39880福建师范大学19秋福师《高等代数选讲》在线作业二答案
- 格式:rtf
- 大小:8.70 KB
- 文档页数:6
福师《高等代数选讲》在线作业一-0001试卷总分:100 得分:100一、判断题(共50 道试题,共100 分)1.若n阶方阵A可对角化,则A有n个线性无关的特征向量答案:正确2.答案:正确3.答案:错误4.若f(x)|g(x)h(x),则有f(x)|g(x)或f(x)|h(x)答案:错误5.n阶矩阵A的行列式等于A的全部特征根的乘积答案:正确6.若排列abcd为奇排列,则排列badc为偶排列.答案:错误7.答案:正确8.试题如图{图}答案:错误9.答案:错误10.设V是一个n维向量空间,W是V的一个子空间,则dimW≤n答案:正确11.答案:错误12.答案:错误13.如果α1,α2,…,αr线性无关,那么其中每一个向量都不是其余向量的线性组合答案:正确14.答案:错误15.合同的两个矩阵的秩不一定相等。
答案:错误16.答案:错误17.答案:错误18.正交矩阵的伴随矩阵也是正交矩阵答案:正确19.初等变换把一个线性方程组变成一个与它同解的线性方程组答案:正确20.等价向量组的秩相等答案:正确21.答案:正确22.零多项式与f(x)的最大公因式是f(x)答案:正确23.排列(1,2,3,4,...,2006)是一个偶排列答案:正确24.答案:错误25.数域P上的任何多项式的次数都大于或等于0答案:错误26.齐次线性方程组解的线性组合还是它的解.答案:正确27.设A为n阶正交矩阵,则A的实特征值是1或-1.答案:正确28.双射既是单射也是满射答案:正确29.当线性方程组无解时,它的导出组也无解.答案:错误30.答案:错误31.若n阶矩阵A存在一个r阶子式不为零则A的秩必然大于等于r 答案:正确32.答案:正确33.答案:正确34.在矩阵的初等变换下行列式的值不变答案:错误35.(1,1,0), (1,0,1), (0,1,1)构成为3维向量空间的一个基答案:正确36.答案:错误37.答案:正确38.答案:正确39.答案:错误40.答案:错误41.相似矩阵有相同的特征多项式。
下载前先核对是否是你需要的一套题目,如不是,可能随机出题,下载然后复制
题目在该题库里面查找辅导答案。
福师《高等代数选讲》在线作业一
一、判断题(共 50 道试题,共 100 分。
)
1. 合同的两个矩阵的秩不一定相等。
A. 错误
B. 正确
参考标准答案:A
2. 交换行列式的两列,行列式的值不变
A. 错误
B. 正确
参考标准答案:A
3. 如果A是正交矩阵,k为实数,要使kA为正交矩阵,则k等于1或-1
A. 错误
B. 正确
参考标准答案:B
4. 对矩阵A,B,r(AB)=r(A)r(B)
A. 错误
B. 正确
参考标准答案:A
5. 两个有限维向量空间同构的充要条件是维数相同.
