2019年高考数学课时35角的概念及任意角的三角函数单元滚动精准测试卷文
- 格式:doc
- 大小:93.00 KB
- 文档页数:4
高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.(1)求经过1 s 后,∠BOA的弧度;(2)求质点A,B在单位圆上第一次相遇所用的时间.【答案】(1)+2.(2)s【解析】解:(1)经过1 s 后,∠BOA的弧度为+2.(2)设经过t s 后质点A,B在单位圆上第一次相遇,则t(1+1)+=2π,所以t=,即经过s 后质点A,B在单位圆上第一次相遇.3.设角α是第三象限角,且=-sin,则角是第________象限角.【答案】四【解析】由α是第三象限角,知2kπ+π<α<2kπ+ (k∈Z),kπ+<<kπ+ (k∈Z),知是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角.4.点P从(1,0)出发,沿单位圆x2+y2=1逆时针方向运动弧长到达Q点,则Q点的坐标为()A.(-,)B.(-,-)C.(-,-)D.(-,)【解析】设α=∠POQ,由三角函数定义可知,Q点的坐标(x,y)满足x=cosα,y=sinα,∴x=-,y=,∴Q点的坐标为(-,).5.已知角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.【答案】sinα=-,tanα=【解析】解:∵P(x,-)(x≠0),∴P到原点的距离r=.又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-.当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.6. [2014·潍坊质检]已知角α的终边经过点P(m,-3),且cosα=-,则m等于()A.-B.C.-4D.4【答案】C【解析】cosα==- (m<0),解之得m=-4,选C项.7.角终边上有一点,则下列各点中在角的终边上的点是()A.B.C.D.【答案】B【解析】因为角终边上有一点,所以因此即角的终边上的点在第三象限,所以选C.【考点】三角函数定义8.把表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是()A.B.C.D.【解析】∵∴与是终边相同的角,且此时=是最小的,选A.9.若角α,β满足-<α<β<π,则α-β的取值范围是()A.(-,)B.(-,0)C.(0,)D.(-,0)【答案】B【解析】由-<α<β<π知,-<α<π,-<β<π,且α<β,所以-π<-β<,所以-<α-β<且α-β<0,所以-<α-β<0.10.计算2sin(-600°)+tan(-855°)的值为()A.B.1C.2D.0【答案】C【解析】∵sin(-600°)=-sin600°=-sin(360°+240°)=-sin240°=-sin(180°+60°)=sin60°=,同理tan(-855°)=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1,∴原式=2×+×1=2.11.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为()A.B.C.D.【答案】C【解析】∵sin>0,cos>0,∴角α的终边在第一象限,∴tanα====,∴角α的最小正值为.12.若角θ的终边在射线y=-2x(x<0)上,则cosθ=.【答案】-【解析】由已知得角的终边落在第二象限,故可设角终边上一点P(-1,2),则r2=(-1)2+22=5,∴r=,此时cosθ==-.13.已知点P落在角θ的终边上,且θ∈[0,2π],则θ的值为________.【答案】【解析】由题意可知,点P在第四象限,且点P落在角θ的终边上,所以tan θ=-1,故θ=.14.已知则= .【答案】【解析】.【考点】三角函数求值.15.已知角x的终边上一点坐标为,则角x的最小正值为( ) A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值16.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值17.角的终边经过点,则的可能取值为( )A.B.C.D.【答案】D【解析】.【考点】1.任意角的三角函数;2.同角三角函数的基本关系18.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.19.求值:________.【答案】【解析】.【考点】三角函数的计算及诱导公式.20.如图,在平面直角坐标系中,以x轴为始边作两个锐角、,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为;B点的纵坐标为.则 .【答案】【解析】单位圆的半径是1,根据勾股定理以及点A的横坐标为,B点的纵坐标为,可知点A的纵坐标为,点B的横坐标为,所以,,,,因为,是锐角,所以,所以.【考点】1.任意角的三角函数;2.三角函数的和角公式21.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】C【解析】.故选C.【考点】扇形弧长公式.22.在平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则sin5α=.【答案】【解析】根据题意,由于平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则可知,那么可知sin5α=sin,故答案为【考点】三角函数定义点评:解决的关键是利用三角函数的定义来求解三角函数值,属于基础题。
2019-2020年高考数学 3.1 任意角和弧度制及任意角的三角函数练习(25分钟50分)一、选择题(每小题5分,共35分)1.下列说法中,正确的是()A.小于的角是锐角B.第一象限的角不可能是负角C.终边相同的两个角的差是360°的整数倍D.若α是第一象限角,则2α是第二象限角【解析】选C.锐角的范围是(0, ),小于的角还有0角和负角,它们都不是锐角,所以A不正确;-300°角的终边就落在第一象限,所以B不正确;与角α终边相同的角都可以写成α+k·360°(k∈Z)的形式,其差显然是360°的整数倍,所以C正确;若α是第一象限的角,则k·360°<α<k·360°+90°,所以2k·360°<2α<2k·360°+180°(k∈Z),所以2α是第一象限或第二象限或终边在y轴非负半轴上的角,所以D 不正确.【误区警示】本题易因角的范围与象限角的概念不清而致误.锐角、小于的角是从范围而言的,而象限角是从终边的位置来说的,它们的概念不同,应对其正确区分,否则极易出错.2.已知角α的终边落在y轴上,则下列说法正确的是()A.α=90°+k·360°,k∈ZB.α=90°+k·270°,k∈ZC.sinα=1D.cosα=0【解析】选D.终边落在y轴上的角α可表示为α=90°+k·180°,k∈Z,故A,B不正确;当α的终边落在y轴的正半轴上时,sinα=1,cosα=0,当α的终边落在y轴的负半轴上时,sinα=-1,cosα=0,故C不正确,D正确.3.在半径为4的圆中,150°的圆心角所对的弧长为()A.6B.600C.πD.π【解析】选D.150°的弧度数是×150=π,弧长l=4×π=π.4.(xx·成都模拟)已知角α=2kπ-π(k∈Z),则的值是()A.0B.2C.-2D.不存在【解析】选A.因为α=2kπ-π(k∈Z)是第二象限角,所以sinα>0,tanα<0,所以=1-1=0.5.若点P(sinθcosθ,cosθ)位于第二象限,则角θ所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解题提示】根据三角函数值的符号判断角θ所在的象限.