控参数和设定参数。
监控参数只能查看不能修改;设定参数可以查看和修改,并可根据作用分为功能参数和数据参数。
■常用符号本手册中为方便表示,特使用以下符号:1 模式的说明2反斜杠(/)的使用反斜杠用于配线电路图中,主要是对IO口默认逻辑的具体描述。
高压变频器工作原理一、概述高压变频器是一种电力调节装置,用于控制高压电动机的转速和扭矩。
它通过调整电源的频率和电压来控制电动机的运行,实现对电动机的精确控制。
本文将详细介绍高压变频器的工作原理及其相关技术。
二、工作原理1. 电源输入高压变频器通常使用三相交流电作为输入电源。
输入电源经过整流、滤波等处理后,得到稳定的直流电源。
这个直流电源会被高压变频器内部的逆变器部份转换为可调的交流电源。
2. 逆变器逆变器是高压变频器的核心部件,它将直流电源转换为可调的交流电源。
逆变器采用先进的功率电子器件,如IGBT(绝缘栅双极型晶体管),通过控制开关管的导通和关断,将直流电源转换为可调的交流电源。
3. 控制系统高压变频器的控制系统包括主控制器、触摸屏、编码器等。
主控制器负责接收来自触摸屏和编码器的指令,并根据指令调整逆变器的输出频率和电压。
触摸屏用于操作和设置高压变频器的参数,编码器用于实时监测电动机的转速和位置。
4. 输出电源逆变器经过控制系统的调节后,将可调的交流电源输出给高压电动机。
输出电源的频率和电压可根据需要进行调整,以满足不同工况下电动机的运行要求。
通过调整输出频率,可以实现电动机的变速运行;通过调整输出电压,可以实现电动机的调节扭矩。
5. 保护系统高压变频器内置了多种保护功能,以保证电动机和变频器的安全运行。
常见的保护功能包括过流保护、过压保护、欠压保护、过载保护等。
当电动机或者变频器发生异常情况时,保护系统会及时采取措施,如切断电源,以避免进一步损坏。
三、应用领域高压变频器广泛应用于各个行业,如电力、冶金、石化、矿山等。
它可以用于控制高压电动机的转速和扭矩,实现对生产过程的精确控制。
例如,在电力行业中,高压变频器可用于控制发机电组的转速和频率,以实现电网与发机电组的同步运行。
四、优势与挑战1. 优势高压变频器具有以下优势:- 精确控制:通过调整输出频率和电压,可以实现对电动机的精确控制,满足不同工况下的运行需求。
伺服系统基础入门伺服系统是一种由电机、反馈装置、执行器和控制器组成的系统,可应用于各种工业和机械设备中。
它具有诸如高精度、高速度、高稳定性、多功能性等优点,广泛应用于工业自动化控制领域。
本文将从伺服系统的基本原理、功能特点、应用领域等方面进行介绍。
一、伺服系统基本原理伺服系统是一种控制系统,采用负反馈控制原理来实现位置、速度、力矩或其它控制目标的精确控制。
其基本结构由电机、减速机、编码器、控制器和执行器等部分组成。
其中,电机和减速机组成了伺服机构,它们的主要作用是将电机的高速旋转转换为较低的输出力矩和转速。
编码器是将运动轴位置信息等精确变化信息转化为数字信号并传送给伺服控制器的一个装置。
控制器利用接收到的编码器反馈信号与设定信号作差并进行运算,控制输出的驱动信号,控制执行器的产生作用,达到控制运动轴位置(或速度、力矩等)的目的。
二、伺服系统功能特点1. 高精度:伺服系统精度高,能够达到非常高的精度要求,满足高精度控制需求的场合。
2. 高速度:伺服系统能够在较短时间内达到需要的速度,并保持相当稳定,大大提高了生产效率。
3. 高稳定性:伺服系统在工作时,控制效果稳定可靠,保证生产的质量和效率。
4. 多功能性:伺服系统功能多样化,可实现精准位置控制、速度控制、力矩控制和力矩/速度联合控制等多种应用。
5. 系统可靠性:伺服系统采用多种防护装置,具有过载、过热、过电流保护等功能,确保系统的可靠性。
三、伺服系统应用领域伺服系统应用广泛,涉及到许多行业,如机械制造、半导体加工、液晶生产、医疗装置、电子设备等。
以下是其中几个重要应用领域的介绍。
