第二章《整式的加减》单元测试题A卷
- 格式:doc
- 大小:101.00 KB
- 文档页数:3
第二章-整式的加减单元测试题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(第二章-整式的加减单元测试题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为第二章-整式的加减单元测试题(含答案)的全部内容。
第二章 整式的加减单元测试一、填空题(每题3分,共36分)1、单项式减去单项式的和,列算式为 ,23x -y x x y x 2222,5,4--化简后的结果是 。
2、当时,代数式-= ,= 。
2-=x 122-+x x 122+-x x 3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:,则代数式的值是 .11=+x x 511(2010-+++x x x x5、张大伯从报社以每份0.4元的价格购进了份报纸,以每份0。
5元的价格售出了份报纸,a b 剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算: , = 。
=-+-7533x x )9()35(b a b a -+-7、计算:= 。
)2008642()200953(m m m m m m m m ++++-++++ 8、-的相反数是 , = ,最大的负整数是 。
bc a 2+π-39、若多项式的值为10,则多项式的值为 。
7322++x x 7962-+x x 10、若 ,= 。
≠+-m y x y x m n 则的六次单项式是关于,,)2(232n 11、已知 ; 。
=++=+-=+22224,142,82b ab a ab b ab a 则=-22b a 12、多项式是 次 项式,最高次项是 ,常数项是 。
整式的加减单元测试一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 ,化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+x x ,则代数式51)1(2010-+++xx x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ΛΛ= 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x +是多项式D 、5xy -是单项式18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项.求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。
人教版七年级数学上册《第二章整式的加减》单元测试卷-含参考答案一、选择题1.下列多项式中,是二次三项式的是()A.-x2-y3B.x3-y3C.x2+2xy+y2D.x+y+72.下列各式:−15a2b2,12x−1,−25,1x,x−y2,a2−2ab,其中单项式的个数有()A.1个B.2个C.3个D.4个3.下列各组式子中,是同类项的为()A.2a与2b B.a2b与2ab2C.2ab与−3ba D.3a2b与a2bc 4.下列说法正确的是()A.4a3b的次数是3 B.多项式x2−1是二次三项式C.2a+b−1的各项分别为2a,b,1 D.−3ab2的系数是−35.下列各组中的两个项不属于...同类项的是()A.3x2y和−2x2y B.−xy和2yx C.-1和114D.a2和326.多项式x2−3kxy−3y2+13xy−8合并同类项后不含xy项,则k的值是()A.13B.16C.19D.07.下列计算正确的是()A.3a+2b=5ab B.5y2−2y=3yC.a+6a=6a2D.m2n−2nm2=−nm28.若2x2−3xy−1−(−x2−7xy+2)=Ax2−Bxy+C,则A,B,C的值分别为()A.3,4,3 B.1,10,1 C.3,4,-3 D.3,-4二、填空题9.若单项式−3ab的次数是.10.多项式3x2+x−22中的常数项是.11.计算-x2+ 2x2的结果是.12.若2x3y2和−x m y2是同类项,则m的值是.13.多项式2x3−5x2+x−1与多项式3x3+(2m−1)x2−5x+3的和不含x2项,则m=.三、解答题14.计算:(1)(x2﹣x+4)+(2x﹣4+3x2);(2)6ab﹣2a2b2+4+3ab2﹣(2+6ab﹣2a2b2).15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值.2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.17.先化简,再求值:已知和(1)化简.(2)当,时,求的值.18.小丽放学回家后准备完成下面的题目:化简,发现系数“□”印刷不清楚.(1)她把“□”猜成3,请你化简;(2)她妈妈说:你猜错了,我看到该题的标准答案是6.请通过计算说明题中“□”是几.参考答案1.C2.B3.C4.D5.D6.C7.D8.D9.210.-111.x212.313.314.解:(1)原式=x2﹣x+4+2x﹣4+3x2=4x2+x.(2)原式=6ab﹣2a2b2+4+3ab2﹣2﹣6ab+2a2b2=6ab﹣6ab﹣2a2b2+2a2b2+3ab2﹣2+4=3ab2+2.15.解:∵关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是3,∴m+1=2,﹣n=2,解得:m=1,n=﹣2,∴m2+n3=1﹣8=﹣7.16.解:原式=2x3−4y2−x+2y−x+4y2−2x3=−2x+2y当x=−2,y=3时,原式=−2×(−2)+2×3=4+6=10.17.(1)解:(2)解:把,代入得:18.(1)解:;(2)解:设“□”是a∵标准答案是6∴.解得.∴题中“□”是5。
