研究生数值分析(20)函数的最佳平方逼近
- 格式:ppt
- 大小:1003.00 KB
- 文档页数:42
25数值分析—最佳逼近━基于MATLAB的实现与分析§1 引 言所谓函数最佳逼近就是从指定的一类简单的函数中寻找一个和给定的函数“最贴近”的函数,从几何(空间)的角度看,函数最佳逼近就是从指定的一类简单的函数(点的集合)中寻找一个与给定的函数(定点)距离最短的函数(点)。
由于在函数空间中可以定义不同的距离,不同意义下的距离度量定义了不同的逼近准则。
令P 表示指定的一类简单的函数集合 1、函数最佳一致逼近: 基于的距离度量如下()[]()()d f P f x P x x a b ,,=-∈max (1)逼近准则:()[]()()x P x f P f d b a x P P -=∈P ∈P∈,max min ,min (2)2、函数最均方逼近:基于的距离度量如下()()()[][]d f P f x P x dx ab,=-⎰212(3)逼近准则()=P∈P f d P ,min minP ∈P()()[][]f x P x dx ab-⎰212(4)如果给定的是函数在若干点处的函数值:()()x f x i i ,,i =0,1,, n ,那么还有称为:3、最小二乘逼近: 基于的距离度量如下()()()[]d f P f x P x i i i n ,=-⎡⎣⎢⎤⎦⎥=∑012(5)逼近准则26()=P ∈P f d P ,min min P ∈P ()()[]f x P x i i i n-⎡⎣⎢⎤⎦⎥=∑012(6)4、插值逼近,其逼近准则为:()()i i x f x P =, ()n i x P ,,,, 10=P ∈ (7)对于函数最佳逼近问题而言,用于逼近的简单的函数集合一般选取次数不超过n 次的多项式函数全体()()()(){}P n k k x P x P x k n ==≤deg (8)即用多项式函数逼近给定的函数,其原因在于只需对自变量做加法、减法和乘法运算就能得到函数值是多项式函数显著的特点之一,因此,从计算的角度来说多项式函数是最简单的。
最佳平方逼近和最小二乘法哎呀,今天我们来聊聊一个挺有意思的话题,那就是最佳平方逼近和最小二乘法。
这听起来好像挺高大上的样子,其实呢,咱们可以把它变得简单易懂。
想象一下,你在阳光明媚的下午,喝着冰凉的饮料,跟朋友闲聊。
说起这些数学名词,大家可能会皱眉头,但我跟你说,这其实跟咱们生活中遇到的那些小烦恼有着千丝万缕的联系。
什么是最佳平方逼近呢?就像你和朋友一起找地方吃饭。
你们各自都提出了自己的想法,但最后为了避免争吵,大家决定选择一个最符合大家口味的地方。
这个过程就像是在给一堆数据点找到一个最合适的“朋友”。
想象一下,在坐标系上,有一堆点在那儿乱七八糟地分布着。
你想找一条线,尽量让这条线离这些点都近一点儿。
没错,这就是最佳平方逼近。
它试图找到那条线,让所有点到这条线的距离平方和最小。
简单点说,就是尽量让大家都满意。
再说说最小二乘法。
这名字听上去像个数学怪物,但其实它就是一种聪明的方式,帮助我们处理那些烦人的数据。
咱们可以把它想象成在考场上,有些同学的分数特别高,有些则低得让人心疼。
如果你只看最高分和最低分,可能会觉得这次考试的结果一片惨淡。
但如果你用最小二乘法来分析,那就好像给每个人的分数加了个权重,最终得出的平均分就能更真实地反映出大家的水平。
你可能会问,这俩东西有什么关系呢?嗯,其实它们是一对好搭档。
最佳平方逼近就是在找一条线,而最小二乘法则是在告诉你怎么画出这条线。
就像你要画一个完美的心形,光靠眼睛估计可不行,得有个具体的方法。
最小二乘法就像那把尺子,帮你量出每个点到线的距离,让你知道要怎么调整,才能画得又圆又满。
而且啊,这些方法可不光是在数学课上用得着。
咱们的日常生活中也是到处都是应用。
比如你在超市买水果,有些橙子很便宜,有些却贵得让你心疼。
你可能想知道,橙子的价格到底是个什么水平。
于是,你就可以用最小二乘法来分析这批橙子的价格走势,看看哪些便宜又好吃,哪些是价格虚高。
结果一出来,你就能得出一个合理的消费建议,哎呀,简直太棒了!还有呢,想想你在网上购物时,看到的那些评价。
最佳平方逼近原理最佳平方逼近原理是数值分析中的一个经典原理,用于寻找函数在给定定义域上的最佳平方逼近曲线。
在实际应用中,我们经常需要通过已知的离散数据点来近似拟合一个函数,最佳平方逼近原理就是为了解决这个问题而提出的。
最佳平方逼近原理的核心思想是,通过最小化残差平方和来选择最佳的曲线拟合函数。
残差平方和是指每个数据点与拟合曲线之间的差值的平方和,通过最小化残差平方和,我们可以找到能够最好地拟合数据点的曲线。