【解析】选D.由题意,得所以sinθ<0,cosθ>0,故θ是第四象限的角.6.(xx·汉中模拟)已知角α的终边经过点(3a-9,a+2),且cosα≤0,sinα>0,则实数a的取值范围是()A.(-2,3]B.(-2,3)C.[-2,3)D.[-2,3]【解析】选A.由cosα≤0,sinα>0可知,角α的终边落在第二象限内或y轴的非负半轴上,所以有即-2<a≤3. 即a的取值范围为-2<a≤3.7.若角α的终边在直线y=-x上,则角α的取值集合为()A.{α|α=k·360°-45°,k∈Z}B.{α|α=k·2π+π,k∈Z}C.{α|α=k·180°+π,k∈Z}D.{α|α=k·π-,k∈Z}【解析】选D.角α的取值集合为{α|α=2nπ+π,n∈Z}∪{α|α=2nπ-,n∈Z}={α|α=(2n+1)π-,n∈Z}∪{α|α=2nπ-,n∈Z}={α|α=kπ-,k∈Z},故选D.【误区警示】解答本题易误选C.出错的原因是忽视了角度数与弧度数是不同的单位,不能加减.二、填空题(每小题5分,共15分)8.-300°角的弧度数是.【解析】-300°角的弧度数是-300×=-π.答案:-π9.(xx·大连模拟)点P是始边与x轴的正半轴重合,顶点在原点的角θ的终边上的一点,若|OP|=2,θ=60°,则点P的坐标是.【解析】设P(x,y),由三角函数的定义,得sin 60°=,cos 60°=,所以x=2cos 60°=1,y=2sin 60°=,故点P的坐标为(1, ).答案:(1,)10.已知角α的终边经过点(1,-1),始边与x轴的正半轴重合,顶点在坐标原点,则角α的取值集合为. 【解题提示】先由角α的终边经过点(1,-1)在[0,2π)或(-2π,0]内确定一个角,再加上2kπ(k∈Z).【解析】如图,由图易知,在[0,2π)内,α=π,所以角α的取值集合为{α|α=π+2kπ,k∈Z}.答案:{α|α=π+2kπ,k∈Z}【一题多解】你还知道本题的其他解法吗?本题还可进行如下解答:由图易知,在[-2π,0)内,α=-,所以角α的取值集合还可表示为{α|α=-+2kπ,k∈Z}.答案: {α|α=-+2kπ,k∈Z}(20分钟40分)1.(5分)(xx·龙岩模拟)下列各选项中正确的是()A.sin 300°>0B.cos(-305°)<0C.tan>0D.sin 10<0【解析】选D.300°=360°-60°,则300°是第四象限角;-305°=-360°+55°,则-305°是第一象限角;因为-π=-8π+π,所以-π是第二象限角;因为3π<10<π,所以10是第三象限角.故sin 300°<0,cos(-305°)>0, tan<0,sin 10<0,选D.2.(5分)一条弦的长等于半径,则这条弦所对的圆周角的弧度数为()A.1B.C.或D.或【解析】选C.弦长等于半径,弦把圆分成两部分,所对的圆心角为或,故弦所对的圆周角为或.3.(5分)(xx·铜陵模拟)已知α=-2 015°,则与角α终边相同的最小正角为,最大负角为. 【解题提示】写出与α终边相同的角的集合,确定最小正角和最大负角.【解析】α可以写成-6×360°+145°的形式,则与α终边相同的角可以写成k·360°+145°(k∈Z)的形式.当k=0时,可得与角α终边相同的最小正角为145°,当k=-1时,可得最大负角为-215°.答案:145°-215°4.(12分)角α的终边上的点P与A(a,b)关于x轴对称(a≠0,b≠0),角β的终边上的点Q与A关于直线y=x对称,求的值.【解析】由题意得P(a,-b),Q(b,a),所以sinα=,cosα=,tanα=,sinβ=,cosβ=,tanβ=,所以22222sin tan1b a b10. cos tan cos sin a a αα+++=--+=ββαβ【加固训练】已知角α终边经过点P(x,-)(x≠0),且cosα=x.求sinα+的值.【解析】因为P(x,- )(x≠0),所以点P到原点的距离r=,又cosα=x,所以cosα=因为x≠0,所以x=±,所以r=.当x=时,P点坐标为(,-),由三角函数的定义,有sinα=所以sinα+当x=-时,同理可求得sinα+5.(13分)(能力挑战题)如图所示,动点P,Q从点A(4,0)出发沿圆周运动,点P按逆时针方向每秒钟转弧度,点Q 按顺时针方向每秒钟转弧度,求P,Q第一次相遇时所用的时间、相遇点的坐标及P,Q点各自走过的弧长.【解析】设P,Q第一次相遇时所用的时间是t,则t·+t·|-|=2π.所以t=4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C,第一次相遇时P点已运动到终边在·4=的位置,则xC=-cos·4=-2,yC=-sin·4=-.所以C点的坐标为(-2,- ).P点走过的弧长为Q点走过的弧长为.。
专题5.1 任意角和弧度制及任意角的三角函数1.(2021·宁夏高三三模(文))已知角α终边经过点()1,2,P-则cosα=()A.12B.12-C D.【答案】D【解析】直接利用三角函数的定义即可.【详解】由三角函数定义,cos5α==-.故选:D.2.(2021·中牟县教育体育局教学研究室高一期中)已知角α的终边经过点()3,1P-,则cosα=()A B.C.D【答案】C【解析】由三角函数的定义即可求得cosα的值.【详解】角α的终边经过点(3,1)P-,cosα∴==故选:C.3.(2020·全国高一课时练习)若α=-2,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】练基础根据角的弧度制与角度制之间的转化关系可得选项.【详解】因为1 rad≈57.30°,所以-2 rad≈-114.60°,故α的终边在第三象限.故选:C.4.(2021·江苏高一期中)下列命题:①钝角是第二象限的角;②小于90︒的角是锐角;③第一象限的角一定不是负角;④第二象限的角一定大于第一象限的角;⑤手表时针走过2小时,时针转过的角度为60︒;⑥若5α=,则α是第四象限角.其中正确的题的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】结合象限角和任意角的概念逐个判断即可.【详解】对于①:钝角是大于90小于180的角,显然钝角是第二象限角. 故①正确;对于②:锐角是大于0小于90的角,小于90的角也可能是负角. 故②错误;对于③:359-显然是第一象限角. 故③错误;对于④:135是第二象限角,361是第一象限角,但是135361<. 故④错误;对于⑤:时针转过的角是负角. 故⑤错误;对于⑥:因为157.3rad≈,所以5557.3=286.5rad≈⨯,是第四象限角. 故⑥正确.综上,①⑥正确.故选:B.5.(2021·辽宁高三其他模拟)装饰公司制作一种扇形板状装饰品,其圆心角为23π,并在扇形弧上正面等距安装7个发彩光的小灯泡且在背面用导线将小灯泡串连(弧的两端各一个灯泡,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线大致需要的长度约为()A.55厘米B.63厘米C.69厘米D.76厘米【答案】B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为在弧长比较短的情况下分成6等份,每部分的弦长和弧长相差很小, 所以可以用弧长近似代替弦长, 所以导线的长度为23020633ππ⨯=≈(厘米). 故选:B6.(2021·上海格致中学高三三模)半径为2,中心角为3π的扇形的面积等于( ) A .43π B .πC .23π D .3π 【答案】C 【解析】根据扇形的面积公式即可求解. 【详解】解:因为扇形的半径2r ,中心角3πα=,所以扇形的面积2211222233S r ππα==⨯⨯=, 故选:C.7.