第二章 整式的加减单元测试一、填空题〔每题3分,共36分〕1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为,化简后的结果是。
2、当2-=x 时,代数式-122-+x x =,122+-x x =。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为。
4、已知:11=+x x ,则代数式51)1(2010-+++xx x x 的值是。
5、X 大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则X 大伯卖报收入元。
6、计算:=-+-7533x x , )9()35(b a b a -+-=。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ =。
8、-bc a 2+的相反数是, π-3=,最大的负整数是。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为。
10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232,n =。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则;=-22b a 。
12、多项式172332+--x x x 是次项式,最高次项是,常数项是。
二、选择题〔每题3分,共30分〕13、下列等式中正确的是〔 〕A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是〔 〕A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是〔 〕A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是〔 〕A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是〔 〕A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式18、下列各式中,去括号或添括号正确的是〔 〕A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 19、代数式,21a a +43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是〔 〕 A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是〔 〕A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式 21、已知y x x n m n m 2652与-是同类项,则〔 〕A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是〔 〕A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题〔每题3分,共18分〕23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值〔每题5分,共10分〕29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题〔31、32题各6分,33、34题各7分,共20分〕31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项. 求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.单项式πr2ℎ的次数是()A.1 B.2 C.3 D.42.在代数式x2+5,﹣1,x2﹣3x+4,π,5m 和x2+1x+1中,整式有()A.3个B.4个C.5个D.6个3.下列说法正确的是()A.1x +1是多项式B.3x+y3是单项式C.−mn5是五次单项式D.−x2y−2x3y是四次多项式4.多项式36x2−3x+5与3x3+12mx2−5x+7相加后,不含二次项,则常数m的值是()A.2 B.-8 C.-2 D.-35.下列选项中的单项式,与−ab2是同类项的是()A.−a2b B.3ab2C.3ab D.ab2c6.下面计算正确的是()A.3x2y−2y2x=xy B.ab−ba2=12abC.2a2+a=3a3D.m4+m4=m87.若整式−100a−m b2+100a3b n+4经过化简后结果等于4,则m n的值为()A.−8B.8 C.−9D.9 8.若x−2y=3,则2(x−2y)−x+2y−5的值是()A.−2B.2 C.4 D.−4二、填空题9.请写出一个只含有a,b两个字母的单项式,要求系数为−4,次数3,这个单项式可以是.10.多项式3x2﹣2xy2+xyz3的次数是.11.如果单项式5a m+1b n+5与a2m+1b2n+3是同类项,则m=,n=12.多项式(m﹣2)x|m|+mx﹣3是关于x的二次三项式,则m= .13.已知x2+2y-3=0,则3(x2+2xy)-(x2+6xy)+4y的值为14.化简:(1)3xy2−4x2y−2xy2+5x2y;(2)(mn+3m2)−(m2−2mn)15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.a2−3ab−2且a、b互为倒数,求3A−2B的值.17.若A=a2−4ab−5,B=3218.今年十月份,为方便民众出行,连江县成立了出租车公司,收费标准是:起步价5元,可乘坐3千米;3千米之后每千米加收1.8元.若某人乘坐了x千米(1)用代数式表示他应支付的费用;(2)若他乘坐了13千米,应支付多少元?1.C2.B3.D4.D5.B6.B7.D8.A9.−4ab 2或−4a 2b10.511.0;212.-213.614.(1)xy 2+x 2y(2)3mn +2m 215.﹣7.16.−2x +2y ,10.17.−6ab −11,−17. 18.(1)①当0x <≤3时,支付的费用为5;②当3x >时,支付的费用为()1.80.4x -元(2)23元。