1. 机床行业:伺服系统在机床行业中使用最为广泛,能够实现高速、高精度、高效率、高刚性等要求,如车床、铣床、磨床、线切割机、钻床等等。
2. 自动化设备:伺服系统在自动化设备中广泛应用,如自动化包装设备、自动化输送设备等。
能够实现高速、高效、高精度、高可靠性、灵活性强等多项优势。
QDS软启动器简介一、什么是QDS软启动器QDS中文电机软起动器以微处理器为控制核心,结合可控硅功率驱动、软硬件保护、菜单式LED显示、LCD显示、键盘操作、转矩控制及模糊P I D闭环算法等技术,集电机软起动、软停车、轻载节能和多种保护功能于一体,是上海奇电电气科技有限公司全新打造的具有国际先进水平的智能起动设备。
该设备功能齐全、性能稳定,被广泛的应用于传输类设备、风机、水泵、压缩机等负载的起动过程中。
二、QDS软启动器的功能功能一:软起动、软停止功能;可替换传统星三角、自藕降压起动箱。
可频繁起动有降压起动、限流起动等6种起动方式。
功能二:电动机保护功能;实现了比热继电器、马达保护器更加可靠的保护功能。
具有12种电流、电压、功率、相应等异常保护功能。
功能三:具有端子可编程继电器输出,4-20mA模拟电流输出。
端子输出功能丰富,继电器输出可编程,使用方便。
功能四:工作状态实时显示,可替代部分仪器仪表及数显表功能。
LCD大屏幕中文显示,简洁明了,参数设置、查询方便。
三、QDS软启动器的特点特点一:保护功能起动过程对软起动器及电机实时保护,旁路后对电机在线保护。
提供12种保护功能,不需加装其他保护产品,降低设备投资。
特点二:参数丰富软件不断升级新增“旁路切换时间”参数,避免大电流旁路切换时烧毁接触器。
新增“间隔延时”参数,避免频繁起动造成电机损坏。
特点五:通讯功能可选择提供中文上位机软件,便于用户远程调试和控制。
特点四:LCD中文液晶显示参数、状态均采用中文显示,便于现场操作人员调试及维护。
特点五:QST中文电机软起动器可提供在线运行功能,可实现轻载节能。
三、QDS软起动与传统减压起动方式的不同之处是:(1)无冲击电流。
QDS软起动器在起动电机时,通过逐渐增大晶闸管导通角,使电机起动电流从零线性上升至设定值。
对电机无冲击,提高了供电可靠性,平稳起动,减少对负载机械的冲击转矩,延长机器使用寿命。
(2)有软停车功能,即平滑减速,逐渐停机,它可以克服瞬间断电停机的弊病,减轻对重载机械的冲击,避免高程供水系统的水锤效应,减少设备损坏。
目录1.课题介绍 (2)1.1设计目的 (2)1.2设计报告要求 (2)2。
硬件设计及其原理 (4)2。
1PLC的应用领域及框图 (4)2.2PLC的应用特点 (4)2.3软启动器的工作原理及其使用 (6)2.3。
1软启动器的控制功能 (7)2.3。
2斜坡升压启动方式 (7)2。
3.3转矩控制及启动电流限流启动方 (7)2.3.4电压提升脉冲启动 (8)2.3.5转矩控制软停车方式 (8)2.3.6制动停车方式 (8)2。
4电路控制工作原理 (9)2.4.1控制线路工作原理 (9)2。
4。
2简要电气原理图 (100)2。
4.3电器元件明细表 (111)3.控制系统的软件设计 (122)3.1 控制系统的部分程序设计 (122)3.2. S7-200 I/O分配表 (122)3。
3.I/O点及其对应的PLC地址 (122)3。
4.PLC端子接线图 (133)3。
5。
系统简易工作流程图 (133)4。
总结 (155)参考文献 (177)附录 (178)1.课题介绍传统的三相异步电动机的启动线路比较简单,不需要增加额外的启动设备;但其启动电流冲击一般还很大,启动转矩较小而且固定不可调。
而软启动器主要由交流调压电路和控制电路构成,其基本原理是利用晶闸管的移相控制原理,通过控制晶闸管的导通角,改变其输出电压,达到通过调压发稿时来控制启动电流和启动转矩的目的,由于软启动器为电子调压并对电流实时监测,因此还具有对电动机和软启动器本身的热保护、限制转矩和电流冲击、三相电源不平衡、缺相、断相等保护功能,并可实时检测并显示如电流、电压、功率因数等参数.本课题要求单台软启动器控制两台电机的软启动及自由停车,控制系统采用PLC来实现;提供短路、过载、联锁等保护措施;具有紧急停车功能;在此,运用PLC知识达到设计要求.1。