A. 错误
B. 正确
参考标准答案:B
6. 实对称矩阵的特征根一定是实数。
A. 错误
B. 正确
参考标准答案:B
7. 对于同阶矩阵A、B,秩(A+B)≤秩(A)+秩(B)
A. 错误
B. 正确
参考标准答案:B
8. 设V是一个n维向量空间,W是V的一个子空间,则dimW≤n
A. 错误
B. 正确
参考标准答案:B。
福建师范大学网络教育学位考试《高等代数选讲》学习小结论文小结《高等代数选讲》学习小结《高等代数》是数学学科的一门传统课程。
在当今世界的数学内部学科趋于统一性和数学在其他学科的广泛应用性的今天,《高等代数》以追求内容结构的清晰刻画和作为数学应用的基础,是数学各个专业的主干基础课程。
它是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。
高等代数是代数学发展到高级阶段的总称,它包括许多分支。
它是在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。
这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。
通过学习后,我们知道,不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。
因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。
刚刚开始接触到高等代数的时候,对它一无所知,仅仅听其它同学谈论过线性代数这门课程。
在学习之前,我一直认为高等代数就是线性代数。
经过学习后,我发现,这两者之间区别还是挺大的。
高等代数是我们数学专业开设的专业课,更注重理论的分析,需要搞懂许多概念是怎么来的,而线性代数,只是一种运算工具,是供工科和部分医科专业开设的课程,更加注重应用。
经过课程和书本的学习,我对高等代数里面的知识有了个初步的认识和接触,特别是高等代数的一些思想,也从中收获不少。
下面就对高等代数的学习做一个回顾和总结。
一、行列式行列式是代数学中的一个基本概念,它不仅是讨论线性方程组理论的有力工具,而且还广泛的应用于数学及其他科学技术领域定义:设A=(a ij)为数域F上的n×n矩阵,规定A的行列式为|A|=∑(?1)τ(j1j2?j n)a1j1a2j2?a njnj1j2…j n其中,i1i2?i n为1,2,…,n的一个排列。
1,-2,3,则B= 2A I 4的特征值为1/3,-1/3,1/7.4 4 4 1 13 2 14 55 •设D = 1 1 1 2 2 ,则A21 + A22 + A232 4 5 4 24 5 5 1 3《高等代数选讲》练习1•设4 4 矩阵A =[■ , ,,2, 3], B =[ -, 1, 2, 3],其中:•「,1, 2, 3均为 4 维列向量,且A =3,|B| = 2,则A + B = 4032•中下列子集不是R的子空间的为(C ).(A) W1 二{(X i,X2,X3)R |X2 =1};(B) W2 二{( X i,X2,X3)R IX3=0};_ 3 _ 3(C) W3 叫(X1, X2,X3)R |X1=X2=X3};( D) W4 二{( X1,X2,X3)R |X,=X2—X3}3•设:j,〉2,〉3是四元非齐次线性方程组AX=b的三个解向量,且秩(A)=3 , R3:-1 二[1,2,3,4]T,:^ ■: 3 =[0,1,2,3]T, k为任意常数,则线性方程组A X二b的通解为4 .已知矩阵A的特征值为56 •将f(X)=X5-1表示成X-1的方幕和的形式为4 2 28 •设矩阵A = 2 4 22 2 41 •求矩阵A的所有特征值与特征向量;2•求正交矩阵P,使得P J AP为对角矩阵。
—2 —21解:由卜2 A-4 -2 *-2)第-8)得A的特征值为| —2—2久―4)人二兀=2(一重特征值)» A = 8 o当人二加二2时,由—A)X = O t即:-_2-22"0一_2_2■=0_2X. L3 J0 j 二—2 —2解:由卜2 乂-4 -2 *-2)車-8)得A的特征值为| —2—2久―彳人二入=2(二重特征值)、= 8 o当人二坷二2时f由~ A)X —O y即:-_2-2_2~"0_一_2—0-2_2—2y L 3J当4二8时.由(却一力站>0,即:"4- 2_1~o4_2x2—0_2-240得基础解系为旳珂1」皿将其单位化得* f半咅则加64是昇的一组单位正交的特征向量,令TP 2贝【彷^一个正交矩阵.