第2章整式的加减单元测试(A卷基础篇)(人教版)参考答案与试题解析一.(共10小题,满分30分,每小题3分)1.(2018秋•建宁县期中)下列各式符合代数式书写规范的是()A.2÷a B.2×a C.2a D.1a【解答】解:A、2÷a正确书写格式为,故A不符合题意;B、数字与字母相乘时,乘号要省略,故B不符合题意;C、数字与字母相乘时,乘号要省略,故C符合题意;D、1a正确书写格式为a,故D不符合题意;故选:C.【点评】本题考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.(2018秋•高邮市期中)某企业今年9月份产值为m万元,10月份比9月份减少了5%,11月份比10月份增加了10%,则11月份的产值是()A.(m﹣5%)(m+10%)万元B.(1﹣5%)(1+10%)m万元C.(m﹣5%+10%)万元D.(1﹣5%+10%)m万元【解答】解:∵某企业今年9月份产值为m万元,10月份比9月份减少了5%,∴该企业今年10月份产值为(1﹣5%)m万元,又∵11月份比10月份增加了10%,∴该企业今年11月份产值为(1﹣5%)(1+10%)m万元.故选:B.【点评】本题考查了列代数式,根据三个数量之间的关系,正确列出代数式是解题的关键.3.(2018秋•福州期中)若3,则代数式的值是()A.B.C.5 D.4【解答】解:当3时,原式=2×3=6﹣2=4,故选:D.【点评】本题主要考查代数式求值,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.4.(2018秋•满城区期中)下列各式①m;②x+5=7;③2x+3y;④;⑤中,整式的个数有()A.1个B.2个C.3个D.4个【解答】解:①m;②x+5=7;③2x+3y;④;⑤中,整式有①m;③2x+3y;④,共3个.故选:C.【点评】本题考查了整式的定义,属于基础题,注意掌握等式及不等式都不是整式,单项式和多项式统称为整式.5.(2018秋•海淀区校级期中)下列说法正确的是()A.单项式﹣5xy的系数是5B.单项式3a2b的次数是2C.多项式x2y3﹣4x+1是五次三项式D.多项式x2﹣6x+3的项数分另是x2,6x,3【解答】解:A、单项式﹣5xy的系数是﹣5,故此选项错误;B、单项式3a2b的次数是3,故此选项错误;C、多项式x2y3﹣4x+1是五次三项式,正确;D、多项式x2﹣6x+3的项数分另是x2,﹣6x,3,故此选项错误;故选:C.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.6.(2018秋•连城县期中)x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3 B.1 C.﹣2 D.2【解答】解:原式=x2+ax﹣2y+7﹣bx2+2x﹣9y+1=(1﹣b)x2+(a+2)x﹣11y+8,由结果与x的取值无关,得到1﹣b=0,a+2=0,解得:a=﹣2,b=1,则﹣a+b=2+1=3.故选:A.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.7.(2018秋•金水区校级期中)下列选项中,两个单项式属于同类项的是()A.a3与b3B.﹣2a2b与ba2C.x2y与﹣xy2D.3x2y与﹣4x2yz【解答】解:A、a3与b3所含有的字母不同,不是同类项,故本选项错误.B、﹣2a2b与ba2所含有的相同字母的指数相同,是同类项,故本选项正确.C、x2y与﹣xy2所含有的相同字母的指数不相同,不是同类项,故本选项错误.D、3x2y与﹣4x2yz所含有的字母不相同,不是同类项,故本选项错误.故选:B.【点评】考查了同类项和单项式.同类项中所含字母可以看成是数字、单项式、多项式等.8.(2018秋•兴庆区校级期中)若﹣7x m+2y与﹣3x3y n的和是单项式,则m+n=()A.﹣1 B.2 C.0 D.1【解答】解:∵﹣7x m+2y与﹣3x3y n的和是单项式,∴﹣7x m+2y与﹣3x3y n是同类项,则m+2=3,即m=1,n=1,所以m+n=1+1=2,故选:B.【点评】本题考查的是合并同类项法则与同类项的概念,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.9.(2018秋•海淀区校级期中)下列去括号正确的是()A.4(x﹣1)=4x﹣1 B.﹣5(1x)=﹣5﹣xC.a﹣(﹣2b+c)=a+2b+c D.a+2(﹣2b+c)=a﹣4b+2c【解答】解:A、原式=4x﹣4,故本选项错误;B、原式=﹣5+x,故本选项错误;C、原式=a+2b﹣c,故本选项错误;D、原式=a﹣4b+2c,故本选项正确.故选:D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.10.(2018秋•渝中区校级期中)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第3次输出的结果是()A.7x+1 B.15x+1 C.31x+1 D.15x+15【解答】解:第一次输入M=x+1得整式:,整理得3x+2+N=3x+1,故2+N=1,解得N =﹣1∴运算原理为:第二次输入M=3x+1,运算得第三次输入M=7x+1,运算得故第3次输出的结果是15x+1故选:B.【点评】此题考查整式加减的运算能力,细心观察运算原理即可.二.填空题(共8小题,满分24分,每小题3分)11.(2018秋•南召县期中)把2x3﹣x+3x2﹣1按x的升幂排列为﹣1﹣x+3x2+2x3.