(2021·辽宁高三其他模拟)“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出人怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,其中OA =20cm ,∠AOB =120°,M 为OA 的中点,则扇面(图中扇环)部分的面积是( )A .50πcm 2B .100πcm 2C .150πcm 2D .200πcm 2【答案】B 【解析】根据扇形面积公式计算可得; 【详解】解:扇环的面积为22211332400100222883r S r r παααπ⎛⎫=-==⨯⨯= ⎪⎝⎭.故选:B8.(2021·重庆八中高三其他模拟)如图所示,扇环ABCD 的两条弧长分别是4和10,两条直边AD 与BC 的长都是3,则此扇环的面积为( )A .84B .63C .42D .21【答案】D 【解析】设扇环的圆心角为α,小圆弧的半径为r ,依题意可得4αr =且()310αr +=,解得α、r ,进而可得结果. 【详解】设扇环的圆心角为α,小圆弧的半径为r ,由题可得4αr =且()310αr +=,解得2α=,2r ,从而扇环面积()221252212S =⨯⨯-=. 故选:D .9.(2021·浙江高二期末)已知角α的终边过点(1,)P y ,若sin 3α=,则y =___________.【答案】【解析】利用三角函数的定义可求y . 【详解】由三角函数的定义可得sin α==y =故答案为:10.(2021·山东日照市·高三月考)已知函数()3sin,06log ,0xx f x x x π⎧≤⎪=⎨⎪>⎩,则13f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭______. 【答案】12- 【解析】利用分段函数直接进行求值即可. 【详解】∵函数()3,06log ,0xsinx f x x x π⎧≤⎪=⎨⎪>⎩, ∴311log 133f ⎛⎫=- ⎪⎝⎭=, ∴611(1)sin 32f f f π⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:12-.1.(2021·河南洛阳市·高一期中(文))点P 为圆221x y +=与x 轴正半轴的交点,将点P 沿圆周逆时针旋转至点P ',当转过的弧长为2π3时,点P '的坐标为( )A .1,2⎛ ⎝⎭B .12⎛- ⎝⎭C .21⎛⎫⎪ ⎪⎝⎭D .122⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】先求出旋转角,就可以计算点的坐标了. 【详解】设旋转角为θ,则22123θπππ⨯⨯=,得23πθ=,从而可得1(,22P '-. 故选:B.2.(2021·上海高二课时练习)若A 是三角形的最小内角,则A 的取值范围是( )练提升A .0,2π⎛⎫⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,32ππ⎛⎫ ⎪⎝⎭D .0,3π⎛⎤ ⎥⎝⎦【答案】D 【解析】由给定条件结合三角形三内角和定理即可作答. 【详解】设B ,C 是三角形的另外两个内角,则必有,A B A C ≤≤,又A B C π++=, 则3A A A A A B C π=++≤++=,即3A π≤,当且仅当3C B A π===,即A 是正三角形内角时取“=”,又0A >,于是有03A π<≤,所以A 的取值范围是(0,]3π.故选:D3.(2021·北京清华附中高三其他模拟)已知,R αβ∈.则“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】求解出sin 2sin 2αβ=成立的充要条件,再与,k k Z αβπ=+∈分析比对即可得解. 【详解】,R αβ∈,sin 2sin 2sin[()()]sin[()()]αβαβαβαβαβ=⇔++-=+--⇔2cos()sin()0αβαβ+-=,则sin()0αβ-=或cos()0αβ+=,由sin()0αβ-=得,k k k Z αβπαβπ-=⇔=+∈, 由cos()0αβ+=得,22k k k Z ππαβπαβπ+=+⇔=-+∈,显然s ,in 2sin 2k k Z απαββ=+∈=⇒,sin 2s ,in 2k k Z αβαβπ=+=∈,所以“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的充分不必要条件. 故选:A4.(2021·安徽池州市·池州一中高三其他模拟(理))已知一个半径为3的扇形的圆心角为()02θθπ<<,面积为98π,若()tan 3θϕ+=,则tan ϕ=( ) A .12-B .34C .12D .43【答案】C 【解析】由扇形的面积公式得4πθ=,进而根据正切的和角公式解方程得1tan 2ϕ=. 【详解】解:由扇形的面积公式212S r θ=得9928πθ=,解得4πθ=, 所以()tan tan 1tan tan 31tan tan 1tan θϕϕθϕθϕϕ+++===--,解得1tan 2ϕ=故选:C5.(2021·新蔡县第一高级中学高一月考)一个圆心角为60的扇形,它的弧长是4π,则扇形的内切圆(与扇形的弧和半径的相切)的半径等于( ) A .2 B .4 C .2π D .4π【答案】B 【解析】设扇形内切圆的半径为x ,扇形所在圆的半径为r ,求得3r x =,结合弧长公式,列出方程,即可求解. 【详解】如图所示,设扇形内切圆的半径为x ,扇形所在圆的半径为r , 过点O 作OD CD ⊥, 在直角CDO 中,可得2sin 30ODCO x ==,所以扇形的半径为23r x x x =+=, 又由扇形的弧长公式,可得343x ππ⨯=,解得4x =,即扇形的内切圆的半径等于4. 故选:B.6.(2021·安徽合肥市·合肥一中高三其他模拟(文))已知顶点在原点的锐角α,始边在x 轴的非负半轴,始终绕原点逆时针转过3π后交单位圆于1(,)3P y -,则sin α的值为( )A .6B C .16D .16【答案】B 【解析】根据任意角的三角函数的定义求出1cos()33πα+=-,然后凑角结合两角差的正弦公式求出sin α. 【详解】由题意得1cos()33πα+=-(α为锐角) ∵α为锐角,∴5336πππα,∴sin()03πα+>sin()sin sin ()3333πππααα⎡⎤⇒+=⇒=+-⎢⎥⎣⎦1132326⎛⎫=⨯--⨯=⎪⎝⎭ 故选:B7.(2020·安徽高三其他模拟(文))已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边经过点A (1,-3),则tan()4πα+=( )A .12B .12-C .1D .-1【解析】根据终边上的点求出tan 3α=-,再结合正切和公式求解即可. 【详解】由题知tan 3α=-,则tan tan3114tan()41321tan tan 4παπαπα+-++===-+-. 故选:B8.(2021·合肥一六八中学高三其他模拟(理))已知顶点在原点,始边在x 轴非负半轴的锐角α绕原点逆时针转π3后,终边交单位圆于P x ⎛ ⎝⎭,则sin α的值为( ) ABCD. 【答案】C 【解析】设锐角α绕原点逆时针转π3后得角β,由2113x +=,则x =,分x 的值结合三角函数的定义,求解即可,根据条件进行取舍. 【详解】设锐角α绕原点逆时针转π3后得角β,则3πβα=+,由α为锐角, 根据题意角β终边交单位圆于,3P x ⎛ ⎝⎭,则2113x +=,则3x =±若3x =,则sin ,cos 33ββ==所以sin sin sin cos cos sin 03336πππαβββ⎛⎫=-=-=< ⎪⎝⎭,与α为锐角不符合.