■ ■「■ I S f l a I II l*tax a i a i x a 2 a 2 a 3 a 3 川a n 川a n 9 •计算n+1阶行列式:D “ =a i a 2x a 3 川 a nII I II IHI IH IH IIIa i a 2 a 3 a 4 IH x10 0 01 Cl^ —口]日? 一 Ct, £7」一Q?二(x + 羽)口(X-%)2=1f = l=4二7解的情况,并在有无穷多解时求其通解=4解:将各列都加到第1歹心并提出公因子得:n几1二(“工耳)4 ■aa,4二(兀+丈q )11=1x-a.10试就p,t 讨论线性方程组PX I X 2 X 32x 1 3tx 2 2X 3 X I 2tX 2 X 3解•:对方程组的增广矩阵[⑷切作初等行变换:P1 14_1 t 1 3~ [屮]=7 3t 2 7T111 14[12t 14P■ 1 11C1)当(戶一1”工0 C 即戸工1且FHO )吋,秩([力,右]〉= 秩(^) = 3 T 从而方程组有唯一解:2/ - 1兀1—3 O - 1”1 1 — 4 / +2 Ji tY —— A. .J —2 厂3 — 1"(2)当 p = l 而 1 -4/ + 2/?/ = 1 -2/ = 0 ,也即 2% 时, 秩([A,b ])=秩(丿)=2 ,从而方程组有无穷多解|此 时增广矩阵变为;1 丄1 3"_1 0 12[A A]T0 1 0 2 —> 0 1 020 0 00 0 0得同解方程组:(x 1+x. = 21也二2—> 1 r o tO 11 oi — P3 14 - t13i1 一 p4 - 2 /J 0 o -1 - -+ 2严。
福师《数学分析选讲》在线作业二一、单选题(共 50 道试题,共 100 分。
)1.如题A. AB. BC. CD. D正确答案:C2.A.B.C.D.正确答案:B3.A. AB. BD. D正确答案:D 4.A. AB. BC. CD. D正确答案:D 5.如题A. AB. BC. CD. D正确答案:C 6.如题A. AB. BC. CD. D正确答案:C 7.A. AB. BC. CD. D正确答案:C 8.如题A. AB. BC. CD. d正确答案:D 9.如题A. AB. BC. CD. D正确答案:B 10.如题A. AB. BC. C正确答案:D 11.如题A. AB. BC. CD. D正确答案:D 12.A. AB. BC. CD. D正确答案:C13. 如图所示A.B.C.D.正确答案:D14. 题目如图A. 0B. 1C. 2正确答案:C 15.如题A. AB. BC. CD. D正确答案:A 16.如题A. AB. BC. CD. D正确答案:B 17.A. AB. BC. CD. D正确答案:C 18.如题B. BC. CD. D正确答案:D19. 如图所示A.B.C.D.正确答案:D 20.如题A. AB. BC. CD. D正确答案:D 21.如题A. AB. BC. CD. D正确答案:C 22.如题A. AB. BC. CD. D正确答案:B 23.如题A. AB. BC. CD. D正确答案:B24. 题面见图片A.B.C.D.正确答案:A 25.如题A. AB. BC. CD. D26. 题面见图片A.B.C.D.正确答案:C 27.A. AB. BC. CD. D正确答案:A 28.如题A. AB. BC. CD. D正确答案:D 29.题目如图A.B.C.D.30.如题A. AB. BC. CD. D正确答案:A 31.如题A. AB. BC. CD. D正确答案:B 32.如题A. AB. BC. CD. D正确答案:D 33.A.B.C.D.正确答案:B 34.如题A. AB. BC. CD. D正确答案:D 35.如题A. AB. BC. CD. D正确答案:A 36.如题A. AB. BC. CD. D正确答案:A37. 题面见图片A.B.C.D.正确答案:A 38.如题A. AB. BC. CD. D正确答案:D 39.A. AB. BC. CD. D正确答案:C40. 题面见图片A.B.C.D.正确答案:A41. 如图所示A.B.C.D.正确答案:D 42.如题A. AB. BC. CD. D正确答案:A43. 如图所示A.B.C.D.正确答案:D 44.如题A. AB. BC. CD. D正确答案:C如题A. AB. BC. CD. D正确答案:B46. 如图所示A.B.C.D.正确答案:C 47.如题A. AB. BC. CD. D正确答案:B 48.如题A. AB. BC. C正确答案:D 49.如题A. AB. BC. CD. D正确答案:D 50.如题A. AB. BC. CD. D正确答案:B。