【解答】解:把2x3﹣x+3x2﹣1按x的升幂排列为﹣1﹣x+3x2+2x3,故答案为:﹣1﹣x+3x2+2x3【点评】本题主要考查对多项式的次数和排列顺序的理解,理解多项式的次数含义是解此题的关键.12.(2018秋•桐梓县校级期中)单项式的系数是,次数是5.【解答】解:单项式的系数是:,次数是:5.故答案为:,5.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.13.(2018秋•柘城县期中)下列式子:①a+2b;②﹣2xy2;③;④5;⑤x;⑥x2x,其中属于多项式的有①③④⑥(填序号).【解答】解:①a+2b;②﹣2xy2;③;④5;⑤x;⑥x2x,其中属于多项式的有:①a+2b;③;④5;⑥x2x,故答案为:①③④⑥.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.14.(2019春•武昌区期中)若7x3a y4b与﹣2x3y3b+a是同类项,则a=1,b=1.【解答】解:由题意,得3a=3,3b+a=4b,解得a=1,b=1,故答案为:1,1.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.15.(2018秋•浦东新区期中)合并同类项10x2y﹣7xy2+3xy﹣9yx2﹣2xy=x2y﹣7xy2+xy.【解答】解:10x2y﹣7xy2+3xy﹣9yx2﹣2xy=(10﹣9)x2y﹣7xy2+(3﹣2)xy=x2y﹣7xy2+xy.故答案为:x2y﹣7xy2+xy.【点评】此题主要考查了合并同类项法则,正确掌握合并同类项法则是解题关键.16.(2018秋•沙坪坝区校级期中)已知|a|=1,b2=64,且|a+b|=a+b,则代数式a﹣b的值为﹣7或﹣9.【解答】解:∵|a|=1,b2=64,∴a=±1,b=±8,∵|a+b|=a+b,∴a+b≥0,则a=1,b=8或a=﹣1,b=8,当a=1,b=8时,a﹣b=1﹣8=﹣7;当a=﹣1,b=8时,a﹣b=﹣1﹣8=﹣9;综上,a﹣b的值为﹣7或﹣9,故答案为:﹣7或﹣9.【点评】本题主要考查代数式求值,解题的关键是熟练掌握绝对值的性质、有理数的加减运算法则和代数式的求值.17.(2018秋•市中区校级期中)如果所示图形,阴影部分的面积可表示为 3.5xy.【解答】解:由图可得,阴影部分的面积是:2x•2y﹣(2x﹣x﹣0.5x)y=4xy﹣0.5xy=3.5xy,故答案为:3.5xy.【点评】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.(2018秋•鼎城区期中)定义为二阶行列式,规定它的运算法则为ad﹣bc,那么当x=﹣1时,二阶行列式的值为4.【解答】解:由定义可知:原式=﹣2(x﹣1)﹣(x+1)=﹣2x+2﹣x﹣1=﹣3x+1,当x=﹣1时,原式=3+1=4,故答案为:4【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.三.解答题(共7小题,满分46分)19.(8分)(2018秋•鼓楼区校级期中)(1)3(3a2﹣2)﹣2(3a2﹣2)(2)(6xy)(x2﹣y2+72xy﹣12)【解答】解:(1)原式=9a2﹣6﹣6a2+4=3a2﹣2;(2)原式=6xy6xy+1=1;【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.20.(6分)(2018秋•海淀区校级期中)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣1,b.【解答】解:原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=﹣1,b时,原式=12×16×(﹣1)=8.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.(6分)(2018秋•颍泉区校级期中)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2﹣1.5xy﹣1 (1)求A+B的值;(2)若3A+6B的值与x无关,求y的值.【解答】解:(1)原式=2x2+3xy﹣2x﹣1﹣x2﹣1.5xy﹣1=x2+4xy﹣2x﹣2;(2)原式=3(2x2+3xy﹣2x﹣1)+6(﹣x2﹣1.5xy﹣1)=6x2+9xy﹣6x﹣3﹣6x2﹣9xy﹣6=15xy﹣6x﹣9=(15y﹣6)x﹣9要使原式的值与x无关,则15y﹣6=0,解得:y.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.(6分)(2018秋•柯桥区期中)已知﹣2ab x+1与4ab3是同类项、﹣2a2b2的系数为y、b的次数是4:先分别求出x、y、m,然后计算2xy+6x2+my的值.【解答】解:根据题意得:x+1=3,y=﹣2,m+1=3,解得:x=2,y=﹣2,m=2,则2xy+6x2+my=2×2×(﹣2)+6×32﹣2×(﹣2)=10.【点评】此题考查了代数式求值,熟练掌握同类项,单项式系数与次数的定义是解本题的关键.23.(7分)(2018秋•郑州期中)按照下面的步骤计算:任意写一个三位数,百位数字比个数数字大3交换差的百位数字与个位数字用大数减去小数交换它的百位数字与个位数字做加法问题:(1)用不同的三位数再做两次,结果都是1089吗?(2)你能解释其中的道理吗?【解答】解:(1)结果是1089;用不同的三位数再做几次,结果都是一样的;(2)设这个三位数为100(3+c)+10b+c,再交换百位数字与个位数字后为100c+10b+3+c.根据题意,有[100(3+c)+10b+c]﹣[100c+10b+3+c]=297.再交换297的百位和个位数字得792,而297+792=1089.所以用不同的三位数再做几次,结果都是1089.