6.1.1平方根(第二课时)
- 格式:docx
- 大小:112.41 KB
- 文档页数:3
6.1 平方根第2课时教学设计课题 6.1 平方根第2课时单元第六单元学科初中数学年级七下学习目标1.会用计算器求一个数的算术平方根;理解算术平方根随着被开方数扩大(或缩小)而变化的规律;2.通过求一个数的算术平方根的近似值,初步了解开方开不尽的数的无限不循环性,理解用近似值表示无限不循环小数的实际意义;3.能用夹逼法求一个数的算术平方根的近似值;4.体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数,培养探求精神,提高学生学习数学的兴趣.重点夹逼法及估计一个(无理)数的大小.难点会用计算器求一个数的算术平方根;理解算术平方根随着被开方数扩大(或缩小)而变化的规律.教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】1.什么是算术平方根?一般地,如果一个正数x的平方等于a,即x² a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.2.求下列各式的值.(1)的算术平方根=_______(2)的算术平方根=_______追问:你2知道它有多大吗?【教学建议】让学生说出算术平方根的概念,并让学生回答,最后引出2有多大的疑问?学生思考并回答计算并思考.回顾旧知,引出本节课重点内容,如何求一个算术平方根的近似值.讲授新课【合作探究】能否用两个面积为 1 dm2 的小正方形拼成一个面积为2 dm2 的大正方形?学生分组讨通过探究活动,引出求的一种如图,把两个小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为 2 dm2的大正方形.你知道这个大正方形的边长是多少吗?解:设大正方形的边长为x dm,则x2 = 2由算术平方根的意义可知x=所以大正方形的边长是dm.小正方形的对角线的长是多少呢?x=小正方形的对角线的长即为大正方形的边长.学生分组讨论、拼图过程中,教师巡视,了解各组探究情况,最后动态展示拼图过程,由学生代表回答解题思路,教师进行板书示范.最后教师可强调大正方形的面积不能表示成一个有理数的平方,因此它的边长只能用算术平方根的符号,即表示.想一想:2有多大呢?()2=2无限不循环小数是指小数位数无限,且小数部分不循环的小数.播放动画过程中,教师可提问,对于(1)、(2)教师带领学生进行完成,(3)、(4)学生独立完成(1)在哪两个整数之间?(2)精确到0.1时在哪两个数之间?论、拼图,回答教师问题.方法,并举例说明什么是无限不循环小数,让学生理解其概念.(3)精确到0.01时在哪两个数之间?(4)精确到0.001时在哪两个数之间?最后,教师给出无限不循环小数的概念.【小试牛刀】你能估算出的近似值吗(精确到0.01)?解:∵22=4,32=9,∴2<<3.∵ 2.2²=4.84,2.3²=5.29,∴ 2.2<<2.3.∵ 2.23²=4. 9729,2.24²=5. 0176,∴ 2.23 <<2.24.∵ 2.2362 =4.999696,2.2372 =5.004169,∴ 2.236<<2.237,∴≈2.24.归纳:对算术平方根进行估算时,通常利用与被开方数比较接近的两个完全平方数的算术平方根来估计这个被开方数的算术平方根的大小.【合作探究】在估计有理数的算术平方根的过程中,为方便计算,可借助计算器求一个正有理数a 的算术平方根(或其近似值).注意:计算器的型号不同,按键顺序可能有所不同,要注意阅读使用说明书.【典型例题】例1用计算器求下列各式的值:(1) ;(2) (精确到0.001).用计算器计算下列算术平方根,你发现了什么规律?学生思考,回答教师问题.通过例题,使学生掌握使用计算器求算术平方根的方法,做一做中的(2)可以和上面所估计的的大小进行比较.解:规律:被开方数的小数点向右或向左移动2位,算术平方根的小数点相应地向右或向左移1位.想一想:用计算器计算,并利用你发现的规律,求,,的近似值.你能根据的值说出是多少吗?【典型例题】例2 小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2 的长方形纸片,使它的长宽之比为3 : 2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?解:设长方形纸片的长为3x cm ,宽为2x cm,根据边长与面积的关系得3x∙ 2x = 300,6x2 = 300 ,x2 = 50,x = ,因此长方形纸片的长为3cm .∵50 > 49,∴> 7.由上可知 3 > 21,则长方形纸片的长应该大于21 cm. 思考并积极回答.例题给出了一个实际问题背景,学生一般会认为一定能用一块面积大的纸片裁出一块面积小的纸片,通过学习可以纠正学生的认识.重点使学生掌握通过平方数比较有理数与无理数大小的一种方法.