1设计目的1.熟悉工程实践中S7—200 PLC的使用方法和规范,达到综合应用PLC的目的。
2.学习PLC程序编程和软启动器的使用、查找数据手册的能力。
嵌入式数控交流伺服系统使用说明书·在使用本产品之前,请先阅读《产品说明书》及所搭配的缝纫机机械说明书。
·本产品必须由接受过专业培训的人员来安装或操作。
·请尽量远离电弧焊接设备,以免产生的电磁波干扰本控制器而发生误动作。
·请不要在室温45°以上或者0°以下的场所使用。
·请不要在湿度30%以下或者95%以上或者有露水和酸雾的场所使用。
·安装控制箱及其他部件时,请先关闭电源并拔掉电源插头。
·为防止干扰或漏电事故,请做好接地工程,电源线的接地线必须以牢固的方式与大地有效连接。
·所有维修用的零部件,须由本公司提供或认可,方可使用。
·在进行任何保养维修动作前,必须关闭电源并拔掉电源插头。
控制箱里有高压危险,必须关闭电源五分钟后方可打开控制箱。
·本手册中标有 符号之处为安全注意点,必须注意并严格遵守,以免造成不必要的损害。
安全事项第1章 产品安装1.1 产品规格产品型号AHE59-55电源电压AC 220±20% V 50Hz/60Hz最大输出功率550/750W电源频率将脚踏板及机头的各连接插头安插到控制器后面对应的插座上如图1-1所示,各插座名称如图1-2所示。
连接好,请检查插头是否插牢. ①脚踏板插座;②抬压脚电磁铁插座;③自动电磁铁插座;④机头灯插座(黑色); 注:图1-1以AHE-58系列为例,AHE-59系列无④.1.2 接口插头的连接例图1-1 AHE 系列控制器图图1-2 控制器接口定义1.3 接线与接地必须要做好系统的接地工程,请合格的电气工程人员予以施工。
产品通电及投入使用前,必须确保电源插座AC 输入端已安全可靠的接地。
系统的接地线为黄绿线,该地线请务必可靠连接至电网安全保护接地上,以保证安全使用,并可防止出现异常情况。
:所有电源线、信号线、接地线等接线时不要被其它物体压到或过度扭曲,以确保使用安全!!抬压脚电磁铁12123456VDD 输出型号3+32V 电磁铁输出Peadl GND VCC Din6Din5脚踏板接口定义脚踏板模拟信号5V 地+5V 输入信号6输入信号5机头电磁铁定义1829613714345101112剪线电磁铁倒缝电磁铁夹线电磁铁+5V5V 地补针开关倒缝开关!第2章 操作面板使用说明2.1操作面板的显示说明2.2按键功能介绍功能描述序号外观名称长按恢复厂家出厂参数。
工业机器人技术.题库11、工业机器人一般有四个坐标系,下列不属于机器人坐标系的是()A、基坐标系Afm案)B、关节坐标系C、工具坐标系D、外部坐标系2、使用焊枪示教前,检查焊枪的均压装置是否良好,动作是否正常,同时对电极头的要求是()。
A、更换新的电极头B、使用磨耗量大的电极头C、新的或旧的都行D、电极头无影响3、我国最早的机器人是在什么时候?()A、唐朝B、清朝后期C、解放后D、西周时期:确笞案)4、下面哪种传感器不属于触觉传感器()A、接近觉传感器B、接触觉传感器C、压觉传感器D、热敏电阻5、A1、A2和A3三轴(轴1、轴2和轴3)称为(),用以保证末端执行器达到工作空间的任意位置。
A、腕部轴B、次轴C^主轴6、机器人中主轴的作用()A、用以保证末端执行器达到工作空间的任意位置B、用以实现末端执行器的任意空间姿态C、用以保证末端执行器达到的任意位置D、用以实现末端执行器的任意空间变化7、机器人能力的评价标准不包括:()A、智能B、机能C、动能D、物理能8、传动机构用于把驱动器产生的动力传递到机器人的各个关节和动作部位,实现机器人平稳运动。
常见的传动机构有:齿轮传动、丝杠传动机构、皮带传动和链传动机构、流体传动(分为液压和气压传动)、连杆传动。