若x =,则sin ββ==所以sin sin sin cos cos sin 0333πππαβββ⎛⎫=-=-=> ⎪⎝⎭,满足条件.9.(2021·安徽宣城市·高三二模(文))刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想.运用此思想,当π取3.1416时,可得sin 2︒的近似值为( )A .0.00873B .0.01745C .0.02618D .0.03491【答案】D 【解析】由圆的垂径定理,求得2sin 2AB =︒,根据扇形对应的弦长之和近似于单位圆的周长,列出方程,即可求解. 【详解】将一个单位圆分成90个扇形,则每个扇形的圆心角度数均为4︒由圆的垂径定理,可得每个圆心角所对的弦长221sin 22sin 2AB AC ==⨯⨯︒=︒, 因为这90个扇形对应的弦长之和近似于单位圆的周长, 所以9021sin 2180sin 22π⨯⨯⨯︒=︒≈, 所以22 3.1416sin 20.03491180180π⨯︒≈=≈. 故选:D .10.(2021·江苏南通市·高三其他模拟)某设计师为天文馆设计科普宣传图片,其中有一款设计图如图所示.QRT 是一个以点O 为圆心、QT 长为直径的半圆,QT =.QST 的圆心为P ,2dm PQ PT ==.QRT与QST 所围的灰色区域QRTSQ 即为某天所见的月亮形状,则该月亮形状的面积为___________2dm .6π 【解析】连接PO ,可得PO QT ⊥,求出23QPT π∠=,利用割补法即可求出月牙的面积. 【详解】解:连接PO ,可得PO QT ⊥,因为sin 2QO QPO PQ ∠==, 所以3QPO π∠=,23QPT π∠=,所以月牙的面积为2221121(21)dm 22326S πππ=⨯⨯-⨯⨯-⨯=.6π.1.(全国高考真题)已知角α的终边经过点(−4,3),则cosα=( )A .45B .35C .−35D .−45 练真题【答案】D【解析】由题意可知x=-4,y=3,r=5,所以cosα=x r =−45.故选D. 2.(2020·全国高考真题(理))若α为第四象限角,则( )A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<0 【答案】D【解析】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α<故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D.3.(2015·上海高考真题(文))已知点的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( ). A . B . C . D .【答案】D【解析】由题意,设OA 与x 轴所成的角为,显然,,故,故纵坐标为4.(2018·全国高考真题(文))已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1 , a),B(2 , b),且cos2α=23,则|a −b |= A .15 B .√55 C .2√55D .1 【答案】B【解析】由O,A,B 三点共线,从而得到b =2a ,因为cos2α=2cos 2α−1=2⋅(√a 2+1)2−1=23, 解得a 2=15,即|a |=√55, 所以|a −b |=|a −2a |=√55,故选B.5.(2017·北京高考真题(理))在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则()cos αβ-=___________. 【答案】79- 【解析】因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 6.(2021·北京高考真题)若点(cos ,sin )P θθ与点(cos(),sin())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=___. 【答案】512π(满足5,12k k Z πθπ=+∈即可) 【解析】根据,P Q 在单位圆上,可得,6πθθ+关于y 轴对称,得出2,6k k Z πθθππ++=+∈求解. 【详解】(cos ,sin )P θθ与cos ,sin66Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称, 即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈, 则5,12k k Z πθπ=+∈, 当0k =时,可取θ的一个值为512π. 故答案为:512π(满足5,12k k Z πθπ=+∈即可).。
高考数学任意角弧度制及任意角的三角函数考点习题及答案高考数学任意角弧度制及任意角的三角函数考点习题1.若=k180+45(kZ),则角在()A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限2.(2014福建厦门适应性考试)“=30”是“sin =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为()A. B. C. D.4.已知点P(tan ,cos )在第二象限,则角的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.(2014浙江杭州模拟)已知角的终边经过点(3a-9,a+2),且cos 0,sin 0,则实数a的取值范围是()A.(-2,3]B.(-2,3)C.[-2,3)D.[-2,3]6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④若sin =sin ,则与的终边相同;⑤若cos 0,则是第二或第三象限的角.其中正确命题的个数是()A.1B.2C.3D.47.若三角形的两个内角,满足sin cos 0,则此三角形为.8.函数y=的定义域为.9.已知角的终边在直线y=-3x上,求10sin +的值.10.(1)已知扇形周长为10,面积是4,求扇形的圆心角;(2)一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB.11.已知角=2k-(kZ),若角与角的终边相同,则y=的值为()A.1B.-1C.3D.-3高考数学任意角弧度制及任意角的三角函数考点习题参考答案1.A解析:当k=2m+1(mZ)时,=2m180+225=m360+225,此时角为第三象限角;当k=2m(mZ)时,=m360+45,此时角为第一象限角.2.A解析:由=30可得sin =,由sin =可得=k360+30或k360+150,kZ,所以“=30”是“sin =”的充分不必要条件,故选A.3.C解析:设圆的半径为R,由题意可知,圆内接正三角形的边长为R,则圆弧长为R.故该圆弧所对圆心角的弧度数为.4.D解析:由题意,得tan 0,且cos 0,则角的终边在第四象限.5.A解析:由cos 0,sin 0可知,角的终边落在第二象限或y轴的正半轴上,所以有解得-20,cos 0,角为钝角.故三角形为钝角三角形.8.(kZ)解析:2cos x-10,cos x.由三角函数线画出x满足条件的终边的范围(如图阴影所示).则x(kZ).9.解:设角终边上任一点为P(k,-3k)(k0),则r=|k|.当k0时,r=k,则sin ==-,,因此,10sin +=-3+3=0.当k0时,r=-k,则sin =,=-,因此,10sin +=3-3=0.综上,10sin +=0.10.解:(1)设圆心角是,半径是r,则解得(舍去).因此,扇形的圆心角为.(2)设圆的半径为r cm,弧长为l cm,则解得则圆心角==2.如图,过O作OHAB于点H,则AOH=1.因为AH=1sin 1=sin 1(cm),所以AB=2sin 1(cm).11.B解析:由=2k-(kZ)及终边相同角的概念知,角的终边在第四象限,又角与角的终边相同,所以角是第四象限角,所以sin 0,cos 0,tan 0.因此,y=-1+1-1=-1,故选B.猜你感兴趣:1.高中数学任意角和弧度制复习要点2.高中数学《任意角的三角函数》知识点3.高二数学必修4任意角和弧度制知识点4.高中数学必修4任意角的三角函数测试题及答案。