∵= 20,∴正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.答:不能同意小明的说法. 小丽不能用这块正方形纸片裁出符合要求的长方形纸片.例2先由学生尝试,教师再进行讲解.【随堂练习】1.用计算器求下列各式的值:(1) ;(2) (精确到0.01).2.估算的值 ( B )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.学生自主练习学生通过练习,可以更好的理解如何用计算器求一个数的算术平方根,进一步提高分析问题和解决问题的能力.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书 1.求算术平方根的方法(1)夹逼法(2)用计算器求解2.例题讲解。
人教版七年级数学下册教学设计6.1 第2课时《平方根》一. 教材分析本节课的教学内容是《平方根》,这是人教版七年级数学下册第六章第一节的一部分。
在此之前,学生已经学习了有理数、实数等基础知识,对数的运算也有一定的了解。
本节课主要让学生掌握平方根的定义、性质和求法,以及了解平方根在实际问题中的应用。
二. 学情分析七年级的学生已经具备了一定的数学基础,但部分学生在实数方面的理解还不够深入。
在导入新课环节,教师需要通过生活中的实例激发学生的学习兴趣,让学生感受到平方根在实际生活中的重要性。
在教学过程中,要注意引导学生主动探索、发现和总结平方根的性质,提高学生的数学思维能力。
三. 教学目标1.知识与技能:让学生掌握平方根的定义、性质和求法,能够运用平方根解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生探究数学问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.重点:平方根的定义、性质和求法。
2.难点:平方根在实际问题中的应用。
五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,让学生主动探索平方根的性质。
2.情境教学:结合生活实例,让学生感受平方根在实际问题中的应用。
3.小组合作:引导学生进行合作交流,共同探讨平方根的问题。
六. 教学准备1.教学课件:制作课件,展示平方根的相关知识点。
2.实例材料:准备一些实际问题,用于引导学生运用平方根解决。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如测量土地面积、计算物体高度等,引导学生思考这些实际问题与平方根的关系,激发学生的学习兴趣。
2.呈现(10分钟)教师引导学生回顾实数的相关知识,然后给出平方根的定义,并通过PPT展示平方根的性质。
同时,教师可以通过讲解、举例等方式,让学生了解平方根的求法。
3.操练(10分钟)教师提出一些有关平方根的问题,让学生独立解答。
6.1平方根教学设计(第二课时)【教学目标】知识与能力:1.会用平方法比较两个数的大小。
2.了解用夹逼法估无理数的值。
3.会用估值法比较两个数的大小。
过程与方法:1.通过拼图活动发展学生的形象思维。
2.在探究活动中,让学生经历发现无理数的过程,认识到无理数的存在。
情感、态度与价值观:通过教学激发学生的参与性和求知欲,使学生体验小组合作学习的快乐,充分认识到社会生活与数学的密切联系,感受生活处处皆数学。
【教学重点】利用平方法和估值法比较数的大小。
【教学难点】 探究的大小【教学过程】课前交流:模拟购物街:一台笔记本价值在4000~5000元之间,给你三次机会你来估一下它的实际售价。
如果你猜中的价格与实际价格差距在50元范围内,这台电脑就送给你。
学生活动设计:学生估价,一名学生负责提示估价是高了还是低了。
教师活动设计:引导学生分析估价的方法,关注学生不要只顾活动,而忽略了情境里面蕴含的数学问题。
设计意图:从现实生活中提出估值的技巧,让学生在活动中体会夹逼法(二分法)在生活中的应用,同时唤起学生的生活经验,为后面利用夹逼法估的值作迁移准备。
本着从学生的生活经验出发,在做中学的理念,让学生在轻松的氛围中积极参与对数学问题的讨论,使学生感受到生活处处皆数学。
一、复习导入1、 什么叫算术平方根?2、 算术平方根的大小与被开方数的关系3、 判断下列各数有没有算术平方根,如果有请求出它们。
100,1, ,0,—0.0025,4, 师: 的算术平方根是多少?生:。
师:你是怎么想的。
师:你发现与我们前面求出的平方根有什么不一样的地方? 师:那么对于这样的数你有什么疑问吗?1211644二、 新课师:是呀,这样的数到底存不存在呢?如果存在到底有多大呢?今天我们就来研究这样的数。
板书:《平方根》1、拼一拼:首先我们来研究一下能否用两个面积为1的小正方形拼成一个面积为2的大正方形? 师:直接拼行不行?为什么?那面积符合吗?那看来要通过拼剪的方法。
