电路分析第六章一阶电路
- 格式:ppt
- 大小:3.02 MB
- 文档页数:96
第6章一阶动态电路分析6.1 学习要求(1)掌握用三要素法分析一阶动态电路的方法。
(2)理解电路的暂态和稳态以及时间常数的物理意义。
(3)了解用经典法分析一阶动态电路的方法。
(4)了解一阶电路的零输入响应、零状态响应和全响应的概念。
(5)了解微分电路和积分电路的构成及其必须具备的条件。
6.2 学习指导本章重点:(1)电流、电压初始值的确定。
(2)一阶电路的三要素法分析方法。
(3)时间常数的物理意义及其计算。
本章难点:(1)电流、电压初始值的确定。
(2)一阶电路的三要素法分析方法。
(3)电流、电压变化曲线的绘制。
本章考点:(1)电流、电压初始值的确定。
(2)一阶电路的三要素法分析方法。
(3)时间常数的计算。
(4)电流、电压变化曲线的绘制。
6.2.1 换路定理1.电路中产生过渡过程的原因过渡过程是电路从一个稳定状态变化到另一个稳定状态的中间过程,因为时间极为短暂,又称暂态过程。
电路中产生过渡过程的原因是:(1)内因:电路中的能量不能突变。
电路中的电场能和磁场能不能突变是电路电工技术学习指导与习题解答124 产生过渡过程的根本原因。
(2)外因或条件:换路。
电路工作条件发生变化,如开关的接通或断开,电路连接方式或元件参数突然变化等称为换路。
换路是电路产生过渡过程的外部条件。
2.研究电路过渡过程的意义(1)利用电路的过渡过程改善波形或产生特定的波形。
(2)防止电路产生过电压或过电流损坏用电设备。
3.换路定理与初始值的确定设换路发生的时刻为0=t ,换路前的终了时刻用-=0t 表示,换路后的初始时刻用+=0t 表示。
由于换路是瞬间完成的,因此-0和+0在数值上都等于0。
根据能量不能突变,可以推出电路换路定理为:(1)电容两端电压u C 不能突变,即:)0()0(C C -+=u u(2)电感中的电流i L 不能突变,即:)0()0(L L -+=i i电路中+=0t 时的电流、电压值称为初始值。
初始值的确定步骤如下: (1)求出-=0t 时电路的)0(C -u 和)0(L -i 。
第六章一阶电路——经典分析法(微分方程描述)——运算分析法(代数方程描述)见第十三章一、重点和难点1. 动态电路方程的建立和动态电路初始值的确定;2. 一阶电路时间常数、零输入响应、零状态响应、冲激响应、强制分量、自由分量、稳态分量和暂态分量的概念及求解;3. 求解一阶电路的三要素方法;电路初始条件的概念和确定方法;1.换路定理(换路规则)仅对动态元件(又称储能元件)的部分参数有效。
①电容元件:u C(0-) = u C(0+);(即:q C(0-) = q C(0+));i C(0-) ≠i C(0+)。
②电感元件:i L(0-) = i L(0+);(即:ΨL(0-) = ΨL(0+));u C(0-) ≠u C(0+)。
③电阻元件:u R(0-) ≠u R(0+);i R(0-) ≠i R(0+)。
因此,又称电容的电压、电感的电流为状态变量。
电容的电流、电感的电压、电阻的电压和电流为非状态变量。
如非状态变量的数值变化前后出现相等的情况则视为一种巧合,并非是一种规则。
2.画t=0+时刻的等效电路画t=0+时刻等效电路的规则:①对电容元件,如u C(0-) = 0,则把电容元件短路;如u C(0-) ≠ 0,则用理想电压源(其数值为u C(0-))替代电容元件。
②对电感元件,如i L(0-) = 0,则把电感元件开路;如i L(0-) ≠ 0,则用理想电流源(其数值为i L(0-))替代电感元件。
画t=0+时刻等效电路的应用:一般情况下,求解电路换路后非状态变量的初始值,然后利用三要素法求解非状态变量的过渡过程。
3. 时间常数τ①物理意义:衡量过渡过程快慢的技术指标(即等于一阶微分方程的特征方程的特征根)。
仅取决于电路的结构和元件的参数。
②几何意义:状态变量变化曲线中时间坐标轴上任意一点次切距的长度(即曲线上任意一点,如果以该点的斜率为固定变化率衰减,则经过τ时间后为零值)。
③单位:m(秒)、ms(毫秒)。
一阶电路的零状态响应一阶电路的零状态响应零状态响应:储能元件的初始状态为零,仅由外加激励作用所产生的响应,称为零状态响应( zero-state response )。
一、 RC 电路的零状态响应图 5.4-1 所示 RC 电路,开关闭合之前电路已处于稳态,且电容中无储能,即。
时开关闭合,讨论时响应的变化规律。
t=0 时开关闭合,则由换路定则得这时直流电压源 Us 与 R 、 C 构成回路,由 KVL 得这是一阶非齐次微分方程,它的解由对应的齐次微分方程的通解和非齐次微分方程的特解组成。
采用常数变易法来解,得 RC 电路的零状态响应为当 t →∞时,电路已达到新的稳态,电容又相当于开路,则,因此,电容电压的零状态响应为式中,为 RC 电路的时间常数。
二、 RL 电路的零状态响应图 5.4-3 所示电路,时开关 S 处于闭合状态,电感的初始状态,时开关打开。
讨论开关打开后响应的变化规律。
t=0 时,开关 S 打开,直流电流源 Is 开始对电感充电,这时这也是一阶非齐次微分方程,解得式中,为 RL 电路的时间常数。
当 t →∞时,这时电路已达到新的稳态,电感相当于短路。
,因此,电感电流的零状态响应为三、一阶电路零状态响应的计算计算步骤1 、求 t →∞时的稳态值。
对于 RC 电路,求;对于 RL 电路,求。
2 、求电路的时间常数τ。
对于 RC 电路,,对于 RL 电路,。
其中, R 为从电容 C 或电感 L 两端看进去的戴维南等效电阻。
3 、求出零状态响应RC 电路:RL 电路:4 、如需求其它响应,再根据已求得的或去求解。
例 5.4-1 图 5.4-5 所示电路,已知时开关 S 处于位置 2 ,且电感中无储能, t=0 时开关 S 拨到位置 1 ,求时的,。
解:电感的初始储能为 0 ,则电路换路后, t →∞时,电路进入新的稳态,电感又相当于短路,则换路后,从电感两端看进去的等效电阻是 4 Ω和 8 Ω两个电阻串联,即R=4 + 8=12 Ω所以,时间常数为因此,电路的零状态响应为。