()主要用于改变力的大小、方向和速度。
A、皮带传动和链传动机构B、电动C、齿轮传动{D、杆传动9、对机器人进行示教时,模式旋钮打到示教模式后,在此模式中,外部设备发出的启动信号().A、无效B、有效C、延时后有效10、以下不属于RV减速器特点的是()A、高的刚度和疲劳强度B、高寿命C、回差精度稳定D、随着使用时间的增长运动精度会显著降低Ik由数控机床和其它自动化工艺设备组成的(),可以按照任意顺序加工一组不同工序与不同节拍的工件,并能适时地自由调度和管理。
A、刚性制造系统B、柔性制造系统(H)C、弹性制造系统D、挠性制造系统12、依据压力差不同,可将气吸附分为()。
伺服驱动器的工作原理及其控制方式伺服驱动器(servo drives)又称为伺服控制器、伺服放大器,是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。
一般是通过位置、速度和力矩三种方式对伺服电机进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。
目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。
功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。
功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。
经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。
功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。
整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。
随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究。
伺服驱动器是现代运动控制的重要组成部分,被广泛应用于工业机器人及数控加工中心等自动化设备中。
尤其是应用于控制交流永磁同步电机的伺服驱动器已经成为国内外研究热点。
当前交流伺服驱动器设计中普遍采用基于矢量控制的电流、速度、位置3闭环控制算法。
该算法中速度闭环设计合理与否,对于整个伺服控制系统,特别是速度控制性能的发挥起到关键作用。
一般伺服都有三种控制方式:位置控制方式、转矩控制方式、速度控制方式。
伺服驱动器的工作模式与伺服驱动器的测试方法伺服驱动器是用来控制伺服电机的一种控制器,伺服驱动器其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分。
目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。
功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。
功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。
经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。
功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。
整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。
伺服驱动器一般可以采用位置、速度和力矩三种控制方式,主要应用于高精度的定位系统,目前是传动技术的高端。
随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究。
伺服驱动器是现代运动控制的重要组成部分,被广泛应用于工业机器人及数控加工中心等自动化设备中。