为了更好地理解最佳平方逼近原理,我们可以通过一个简单的例子来说明。
假设我们有一组包含有N个点的数据集{(x1,y1),(x2,y2),...,(xn,yn)},我们需要找到一条曲线y=f(x)来拟合这些数据点。
首先,我们可以假设拟合曲线为一条直线y=ax+b,其中a为斜率,b为截距。
我们的目标是找到最佳的斜率a和截距b,使得拟合曲线能够最好地拟合数据点。
为了评估拟合曲线的好坏,我们可以定义残差ei为数据点yi与拟合曲线f(xi)之间的差值,即ei=yi-f(xi)。
然后,可以定义残差平方和E为所有残差的平方和,即E=∑(yi-f(xi))^2。
根据最佳平方逼近原理,我们需要选择最优的斜率a和截距b,使得E达到最小值。
这可以通过对E分别对a和b求偏导数,并令偏导数等于零来实现。
∂E/∂a=0和∂E/∂b=0的解可以分别表示为a=(N∑(xiyi)-∑xi∑yi)/(N∑(xi^2)-(∑xi)^2)和b=(∑yi-∑(xi/n)a))/N 通过求解这两个方程,我们可以得到最佳的斜率a和截距b,从而得到最佳的拟合曲线。
上述例子只是最佳平方逼近原理的一个简单应用,实际上,最佳平方逼近原理可以应用于更复杂的拟合曲线,如多项式拟合、指数拟合等。
在实际应用中,最佳平方逼近原理广泛应用于数据分析、信号处理、图像处理等领域。
通过最佳平方逼近原理,我们可以从大量的离散数据中提取有效的信息,利用拟合曲线来进行预测、分类、回归等操作。
第二章 最佳平方逼近为了便于计算和分析,常常需要用一个简单的函数()x ϕ来近似代替给定的函数()f x ,这类问题称为函数逼近问题。
插值问题以及Taylor 展开问题都属于这类问题。
本章介绍另一种函数逼近问题,即最佳平方逼近。
最佳平方逼近问题的提法是:设()f x 是[],a b 上的连续函数,n H 是所有次数不超过n 的多项式的集合,在n H 中求()n P x *逼近()f x ,使()()()()()1/2222infnb n naP x H f Px f x P x dx f Pρ**∈⎡⎤-=-=-⎣⎦⎰此时称()n P x *为()f x 在[],a b 上的最佳平方逼近多项式。
我们将要研究()n P x *是否存在?是否唯一?如何求得()n P x *?首先介绍正交多项式及其性质。
§1、正交多项式正交多项式是函数逼近的重要工具,在数值积分中也有广泛的应用。
1.1正交函数系的概念定义1 设()x ρ定义在[],a b 上(有限或无限),如果满足条件:(1)()[]0,,x x a b ρ≥∈; (2)()()0,1,bnax x dx n ρ=⎰存在;(3)对非负连续函数()f x ,若()()0ba f x x dx ρ=⎰,则在[],a b 上一定有()0f x ≡那么称()x ρ是区间[],a b 上的权函数。
简称为权函数。
权函数()x ρ的一种解释是物理上的密度函数,相应的()bax dx ρ⎰表示总质量。
当()x ρ=常数时,表示质量分布是均匀的。
下面引进内积定义。
定义2 给定()[]()(),,,,f x g x C a b x ρ∈是[],a b 上的权函数,称 ()()(),()ba f g x f x g x dx ρ=⎰ ()1.1为函数()f x 与()g x 在[],a b 上的内积。
内积具有下列简单性质: ()f g g f (1)、(,)=,;()()()1212,)(,00.f g f g R f f g f g f g f f f ααα∈++≠>(2)、(,)=,;(3)、 (,)=(4)、 当时,, 此外,还有如下Cauchy-Schwarz 不等式()()()2,,,.f g f f g g ≤⋅ ()1.2我们知道,一个向量的长度的几何概念,对于函数空间及逼近有许多自然的应用。
2013-2014(1)专业课程实践论文题目:函数的最佳平方逼近一、算法理论下面研究在区间[],a b 上一般的最佳平方逼近问题。
对于给定的函数()[,]f x C a b ∈,如果存在*01(){(),(),,()}n S x Span x x x ϕϕϕ∈使得[]22*()()()min ()()()bb a a a x b x f x S x dx x f x s x dx ρρ≤≤⎡⎤-=-⎣⎦⎰⎰则称*()s x 是()f x 在集合01{(),(),,()}n Span x x x ϕϕϕ 中的最佳平方逼近函数。
为了求*()s x ,由式可知,该为题等价于求多元函数。
若用H 表示行列式2(1,,,....,)n Gn G x x x =对应的矩阵,则*()s x , H 称为Hilbert 矩阵。