6.1 平方根(第 1 课时)一、教学目1. 算平方根概念的形成程,了解算平方根的概念.2. 会求某些正数(完全平方数)的算平方根并会用符号表示.二、重点和点1.重点:算平方根的概念 .2.点:算平方根的概念 .(本需要的各种表要提前画好)三、合作探究看下面的例子.学校要行美作品比,扎西很高. 他想裁出一面25 平方分米的正方形画布,画上自己的得意之作参加比,正方形画布的取多少分米?(演示一面25 平方分米的)(一)来正方形画布的取多少分米?你是怎么算出来的?答:因52=25(板:因52= 25),所以个正方形画布的取 5 分米(板:所以= 5 分米) .(二)(完成下表)4正方形的面91636125个例中的、填表中的上是一个,什么?它都是已知正方形面求的. 通解决个,我就有了算平方根的概念.正数 3 的平方等于9,我把正数 3 叫做 9 的算平方根.正数 4 的平方等于16,我把正数 4 叫做 16 的算平方根 .6 和 36 两个数?⋯⋯(多几位同学,学生得不正确的地方教随即正)1 和 1 两个数?同桌之互相一 5 和 25 两个数 . (同桌互相)了么多,同学大概已知道了算平方根的意思. 那么什么是算平方根呢?是先在小里,自己的看法.(三)什么是算平方根呢?如果一个正数的平方等于a,那么这个正数叫做 a 的算术平方根大家把算平方根概念默两遍. (生默)(学生拿出提前准好的10 卡片,一面写1- 10,另一面写1-10 的平方 . 生任意抽一张卡片,让其他学生回答平方或算术平方根。
(按以上过程抽完所有卡片)如果一个正数的平方等于a,那么这个正数叫做 a 的算术平方根. 为了书写方便,我们把a 的算术平方根记作 a (板书: a 的算术平方根记作 a ).根号a被开方数(指准上图)看到没有?这根钓鱼杆似的符号叫做根号, a 叫做被开方数, a 表示a的算术平方根 .四、精讲精练精讲例:求下列各数的算术平方根:49(1);(2)0.0001.64(要注意解题格式,解题格式要与课本第68 页上的相同)精练1. 填空:(1)264 的算术平方根是 ______,即64 =______;因为 _____ =64,所以(2)因为 _____2=0.25 ,所以 0.25 的算术平方根是 ______,即0.25= ______;(3)因为 _____2=161616,所以的算术平方根是 ______,即=______. 4949492.求下列各式的值:(1)81 =______;(2)100 =______;(3) 1 =______;(4)9= ______;(5)0.01 =______;(6)32=______. 253.根据 112= 121,122= 144,132= 169,142= 196,152= 225,162= 256,172= 289,182= 324,192= 361,填空并记住下列各式:121= _______,144= _______,169= _______,196= _______,225= _______ ,256= _______,289= _______,324= _______ ,361= _______.(学生记住没有,教师可以利用卡片进行检查,并要求学生课后记熟)4. 辨析题:卓玛认为,因为( - 4) 2= 16,所以 16 的算术平方根是- 4. 你认为卓玛的看法对吗?为什么?五课堂小结,a 的算术平方根记作 a ,像钓鱼杆似的东西叫做根号, a 叫做被开方数.六、作业P75习题 1.6.1 平方根(第 2 课时)一、教学目标1. 通过由正方形面积求边长,让学生经历 2 的估值过程,加深对算术平方根概念的理解,感受无理数,初步了解无限不循环小数的特点.2.会用计算器求算术平方根 .二、重点和难点1.重点:感受无理数 .2.难点:感受无理数 .(本节课使用计算器,最好每个同学都要有计算器)三、合作探究1.填空:如果一个正数的平方等于a,那么这个正数叫做 a 的 _______________,记作 _______.2.填空:(1)因为 _____2= 36,所以 36 的算术平方根是 _______,即36= _____;(2)因为 (____)2=9,所以9的算术平方根是 _______,即9= _____;646464(3)因为 _____2= 0.81,所以 0.81的算术平方根是_______,即0.81(4)因为 _____2= 0.572,所以 0.572 的算术平方根是_______ ,即0.57=_____;2=_____.3.师抽卡片生口答 .(课前制作若干张卡片,一面是 a 的形式,一面是算术平方根的值,卡片中要包括121到 361 ,还要包括被开方数是分数、小数、a2等形式)(二)(看下图)这个正方形的面积等于 4,它的边长等于多少?谁会用算术平方根来说这个正方形边长和面积的关系?面积= 4这个正方形的面积等于1,它的边长等于多少?面积= 1用算术平方根来说这个正方形边长和面积的关系?