尤其是应用于控制交流永磁同步电机的伺服驱动器已经成为国内外研究热点。
当前交流伺服驱动器设计中普遍采用基于矢量控制的电流、速度、位置3闭环控制算法。
该算法中速度闭环设计合理与否,对于整个伺服控制系统,特别是速度控制性能的发挥起到关键作用。
在伺服驱动器速度闭环中,电机转子实时速度测量精度对于改善速度环的转速控制动静态特性至关重要。
为寻求测量精度与系统成本的平衡,一般采用增量式光电编码器作为测速传感器,与其对应的常用测速方法为M/T测速法。
M/T测速法虽然具有一定的测量精度。
AB罗克韦尔软启动器维修⽅法AB软启动器有很多系列,常见的有a.b150b系列,a.b150f系列等。
AB软启动器电路板芯⽚采⽤了pgda封装,要真的处理芯⽚坏了,维修起来还是有⼀定难度的,⾸先芯⽚难买,另焊接⼯艺要求也⾮常⾼(当然你有执锡台那就没问题的事)。
下⽂就给⼤家具体介绍⼀下AB罗克韦尔软启器常见故障的检修⽅法。
1、控制主板。
Ab1336变频器控制板型号较多,如1336f系列,1336e系列,1336s系列等,不同的主板软件版本和应⽤均有差异,维修代换尤其要弄明⽩。
Ab1336主控板做得体积庞⼤,扩展接⼝,跳线,都集成在⼀张⼤板上,通过设定跳线,可以⽤⾯板操作试机,⾮常的⽅便,通过拆除跳线使⽤tb3接⼝板,可以轻松的实现远程控制,编码器的连接。
值得⼀提的是,1336PLUS II主控板在显要的位置都预留了维修测试点,出故障时可以⽅便的进⾏测试分析。
2、驱动板。
1336 PLUS II⼤功率变频器驱动板同样设计出⾊。
电源分为主电源和驱动电源。
这电源负责上电启动预充电电路,电流传感器供电,主板供电和驱动供电。
驱动电源的任务是将主供电送过来的28v直流电源变成驱动所需的六个桥臂的供电电压。
单独给驱动放⼤模块供电。
Ab1336的驱动除了驱动IGBT模块⼯作,同时具有故障检测功能。
在离线检测时应注意屏蔽测试,不屏蔽⽆法驱动。
3、预充电电路。
Ab1336的预充电电路设计得⾮常复杂,这个电路和西门⼦,ABB等品牌均不⼀样。
原理是这样的,上电由⼆极管d12/d14/d17组成的整流给⼯作电源供电,电源正常后主控板⼯作。
主控板开始检查直流母线电压和三相供电电压,发现三相备妥给cpu⼀个5v⾼电平,于是CPU发出⼀个应答的⾼电平,脉宽控制电路以软启动的⽅式⼯作,功率电容正式充电待机。
直流母线检测出母线电压,如果未检出电压或者充电电路出现问题,就报警f19(预充电电路错误),当然,炸IGBT后烧断熔断器也会报同样的故障。
使用手册PSDD系列伺服驱动器请妥善保管此说明书。
请确保先阅读此产品的相关资料,再按其中的要求安装及使用此产品。
目 录前言安全守则命名规则产品规格书第一章 概述第二章 安装2.1 驱动器安装尺寸2.2 单台驱动器安装2.2 多台驱动器安装第三章 接线3.1 电源端子接线3.2 控制信号接线3.3 反馈信号接线第四章 操作4.1 上电顺序4.2 操作界面4.3 菜单介绍4.4 试运行操作示例第五章 参数设置5.1 参数表5.2 电子齿轮比设置5.3 基本增益设置6.1 报警代码总览6.2 报警处理方法第六章 报警代码.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................目录234671010111112121318202020212733333637404140感谢您使用本公司交流伺服系统。
风力发电机组偏航系统的结构与作用风力发电机组偏航系统的结构与作用偏航系统是一个随动系统,风向仪将采集的信号传送给机舱柜的PLC的I/O板,计算10分钟平均风向,与偏航角度绝对值编码器比较,输出指令驱动四台偏航电机(带失电制动),将机头朝正对风的方向调整,并记录当前调整的角度,调整完毕电机停转并启动偏航制动。
偏航控制系统框图如下图所示:下文将对偏航控制系统的各机构进行分析:1、风速仪风力发电机组应有两个可加热式风速计。