第01节 任意角和弧度制及任意角的三角函数班级__________ 姓名_____________ 学号___________ 得分__________一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【浙江普通高校招生学业水平考试】若点(3,4)P -在角α的终边上,则cos α=( ) A.35-B.35C.45-D.45【答案】A. 【解析】由任意角的三角函数的定义可知,3cos 5x r α==-,故选A. 2.若,且,则角是( )A. 第一象限B. 第二象限C. 第四象限D. 第三象限 【答案】D3.【浙江省诸暨中学段考】设角θ的终边经过点()3,4P -,那么sin 2cos θθ+=( ) A.15 B. 15- C. 25- D. 25【答案】C【解析】试题分析:根据三角函数定义知:43sin ,cos 55θθ====-,所以原式4322555⎛⎫=+⨯-=- ⎪⎝⎭,答案为:C. 4.【浙江省台州中学统练】已知2弧度的圆心角所对的弦长为1,那么这个圆心角所对的弧长是 A.B.C.D.【答案】C【解析】设圆的半径为,依题意有,故所对弧长,故选.5.【浙江省嘉兴市2018年期末复习】已知角的终边与单位圆的交点,则( )A.B.C.D.【答案】C6.若是第三象限角,且,则是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角 【答案】D【解析】分析:根据是第三象限角,写出角的集合,进一步得到的集合,再根据得到答案详解:是第三象限角,则即是第二象限或者第四象限角,,是第四象限角故选7.【浙江省台州市期末】已知角α的终边经过点()3,4P -,则角α的余弦值为( ) A.35 B. 35- C. 45 D. 45- 【答案】B【解析】∵角α的终边经过点()3,4P -∴x 3y 4r 5=-===,,, ∴3cos 5α=- 故选:B8.设角是第二象限角,为其终边上的一点,且,则( )A. B. C. D.【答案】A【解析】分析:根据任意角α的余弦的定义和已知条件可得x 的值,再由sin α的定义求得结果.详解:由题意可得x <0,r=|OP|=,故 cos α=.再由 可得x=﹣3,∴sin α=.9.【浙江省温州市期末】点A(sin 2018°,cos2018°)位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】C10.给出下列命题:①第二象限角大于第一象限角; ②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关; ④若sin sin αβ=,则α与β的终边相同; ⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确命题的个数是 ( ) A. 1 B. 2 C. 3 D. 4 【答案】A【解析】试题分析:由终边相同的角的定义易知①是错误的;②的描述中没有考虑直角,直角属于y 的正半轴上的角,故②是错误的;④中α与β的终边不一定相同,比如5,66ππαβ==;⑤中没有考虑x 轴的负半轴上的角.只有③是正确的.考点:角的推广与象限角.二、填空题:本大题共7小题,共36分.11.【浙江省宁波市统考】弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________. 【答案】1【解析】设扇形的弧长和半径长为l ,由弧度制的定义可得,该扇形圆心角的弧度数是1llα==. 12. 【2018届河南省洛阳市高三第三次统考】已知角的始边与轴的非负半轴重合,顶点与坐标原点重合,终边过点,则__________.【答案】10.【解析】分析:首先利用三角函数的定义式,结合题中所给的角的终边所过的点的坐标求得,之后借助于同角三角函数关系式,将关于正余弦分式形式的式子上下同除,得到关于切的式子,代入求值即可得结果.详解:根据角的终边过,利用三角函数的定义式,可以求得,所以有,故答案是10.13.已知角α的终边经过点55sin ,cos 66P ππ⎛⎫⎪⎝⎭,则角α为第__________象限角,与角α终边相同的最小正角是__________. 【答案】四 53π 【解析】试题分析:因)23,21(-P ,故α为第四象限角;因3tan -=α,故3ππα-=k ,则由于α是第四象限角,故当2=k 时, 3532min πππα=-=.故应填答案四;53π. 14.【2018届北京市十一学校三模】已知,则__________(填“>”或 “<”);__________(用表示)【答案】【解析】分析:(1)根据正弦函数的单调性和特殊角的三角函数值判断即可;(2)根据同角的三角函数关系与两角和的正弦公式求出的值.解析:(1),且,;(2)又..故答案为:(1);(2).15.【浙江省温州市十五校联合体2017-2018学年高一期中联考】已知扇形的周长为8,则扇形的面积的最大值是_______,此时弦长_______.【答案】 4【解析】由题意,可设扇形半径为,则弧长,圆心角,扇形面积,所以当时,有,此时弦长,从而问题得解.16.【浙江省台州中学期中】已知扇形 (为圆心)的周长为,半径为,则__________,扇形的面积是__________.【答案】 2 1【解析】分析:扇形 (为圆心)的周长为,半径为,可求得扇形的弧长,根据弧度制的定义以及扇形面积公式可得结果.17.已知点在角的终边上,则__________.【答案】.【解析】分析:根据三角函数的定义计算.详解:∵,∴,∴,,∴.点睛:本题考查三角函数的定义,掌握三角函数定义是解题基础.设是角终边上一点,,则.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知角θ的终边上有一点P(m),且1sin2θ=,求m的值.【答案】1m=【解析】试题分析:根据三角函数的定义得到1sin2θ==,进而求出参数值,根据角的象限得到最终参数值. 解析:1sin2θ==∴2243m m=+∴21m=又∵0m>∴1m=19.【2018届浙江省杭州市第二次检测】已知角α终边经过点()4sin3sinθθ-,,32πθπ⎛⎫∈ ⎪⎝⎭,,求sinα,cosα,tanα .【答案】见解析【解析】试题分析:由32θππ⎛⎫∈ ⎪⎝⎭, ,可得sin 0θ< ,则4sin x θ= , 3sin y θ=- ,∴5sin r θ==- ,根据三角函数的定义可得sin α , cos α , tan α的值.试题解析: 32θππ⎛⎫∈ ⎪⎝⎭, ,∴sin 0θ< , ∵4sin x θ= , 3sin y θ=- ,∴5sin r θ==- ,∴3sin 5y r α== , 4cos 5x r α== , 3tan 4y x α==- 20.【2018届黑龙江省齐齐哈尔八中8月月考】已知角α的终边上有一点的坐标是()3,4P a a ,其中0a ≠,求sin α,cos α, tan α.【答案】434434 553553sin cos tan sin cos tan αθαααα=,=,=或=-,=-,=【解析】试题分析:由条件利用任意角的三角函数的定义求得α的三角函数的值,从而得出结论 试题解析: 5r a ==. 