【点评】本题考查了整式加减的运用.认真读题,理解题意是关键.24.(7分)(2018秋•福田区校级期中)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款(100x+8000)元;若客户按方案二购买,需付款(90x+9000)元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?【解答】解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:(100x+8000)元;方案二费用:(90x+9000)元;(2)当x=30时,方案一费用:100x+8000=100×30+8000=11000(元);方案二费用:90x+9000=90×30+9000=11700(元);∵11000<11700,∴按方案一购买较合算;(3)先按方案一购买20套西装获赠20条领带,再按方案二购买10条领带.20×500+100×0.9×10=10900(元).故此方案需要付款10900元.【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.25.(7分)(2018秋•思明区校级期中)如图所示,用三种大小不等的正方形①②③和…个缺角的正方形拼成一个长方形ABCD(不重叠且没有缝隙),若GH=a,GK=a+1,BF=a﹣2(1)试用含a的代数式表示:正方形②的边长CM的长=2a﹣2,正方形③的边长DM的长=3a ﹣5;(2)求长方形ABCD的周长(用含a的代数式表示);并求出当a=3时,长方形周长的值.【解答】解:(1)CM=BF+GH=a﹣2+a=2a﹣2,DM=MK=2CM﹣GK=2(2a﹣2)﹣(a+1)=3a﹣5;故答案为:2a﹣2,3a﹣5;(2)长方形ABCD的宽DC为:DM+CM=5a﹣7,长AD为:BN+NC=DM+a+1+3(a﹣2)=3a﹣5+a+1+3a﹣6=7a﹣10.周长为:2(AD+DC)=2(5a﹣7)+2(7a﹣10)=24a﹣34,当a=3时,周长为:24×3﹣34=38.【点评】此题考查了代数式求值,主要是能够用不同的方法表示同一个长方形的宽,注意各个正方形的边长之间的数量关系.。
第二章 整式的加减单元测试(时间:90分钟,满分120分)一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x yx m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项.求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。
第二章《整式的加减》单元测试题A 卷
座号____姓名_______成绩_______
一、 选择题(每小题4分,共28分)
1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )
A.3个
B.4个
C.5个
D.6个
2、下列说法正确的是( )
A 、13 πx 2的系数是13
B 、12 xy 2的系数为12
x C 、-5x 2的系数为5 D 、-x 2的系数为-1
3.下面计算正确的是( )
A .2233x x -=
B 。
235325a a a +=
C .33x x +=
D 。
10.2504
ab ab -+= 4.多项式2112
x x ---的各项分别是 ( ) A.21,,12x x - B.21,,12x x --- C.21,,12x x D.21,,12
x x -- 5.下列去括号正确的是(
) A.()5252+-=--x x
B.()222421+-=+-x x
C.()n m n m +=-323231
D. x m x m 232232--=⎪⎭
⎫ ⎝⎛-- 6.下列各组中的两个单项式能合并的是(
) A .4和4x B .32323x y y x -和 C .c ab ab 221002和
D .2m m 和 7.如果5
1=
-n m ,那么-3()m n -的值是 ( ) A .-53 B.35 C.53 D.15
1 二、填空题(每小题4分,共28分) 8.单项式5
22
xy -的系数是____________,次数是_______________。
9.多项式5253323+-+-y x y x xy 的次数是________.最高次项系数是__________。
10.任写两个与b a 22
1-是同类项的单项式:_________;_________。
11.多项式y x 23-与多项式y x 24-的差是______________________.
12、若单项式y x 25和n m y x 42是同类项,则n m + 的值为____________。
13、长方形的长是52+a ,宽是13-a ,则它的周长为___________。
14.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买2支铅笔和3块橡皮,则一共需付款________________元.
三、解答题
15.计算(每题6分共24分)
(1)b a b a b a 2222
134+- (2) 222225533y y x y y x x +-++--
(3)()()222243258ab b a ab b a --- (4)2()[])2(2324)(22222b ab a a ab a ab a +------
16.(10分)先化简,后求值:()()ab b a b a 245352323+++-,其中2
1,1=-=b a
17.(10分)已知某船顺水航行2小时,逆水航行3小时,
(1)已知轮船在静水中前进的速度是x千米/时,水流的速度是y千米/时,则轮船共航行多少千米?
(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?。