记01(,,....,)T n a a a a =,01(,,....,)T n d d d d =其中 (,)(0,1,.....,)k k d f x k n ==则方程 Ha d =的解*(0,1,.....)k k a a k n ==即为所求。
二、算法框图三、算法程序#include<stdio.h>#include<math.h>double function1(double x){ double s1;s1=1/sqrt(4+x*x);//替换函数return s1;}double function2(double x){ double s2;s2=x/sqrt(4+x*x);//替换函数return s2;}double ReiterationOfSimpson(double a,double b,double n,double f(double x)){ double h,fa,fb,xk,xj;h=(b-a)/n;fa=f(a);fb=f(b);double s1=0.0;double s2=0.0;for(int k=1;k<n;k++){ xk=a+k*h;s1=s1+f(xk);}for(int j=0;j<n;j++){ xj=a+(j+0.5)*h;s2=s2+f(xj);}double sn;sn=h/6*(fa+fb+2*s1+4*s2);return sn;}int main(){ double a=0.0,b=1.0,Result[2];int n=5;Result[0]=ReiterationOfSimpson(a,b,n,function1);Result[1]=ReiterationOfSimpson(a,b,n,function2);printf("d0=%f,d1=%f\n\n",Result[0],Result[1]);double x[2]={Result[0],Result[1]};double a0,a1;a0=4*Result[0]-6*Result[1];a1=12*Result[1]-4*Result[0];printf("a0=%5.7f,a1=%5.7f\n\n",a0,a1);}四、算法实现例1. 求()f x x =在[1,1]-上的一次最佳平方逼近解:运行程序,把替换函数分别改成s1=abs(x),s2=x*abs(x), 上机运行截图例2. 设()1/0,1上的一次最佳平方逼近多项式。
最佳平方逼近与最小二乘拟合——两者的区别与联系 函数逼近是用一个多项式无限接近原函数,而拟合是将函数中的元素联系起来。
也就是说,最佳平方逼近是针对函数,最小二乘法是针对离散的点,二者在形式上基本一致。
另外,最小二乘拟合也称为离散型最佳平方逼近,两者的解法有很多相似之处。
一、 函数的最佳平方逼近 (一)最佳平方逼近函数的概念对[]b a C x f ,)(∈及[]b a C ,中的一个子集{}n span ϕϕϕφ,,,10⋯=,若存在φ∈)(*x S,使[]dx x S x f x S f Sf baS S ⎰-=-=-∈∈22222*)()()(infinf ρϕϕ,则称)(*x S 是)(x f 在子集[]b a C ,⊆φ中的最佳平方逼近函数。
(二)最佳平方逼近函数的解法为了求)(*x S ,由[]dxx S x f x S f Sf baS S ⎰-=-=-∈∈22222*)()()(infinf ρϕϕ可知,一般的最佳平方逼近问题等价于求多元函数dxx f x a x a a a I banj j j n 2010)()()(),,,(⎰∑⎥⎦⎤⎢⎣⎡-=⋯=ϕρ的最小值问题。
由于),,,(10n a a a I ⋯是关于n a a a ,,,10⋯的二次函数,利用多元函数极值的必要条件),,1,0(0n k a Ik⋯==∂∂,即),,,,1(2nn x x x G G =n),,1,0(0)()()()(20⋯==⎥⎦⎤⎢⎣⎡-=∂∂⎰∑=k dx x x f x a x a Ik b a n j j j kϕϕρ,于是有()()),,1,0(,,0n k f a k j nj j k ⋯==∑=ϕϕϕ。
()()),,1,0(,,0n k f a k j nj j k⋯==∑=ϕϕϕ是关于n 10,,,a a a ⋯的线性方程组,称其为法方程。
由于n ϕϕϕ,,,10⋯线性无关,故系数行列式()0,,,10≠⋯n G ϕϕϕ,于是方程组()()),,1,0(,,0n k f a k j nj j k⋯==∑=ϕϕϕ有唯一解),,1,0(*n k a a k k ⋯==,从而得到)()()(*0*0*x a x a x S n n ϕϕ+⋯+=。