在正常运行或风速大于最小极限风速时,风速计程序连续检查和监视所有风速计的同步运行。
计算机每秒采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别起动风速和停机风速。
测量数据的差值应在差值极限1.5m/s以内。
如果所有风速计发送的都是合理信号,控制系统将取一个平均值。
2、风向标风向标安装在机舱顶部两侧,主要测量风向与机舱中心线的偏差角。
一般采用两个风向标,以便互相校验,排除可能产生的误信号。
控制器根据风向信号,起动偏航系统。
当两个风向标不一致时,偏航会自动中断。
当风速低于3m/s时,偏航系统不会起动。
3、扭揽开关扭缆开关是通过齿轮咬合机械装置将信号传递PLC进行处理和发出指令进行工作的。
除了在控制软件上编入调向记数程序外,一般在电缆处安装行程开关,当其触点与电缆束连接,当电缆束随机舱转动到一定程度即启动开关。
以国内某知名公司生产的1.5MW风机为例,当机身在同一方向己旋转2转(720度),且风力机不处在工作区域(即10分钟平均风速低于切入风速) 系统进入解缆程序。
解缆过程中,当风力机回到工作区域(即10分钟平均风速高于切入风速),系统停止解缆程序,进入发电程序,但当机身在同一方向己旋转2.5转(900度)偏航限位动作扭缆保护,系统强行进入解缆程序,此时系统停止全部工作,直至解缆完成。
当风速超过25 m/s时,自动解缆停止。
自动解除电缆缠绕可以通过人工调向来检验是否正常。
软启动伺服系统编码器软启动电压由零慢慢提升到额定电压,使电机启动的全过程都不存在冲击转矩,而是平滑的启动运行。
这就是软启动。
概念电压由零慢慢提升到额定电压,这样电机在启动过程中的启动电流,就由过去过载冲击电流不可控制变成为可控制。
并且可根据需要调节启动电流的大小。
电机启动的全过程都不存在冲击转矩,而是平滑的启动运行。
这就是软启动。
简介软启动器(soft starter)是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。
它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。
运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。
软起动器和变频器是两种完全不同用途的产品。
变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。
变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。
电动机软起动器是运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。
起动方式软起动一般有下面几种起动方式:(1)斜坡升压软起动。
(2)斜坡恒流软起动。
(3)阶跃起动。
(4) 脉冲冲击起动工作原理软启器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。
这种电路如三相全控桥式整流电路。
使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。
待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。
软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。
与传统减压起动方式区别无冲击电流软启动器在起动电机时,通过逐渐增大晶闸管导通角,使电机起动电流从零线性上升至设定值。
对电机无冲击,提高了供电可靠性,平稳起动,减少对负载机械的冲击转矩,延长机器使用寿命。
有软停车功能即平滑减速,逐渐停机,它可以克服瞬间断电停机的弊病,减轻对重载机械的冲击,避免高程供水系统的水锤效应,减少设备损坏。