1.A.错误B.正确【参考答案】: B2.A.错误B.正确【参考答案】: B3.合同的两个矩阵的秩不一定相等。
A.错误B.正确【参考答案】: A4.A.错误B.正确【参考答案】: A5.A.错误B.正确【参考答案】: A6.A.错误B.正确7.A.错误B.正确【参考答案】: A8.A.错误B.正确【参考答案】: B9.若f(x)|g(x)h(x),则有f(x)|g(x)或f(x)|h(x)A.错误B.正确【参考答案】: A10.零多项式与f(x)的最大公因式是f(x)A.错误B.正确【参考答案】: B11.两个矩阵A与B,若A*B=0则一定有A=0或者B=0A.错误B.正确【参考答案】: A12.A.错误B.正确13.矩阵的乘法不满足交换律,也不满足消去律。
A.错误B.正确【参考答案】: B14.若矩阵A的秩是r,则A的所有高于r 级的子式(如果有的话)全为零.A.错误B.正确【参考答案】: B15.只有可逆矩阵,才存在伴随矩阵A.错误B.正确【参考答案】: A16.正交矩阵的行列式等于1或-1A.错误B.正确【参考答案】: B17.A.错误B.正确【参考答案】: A18.A.错误B.正确【参考答案】: B19.A.错误B.正确【参考答案】: B20.两个对称矩阵不一定相似。
A.错误B.正确【参考答案】: B21.若排列abcd为奇排列,则排列badc为偶排列.A.错误B.正确【参考答案】: A22.A.错误B.正确【参考答案】: A23.A.错误B.正确【参考答案】: B24.实对称矩阵的特征根一定是实数。
A.错误B.正确【参考答案】: B25.初等变换把一个线性方程组变成一个与它同解的线性方程组A.错误B.正确【参考答案】: B26.如果A是正交矩阵,k为实数,要使kA为正交矩阵,则k等于1或-1A.错误B.正确【参考答案】: B27.齐次线性方程组永远有解A.错误B.正确【参考答案】: B28.A.错误B.正确【参考答案】: B29.初等变换不改变矩阵的秩。
《高等代数》习题与参考答案数学系第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
福师《高等代数选讲》在线作业二-0004试卷总分:100 得分:100一、判断题(共50 道试题,共100 分)1.若n阶方阵A的行列式等于0,则A的行向量是线性相关的答案:正确2.答案:错误3.答案:正确4.答案:错误5.在矩阵的初等变换下行列式的值不变答案:错误6.双射既是单射也是满射答案:正确7.合同的两个矩阵的秩不一定相等。
答案:错误8.答案:错误9.答案:错误10.若排列abcd为奇排列,则排列badc为偶排列.答案:错误11.答案:错误12.答案:正确13.n阶方阵A与一切n阶方阵可交换,则A是对角阵答案:正确14.只有可逆矩阵,才存在伴随矩阵答案:错误15.在全部n(n>1)级排列中,奇排列的个数为n!/2.答案:正确16.答案:正确17.答案:正确18.有理数域上任意次不可约多项式都存在答案:正确19.x^2-2在有理数域上不可约答案:正确20.答案:正确21.答案:正确22.答案:错误23.答案:正确24.答案:错误25.初等变换把一个线性方程组变成一个与它同解的线性方程组答案:正确26.若一组向量线性相关,则至少有两个向量的分量成比例.答案:错误27.答案:正确28.答案:错误29.实对称矩阵的特征根一定是实数。
答案:正确30.零多项式与f(x)的最大公因式是f(x)答案:正确31.若一组向量线性相关,则至少有两个向量的分量成比例.答案:错误32.n阶方阵A,有|kA|=k|A|,k为一正整数答案:错误33.答案:错误34.排列(1,2,3,4,...,2006)是一个偶排列答案:正确35.n阶矩阵A的行列式等于A的全部特征根的乘积答案:正确36.两个矩阵A与B,若A*B=0则一定有A=0或者B=0答案:错误37.答案:正确38.对n个未知量n个方程的线性方程组,当它的系数行列式等于0时,方程组一定无解.答案:错误39.答案:错误40.答案:正确41.答案:正确42.答案:正确43.答案:错误44.答案:正确45.对n个未知量n个方程的线性方程组,当它的系数行列式等于0时,方程组一定无解.答案:错误46.答案:错误47.相似关系和合同关系都是矩阵之间的等价关系,二者是一回事答案:错误48.正交矩阵的伴随矩阵也是正交矩阵答案:正确49.对矩阵A,B,r(AB)=r(A)r(B)答案:错误50.有理数域是最小的数域答案:正确。