当0a >时, 5r a =, ∴44335555y a x a sin cos ra r a αα===,===, 4433y a tan x a α===;当a <0时,r =-5a ,∴sin α=-45,cos α=-35,tan α=43. 综上可知, 434434.553553sin cos tan sin cos tan αααααα=,=,=或=-,=-,=21.(1)一个半径为r 的扇形,若它的周长等于r π,那么扇形的圆心角是多少弧度?扇形面积是多少? (2)角θ的终边经过点P(b -,4)且cos θ=35-,则sin tan θθ+的值 【答案】(1) -2π, ()21-22S r π=扇形 (2) 815- 【解析】试题分析:(1)设扇形的圆心角,利用弧长公式得到弧长,代入题中条件,求出圆心角的弧度数,利用扇形面积公式求扇形的面积.(2)先求出OP ,利用cos θ的值求出b ,再求出sin ,cos θθ的值,相加即可.22.已知角的终边上有一点,.(1)若,求实数的值;(2)若且,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)由即可得的值;(2)由条件知角为第三象限角,从而得纵坐标小于0,得解.试题解析:(1)依题意得,,所以.(2)由且得,为第三象限角,故,所以.。
课时跟踪检测(十八) 任意角和弧度制及任意角的三角函数第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3B.π6C .-π3D .-π62.已知cos θ·tan θ<0,那么角θ是( ) A .第一或第二象限角 B .第二或第三象限角 C .第三或第四象限角D .第一或第四象限角3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32B.32C .-12D.124.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin7π10cos πtan17π9,其中符号为负的是( )A .①B .②C .③D .④6.在直角坐标系中,O 是原点,A(3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.8.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sinα2=-sin α2,则角α2是第________象限角. 9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB.10.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断tan α2sin α2cos α2的符号.第Ⅱ组:重点选做题1.满足cos α≤-12的角α的集合为________.2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.答 案第Ⅰ组:全员必做题1.选C 将表的分针拨快应按顺时针方向旋转,为负角.故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.选C 易知sin θ<0,且cos θ≠0,∴θ是第三或第四象限角. 3.选D 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.4.选A 由三角函数定义可知Q 点的坐标(x ,y)满足x =cos 2π3=-12,y =sin 2π3=32. 5.选C sin(-1 000°)=sin 80°>0; cos(-2 200°)=cos(-40°)=cos 40°>0; tan(-10)=tan(3π-10)<0; sin7π10cos πtan 17π9=-sin 7π10tan17π9,sin 7π10>0,tan 17π9<0,∴原式>0.6.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y),所以x =2cos 120°=-1,y =2sin 120°=3,即B(-1,3). 答案:(-1,3)7.解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.答案:-358.解析:由α是第三象限角,知2k π+π<α<2k π+3π2(k ∈π+π2<α2<k π+3π4(k ∈Z),知α2是第二或第四象限角,再由⎪⎪⎪⎪⎪⎪sinα2=-sin α2知sin α2<0,所以α2只能是第四象限角. 答案:四9.解:设圆的半径为r cm , 弧长为l cm ,则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr =2.如图,过O 作OH ⊥AB 于H. 则∠AOH =1弧度.∴AH =1·sin 1=sin 1(cm), ∴AB =2sin 1(cm). 10.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限, 故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪+π<α<2k π+3π2,k ∈Z. (2)由(2k +1)π<α<2k π+3π2, 得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tanα2<0,sin α2>0,cos α2<0,所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0,所以tan α2sin α2cos α2也取正号. 因此,tan α2sin α2cos α2取正号.第Ⅱ组:重点选做题1.解析:作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z . 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z 2.解析:如图,连接AP ,分别过P ,A 作PC ,AB 垂直x 轴于C ,B 点,过A 作AD ⊥PC 于D 点.由题意知BP 的长为2.∵圆的半径为1, ∴∠BAP =2, 故∠DAP =2-π2. ∴DP =AP·sin ⎝⎛⎭⎪⎫2-π2=-cos 2, ∴PC =1-cos 2,DA =APcos ⎝⎛⎭⎪⎫2-π2=sin 2. ∴OC =2-sin 2.故OP =(2-sin 2,1-cos 2). 答案:(2-sin 2,1-cos 2)。