起动参数可调根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的起动电流。
几种大型电机起动方法之比较当前我国经济已经进入了一个新的发展阶段,大型企业和大型装备越来越多,大型电机(5000kW~60000kW)的应用越来越多,大型电机的起动方法也越来越受到人们的重视。
社会发展是有阶段性的。
在不同阶段,人们的生产手段、生产工具和生活用品都有很大的不同。
上世纪80~90年代,我国的经济实力尚较薄弱,当时的小水泥和小钢铁发展很快,1000kW~4000kW电机的应用增长很快,与当时的经济基础相适应的液态起动装置出现,它经济实用,解决了电机起动中的一些问题。
对当时的经济发展起到了一定的作用。
到世纪之交时期,我国经济实力已有较大的发展,生产手段和生产工具亦有了较大发展,电机容量也有了很大增长,人们开始不满足液态起动装置的低性能,于是晶闸管串联式(固态)软起动装置的应用开始增加,继而又出现了开关变压器式软起动装置和磁饱和电抗器式(磁控)起动装置,变频装置用于电机软起动的情况也越来越多,当前这四种产品是大型电机起动市场的主流产品,液态起动装置则应用在小型(5000kW以下)电机上较多。
另外,两种老式起动方法(自耦变压器和变压器-电动机组)也常常出现在20000kW以下电机的起动上。
大型电机驱动的设备一般都是企业的核心设备,直接影响企业的生产状况,因此人们应该对其起动给予特别的关注,合理的选择起动装置将给企业带来很大的经济效益。
但是电机起动技术毕竟不是一个企业的核心技术,许多企业的电气工作者很少有时间来研究各种起动方法之间的差别,往往会造成不恰当的选择,有时甚至不得不做出第二次选择,给企业造成不应有的损失。
因此,如实地说明各种起动方法的性能及其差别是非常重要的。
电动机直接全压起动的危害性及软起动好处⒈引起电网电压波动,影响同电网其它设备的运行交流电动机在全压直接起动时,起动电流会达到额定电流的4~7倍,当电机的容量相对较大时,该起动电流会引起电网电压的急剧下降,影响同电网其它设备的正常运行。
软起动时,起动电流一般为额定电流的2~3倍,电网电压波动率一般在10%以内,对其它设备的影响非常小。
⒉对电网的影响对电网的影响主要表现在两个方面:①超大型电机直接起动的大电流对电网的冲击几乎类似于三相短路对电网的冲击,常常会引发功率振荡,使电网失去稳定。
②起动电流中含有大量的高次谐波,会与电网电路参数引起高频谐振,造成继电保护误动作、自动控制失灵等故障。
软起动时起动电流大幅度降低,以上影响可完全免除。
⒊伤害电机绝缘,降低电机寿命①大电流产生的焦耳热反复作用于导线外绝缘,使绝缘加速老化、寿命降低。
②大电流产生的机械力使导线相互摩擦,降低绝缘寿命。
③高压开关合闸时触头的抖动现象会在电机定子绕组上产生操作过电压,有时会达到外加电压的5倍以上,这样高的过电压会对电机绝缘造成极大伤害。
软起动时,最大电流降低一半左右,瞬间发热量仅为直起的1/4左右,绝缘寿命会大大延长;软起时电机端电压可以从零起调,可完全免除过电压伤害。
⒋电动力对电机的伤害大电流在电机定子线圈和转子鼠笼条上产生很大的冲击力,会造成夹紧松动、线圈变形、鼠笼条断裂等故障。
软起动时,由于最大电流小,则冲击力大大减轻。
⒌对机械设备的伤害全压直接起动时的起动转矩大约为额定转矩的2倍,这么大的力矩突然加在静止的机械设备上,会加速齿轮磨损甚至打齿、加速皮带磨损甚至拉断皮带、加速风叶疲劳甚至折断风叶等等。
软起动的转矩不会超过额定转矩,上述弊端可以完全克服。
当采用减压起动时,上述危害只有一定程度的降低;当采用软起动时,上述危害几乎完全消失;独立变压器供电方式直接起动只能在电网电压波动方面有所缓解,而其它方面的危害都照样存在。
超大型电动机的价值都很高,在生产中也都起着核心作用。
它的一点故障便会造成很大的经济损失,对它采用完善的保护是非常必要的。
比如说对一台电机我们不能指望它的各处绝缘都是完全一致的,可能在某一点就有个薄弱环节,出厂试验时它能通过,但在长时间的冲击下这个薄弱环节会逐渐首先显露出来,使其寿命缩短。