高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.3.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是()A.(,)B.(π,)C.(,)D.(,)∪(π,)【答案】D【解析】由已知得,解得α∈(,)∪(π,).4.已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.【答案】cosα=-1,tanα=0.【解析】r2=x2+y2=y2+3,由sinα===y,∴y=±或y=0.当y=即α是第二象限角时,cosα==-,tanα=-;当y=-即α是第三象限角时,cosα==-,tanα=;当y=0时,P(-,0),cosα=-1,tanα=0.5.设集合M=,N={α|-π<α<π},则M∩N=________.【答案】【解析】由-π<<π,得-<k<.∵k∈Z,∴k=-1,0,1,2,故M∩N=6.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为()A.B.C.D.【答案】C【解析】由题意可知,圆内接正三角形边长a与圆的半径之间关系为a=r,∴α===.7. tan(-1 410°)的值为()A.B.-C.D.-【答案】A【解析】tan(-1 410°)=tan(-4×360°+30°)=tan 30°=8.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1) ();(2)少.【解析】(1)本题比较简单,就是利用扇形面积公式来计算弧田面积,弧田面积等于扇形面积对应三角形面积.(2)由弧田面积的经验计算公式计算面积与实际面积相减即得.试题解析:(1) 扇形半径, 2分扇形面积等于 5分弧田面积=(m2) 7分(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=. 10分平方米 12分按照弧田面积经验公式计算结果比实际少1.52平米.【考点】(1)扇形面积公式;(2)弧田面积的经验计算公式.9.在平面直角坐标系中,若角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点(其中)则的值为( )A.B.C.D.【答案】D【解析】,根据任意角的三角函数的定义得,,所以.【考点】任意角三角函数的定义.10.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值11.在平面直角坐标系中,已知角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点,则 .【答案】【解析】由任意角的三角函数的定义得:.【考点】任意角的三角函数的定义.12.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.13.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.14.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.15.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cosα=.【答案】.【解析】由题意及图所示,易知A点的横坐标为,所以.【考点】三角函数的定义.16.已知函数的定义域为[a,b],值域为[-2,1],则的值不可能是()A.B.C.D.【答案】C【解析】因的值域[-2,1]含最小值不含最大值,根据图象可知定义域小于一个周期,故选D.【考点】三角函数的定义域和值域.17.若角的终边上有一点P(a,-2),则实数a的值为()A.B.C.D.【答案】D【解析】因为,所以.【考点】三角函数的定义.18.若,则角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第二或第四象限角【答案】D【解析】因为,则角是第二或第四象限角,选D19.点位于直角坐标面的A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,位于直角坐标面的第四象限,选D20.已知圆与轴的正半轴相交于点,两点在圆上,在第一象限,在第二象限,的横坐标分别为,则=( )A.B.C.D.【答案】B【解析】设与轴正半轴的夹角分别为则,21.已知动点在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A(,则0≤t≤12时,动点A的横坐标x关于t(单位:秒)的函数单调递减区间是()A.[0, 4]B.[4,10]C.[10,12]D.[0,4]和[10,12]【答案】D【解析】解:设动点A与x轴正方向夹角为α,则t=0时α=π/ 3 ,每秒钟旋转π /6 ,在t∈[0,1]上α∈[π/ 3 ,π/ 2 ],在[7,12]上α∈[3π/ 2 ,7π /3 ],动点A的纵坐标y关于t都是单调递增的.故选D.22.曲线与坐标轴所围的面积是【答案】3【解析】据余弦函数的图象,23.已知,且在第二象限,那么在 ( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】解:∵sinθ="3" /4 ,且θ在第二象限,∴cosθ=-/4,所以sin2θ=2sinθcosθ=-3/16Cos2θ=1-2sin2θ=-1/8故2θ在第三象限。
高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.如果角的终边经过点,则()A.B.C.D.【答案】A【解析】直接利用三角函数的定义,求出.因为角θ的终边经过点,由三角函数的定义可知,,故选A.【考点】任意角的三角函数的定义.2.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.3.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号4.半径为,中心角为所对的弧长是().A.B.C.D.【答案】D.【解析】弧长cm,故选D.【考点】弧长公式:(其中的单位是弧度).5.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.6.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程7.与角-终边相同的角是()A.B.C.D.【答案】C【解析】与−终边相同的角为2kπ−,k∈z,当 k=-1时,此角等于,故选:C.【考点】终边相同的角的定义和表示方法.8.如图,长为4米的直竹竿AB两端分别在水平地面和墙上(地面与墙面垂直),T为AB中点,,当竹竿滑动到A1B1位置时,,竹竿在滑动时中点T也沿着某种轨迹运动到T1点,则T运动的路程是_________米.【答案】.【解析】如图可知,点运动的轨迹为一段圆弧,由题意已知:,,∴,∴点运动的路程为.【考点】弧度制有关公式的运用.9.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.10.若角的终边上有一点,则的值是()A.B.C.D.【答案】B.【解析】先利用诱导公式化简,根据三角函数的定义知,即,故选B.【考点】运用诱导公式化简求值;任意角的三角函数的定义.11. 60°=_________.(化成弧度)【答案】【解析】根据,可得.【考点】角度与弧度的互化.12.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角13.比较的大小 .【答案】【解析】,在上为增函数,可知,,可得.【考点】正弦函数的性质,特殊角的三角函数.14.已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.【答案】当扇形半径为,圆心角为2时,扇形有最大面积.【解析】根据条件扇形的周长为30可以得到l+2R=30,从而扇形的面积S=lR=(30-2R)R=,即把S表示为R的二次函数,根据二次函数求最值的方法,可以进一步变形为S=-(R-)2+,从而得到当扇形半径为,圆心角为2时,扇形有最大面积.∵扇形的周长为30,∴l+2R=30,l=30-2R,∴S=lR=(30-2R)R==-(R-)2+.....5分∴当R=时,扇形有最大面积,此时l=30-2R=15,==2........8分答:当扇形半径为,圆心角为2时,扇形有最大面积.....10分.【考点】1、弧度制下扇形相关公式;2、二次函数求最值.15.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.16.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.17.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.18.扇形的半径是,圆心角是60°,则该扇形的面积为 .【答案】π【解析】扇形的面积公式为.【考点】扇形的弧度制面积公式.19.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.20.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算21.已知扇形的圆心角为2rad,扇形的周长为8cm,则扇形的面积为___________cm2。