如果我们采取软起动,则可以大大延长电机的使用寿命,这两种方案哪一个合算呢?这是显而易见的。
软启动节能节能运行模式:轻载时降低电压减少了激磁电流,电机电流分为有功分量和无功分量(激磁分量)提高COS∮。
节能运行模式:当电动机负载轻时,软启动器在选择节能功能的状态下,PF开关热拨至Y位,在电流反馈的作用下,软启动器自动降低电动机电压。
减少了电动机电流的励磁分量。
从而提高了电动机的功率因数(COS∮)。
(国产软启动器多无此功能)在接触器旁路状态下无法实现此功能。
TPF开关提供了节能功能的两种反应时间;正常、慢速。
节能运行模式:自动节能运行。
(正常、慢速两种反应速度)空载节能40%,负载节能5%。
日常维修检查平时注意检查软起动的环境条件,防止在超过其允许的环境条件下运行。
注意检查软起动器周围是否有妨碍其通风散热的物体,确保软起动器四周有足够的空间(大于150mm)。
定期检查配电线端子是否松动,柜内元器件有否过热、变色、焦臭味等异常现象。
定期清扫灰尘,以免影响散热,防止晶闸管因温升过高而损坏,同时也可避免因积尘引起的漏电和短路事故。
清扫灰尘可用干燥的毛刷进行,也可用于皮老虎吹和吸尘器吸。
对于大块污垢,可用绝缘棒去除。
若有条件,可用0.6MPa左右的压缩空气吹除。
平时注意观察风机的运行情况,一旦发现风机转速慢或异常,应及时修理(如清除油垢、积尘,加润滑油,更换损坏或变质的电容器)。
对损坏的风机要及时更换。
如果在没有风机的情况下使用软起动器,将会损坏晶闸管。
如果软起动使用环境较潮湿或易结露,应经常用红外灯泡或电吹风烘干,驱除潮气,以避免漏电或短路事故的发生。
伺服系统伺服是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。
它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。
伺服和变频的异同伺服与变频的一个重要区别是:变频可以无编码器,伺服则必须有编码器,作电子换向用.一、两者的共同点:交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/p ,n转速,f 频率,p极对数)二、谈谈变频器:简单的变频器只能调节交流电机的速度,这时可以开环也可以闭环要视控制方式和变频器而定,这就是传统意义上的V/F控制方式。
现在很多的变频已经通过数学模型的建立,将交流电机的定子磁场UVW3相转化为可以控制电机转速和转矩的两个电流的分量,现在大多数能进行力矩控制的著名品牌的变频器都是采用这样方式控制力矩,UVW每相的输出要加摩尔效应的电流检测装置,采样反馈后构成闭环负反馈的电流环的PID调节;ABB的变频又提出和这样方式不同的直接转矩控制技术,具体请查阅有关资料。
这样可以既控制电机的速度也可控制电机的力矩,而且速度的控制精度优于v/f控制,编码器反馈也可加可不加,加的时候控制精度和响应特性要好很多。
三、谈谈伺服:驱动器方面:伺服驱动器在发展了变频技术的前提下,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更精确的控制技术和算法运算,在功能上也比传统的伺服强大很多,主要的一点可以进行精确的位置控制。
通过上位控制器发送的脉冲序列来控制速度和位置(当然也有些伺服内部集成了控制单元或通过总线通讯的方式直接将位置和速度等参数设定在驱动器里),驱动器内部的算法和更快更精确的计算以及性能更优良的电子器件使之更优越于变频器。
电机方面:伺服电机的材料、结构和加工工艺要远远高于变频器驱动的交流电机(一般交流电机或恒力矩、恒功率等各类变频电机),也就是说当驱动器输出电流、电压、频率变化很快的电源时,伺服电机就能根据电源变化产生响应的动作变化,响应特性和抗过载能力远远高于变频器驱动的交流电机,电机方面的严重差异也是两者性能不同的根本。