(江苏专版)2019版高考数学一轮复习第四章三角函数、解三角形课时跟踪检测(十六)任意角、弧度制及任意角的三角函数文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2019版高考数学一轮复习第四章三角函数、解三角形课时跟踪检测(十六)任意角、弧度制及任意角的三角函数文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2019版高考数学一轮复习第四章三角函数、解三角形课时跟踪检测(十六)任意角、弧度制及任意角的三角函数文的全部内容。
课时跟踪检测(十六)任意角、弧度制及任意角的三角函数一抓基础,多练小题做到眼疾手快1.若点P(tan α,cos α)在第三象限,则角α的终边在第______象限.解析:因为点P在第三象限,所以错误!所以α的终边在第二象限.答案:二2.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0〈α〈π)的弧度数为________.解析:设圆半径为r,则其内接正三角形的边长为错误!r,所以错误!r=αr,所以α=错误!。
答案:错误!3.已知角α=2kπ-错误!(k∈Z),若角θ与角α的终边相同,则y=错误!+错误!+错误!的值为________.解析:由α=2kπ-错误!(k∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y=-1+1-1=-1.答案:-14.已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-错误!,则y=________.解析:因为sin θ=错误!=-错误!,所以y<0,且y2=64,所以y=-8.答案:-85.已知角α的终边上一点P(-错误!,m)(m≠0),且sin α=错误!,则m=________。
课时35角的概念及任意角的三角函数
模拟训练(分值:60分 建议用时:30分钟) 1.(2018·广东珠海,5分)下列说法正确的是( ) A .第二象限的角比第一象限的角大 B .若sin α=12,则α=π
6
C .三角形的内角是第一象限角或第二象限角
D .不论用角度制还是弧度制度量一个角,它们与扇形所对应的半径的大小无关 【答案】:D
【解析】:排除法可解.第一象限角370°不小于第二象限角100°,故A 错误;当sin α=1
2时,也可
能α=56π,所以B 错误;当三角形内角为π
2
时,其既不是第一象限角,也不是第二象限角.
2.(2018·湖南省浏阳一中高三第二次月考试卷,5分)已知扇形的周长是6 cm ,面积是2 cm 2
,则扇形的中心角的弧度数是( )
A .1
B .4
C .1或4
D .2或4
【答案】:C
3.(2018·河南省长葛市第三实验高中高三调研考试,5分)已知角α是第二象限角,且|cos α2|=
-cos α2,则角α
2
是( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
【答案】:C
【解析】:由α是第二象限角知,α
2是第一或第三象限角.
又∵|cos α2|=-cos α2,∴cos α
2<0,
∴α
2
是第三象限角. 4.(2018·湖北省100所重点中学10月高三联合考试,10分)如果点P 在角2π
3的终边上,且OP =2,
那么点P 的坐标是( )
A .(1,3)
B .(-1,3)
C .(3,1)
D .(-1,-3)
【答案】:B
【解析】:设P (x ,y ),则由三角函数的定义知x =|OP |cos 2π3=2·⎝ ⎛⎭
⎪⎫-12=-1,y =|OP |sin 2π3=2·
3
2
=3,故P (-1,3). 5.(2018·山东聊城东阿实高月考,5分)已知角α的余弦线是单位长度的有向线段,那么角α的终边在( )
A .x 轴上
B .y 轴上
C .直线y =x 上
D .直线y =-x 上
【答案】:A
【解析】:由角α的余弦线长度为1分析可知,角α的终边与x 轴重合.
6.(2018·大同市高三学情调研,5分)设0≤θ<2π,如果sin θ<0且cos 2θ<0,则θ的取值范围是( )
A .π<θ<3π
2
B.3π
2
<θ<2π C.
π4<θ<3π4
D.
5π4<θ<7π4
【答案】: D
【解析】:∵0≤θ<2π,且sin θ<0,∴π<θ<2π.又由cos 2θ<0,得2k π+
π2<2θ<2k π+3π
2
,即k π+π4<θ<k π+3π4(k ∈Z ).∵π<θ<2π,∴k =1,即θ的取值范围是5π4<θ<7π
4
,选D.
7.(2018·年常州模拟) 点P 从点(0,1)沿单位圆x 2
+y 2
=1顺时针第一次运动到点(22,-2
2
)时,转过的角是________弧度.
【答案】:-3
4
π
【解析】:点P 转过的角的绝对值为34π,顺时针旋转应为负角.所以转过的角是-3
4
π.
8.(2018·东北三校联考,5分)已知角α的终边落在直线y =-3x (x <0)上,则|sin α|sin α-
|cos α|
cos α=________.
【答案】: 2
【解析】:∵角α的终边落在直线y =-3x (x <0)上, 在角α的终边上取一点P (x 0,-3x 0)(x 0<0), ∴-3x 0>0, ∴P 在第二象限, ∴
|sin α|sin α-|cos α|cos α=sin αsin α--cos α
cos α
=1+1=2.
9.(2018·山东实验中学第一次诊断考试,10分)一扇形周长为20 cm ,问扇形的半径和圆心角各取什么值时,才能使扇形面积最大?
10.(2018·东北育才中学一模,10分)已知角α的终边上一点P (-3,m ),且sin α=2m
4
,求cos α,tan α的值.
【解析】:由题设知x =-3,y =m ,所以r 2
=|OP |2
=(-3)2
+m 2
,得r =3+m 2
,从而sin α=2m 4
=m r
=
m
3+m
2
,解得m =0或m =± 5.
当m =0时,r =3,x =-3,cos α=x r =-1,tan α=y x
=0; 当m =5时,r =22,x =-3,cos α=x r =-
64,tan α=y x =-153; 当m =-5时,r =22,x =-3,cos α=x r
=-
64,tan α=y x =15
3
. [新题训练] (分值:15分 建议用时:10分钟)
11.(5分)某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将点A 走过的路程d (cm)表示成t (s )的函数,则d =________,其中
t ∈[0,60].
【答案】:
π
6
t 【解析】: ∠AOB =t 60×2π=πt 30,d =πt 30×5=π
6
t .
12.(10分)如图所示,动点P 、Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π
3弧度,
点Q 按顺时针方向每秒钟转π
6弧度,求P 、Q 第一次相遇时所用的时间、相遇点的坐标及P 、Q 点各自走过
的弧长.。