(指准图)这个正方形的边长等于面积 1 的算术平方根,也就是边长= 1 (边讲边板书:边长= 1 ). 1 等于多少?生:等于 1. (师板书:= 1)(看下图)这个正方形的面积等于2,它的边长等于什么?(稍停)面积= 2因为边长等于面积的算术平方根,所以边长等于2(板书:边长= 2 ).(上面三个图的位置如下所示)边长= 1 =1边长=2边长=4=2面积= 1面积=2面积= 4421=1,那么 2 等于多少呢?(在 2 后板书:=?)求 2等于多少,怎么求?=,在 1 和 2 之间的数有很多,到底哪个数等于 2 呢?我们怎么才能找到这个数呢?我们可以这样来考虑问题,等于 2 的那个数,它的平方等于多少?第一条线索是那个数在 1 和 2 之间,第二条线索是那个数的平方恰好等于 2. 根据这两条线索,我们来找等于 2 的那个数.我们在 1和2之间找一个数,譬如找 1.3 ,(板书: 1.3 2=) 1.3的平方等于多少?(师生共同用计算器计算)1.69 不到 2,说明 1.3比我们要找的那个数小.1.3 小了,那我们找 1.5,1.5的平方等于多少?(师生共同用计算器计算)2.25超过 2,说明 1.5 比我们要找的那个数大.找 1.3小了,找 1.5又大了,下面怎么找呢?大家用计算器,算一算,找一找,哪个数的平方恰好等于2?2 等于1.41421356点点点,可见是一个小数,这个小数与我们以前学过的小数相比有点不同,有什么不同呢?第一,这个小数是无限小数(板书:无限). 2 是无限小数,又是不循环小数,所以 2 是一个无限不循环小数.除了 2 ,还有别的无限不循环小数吗?无限不循环小数还有很多很多,3、5、 6 、7 都是无限不循环小数(板书: 3 、5、6、7都是无限不循环小数).那怎么求 3 、 5 、 6 、 7 这些无限不循环小数的值呢?我们可以利用计算器来求. 四、精讲精练例用计算器求下列各式的值:(1)3 (精确到0.001 ); (2)3136 .(按键时,教师要领着学生做;解题格式要与课本上的相同)练习1.填空:(1)面积为 9的正方形,边长==;(2)面积为 7的正方形,边长=≈(利用计算器求值,精确到0.001 ) . 2.用计算器求值:(1)1849 =;(2)86.8624 =;(3) 6 ≈(精确到0.01 ) .3.做:(1)用算器算,并将算果填入下表:⋯0.62 5 6.2562.5625062500⋯⋯25⋯(2)察上表,你律了?根据你的律,不用算器,直接写出下列各式的:62500 =,6250000 =,0.0625=,0.000625 =.五、堂小无理数六、作:721. P。
人教版数学七年级下册6.1.1《算数平方根》教学设计2一. 教材分析《算数平方根》是人教版数学七年级下册第六章第一节的内容,主要介绍了算数平方根的概念、性质以及求法。
这部分内容是学生学习平方根的基础,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
本节课的教学内容主要包括以下几个方面:1.算数平方根的定义:一个非负数的正的平方根,叫做这个数的算数平方根。
2.算数平方根的性质:非负数的算数平方根只有一个,正数的算数平方根是正数,0的算数平方根是0。
3.求算数平方根的方法:利用平方根的性质,通过逐步逼近的方法求解。
二. 学情分析七年级的学生已经掌握了实数的基本概念,对平方根有一定的了解,但对其本质和求法还不够明确。
学生在学习过程中,需要通过实例来加深对算数平方根的理解,掌握求解方法,并能够运用到实际问题中。
三. 教学目标1.理解算数平方根的概念,掌握算数平方根的性质。
2.学会求解算数平方根的方法,提高运算能力。
3.能够运用算数平方根解决实际问题,培养解决问题的能力。
四. 教学重难点1.算数平方根的概念和性质。
2.求解算数平方根的方法。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法,通过实例引入,引导学生思考,激发学生的学习兴趣,培养学生的探究能力和合作精神。
六. 教学准备1.教学PPT。
2.练习题。
3.教学素材。
七. 教学过程1.导入(5分钟)利用一个实际问题引入,如“一块地的面积是36平方米,求这块地的长和宽分别是多少?”引导学生思考,引发对平方根的兴趣。
2.呈现(10分钟)通过PPT展示算数平方根的定义和性质,让学生初步了解算数平方根的概念。
3.操练(10分钟)让学生分组讨论,利用平方根的性质,求解一些具体的算数平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些练习题,检验学生对算数平方根的理解和掌握程度。
教师及时批改,给予反馈。
5.拓展(10分钟)引导学生思考:如何求解一个任意正整数的算数平方根?让学生通过探究,发现求解方法。
6.1.1平方根(第二课时)
知识与技能:运用夹值法估计数 的大小,,会比较两个数的算术平方根的大小
过程与方法:经历用计算器求一个非负数的算术平方根的过程,并发现被开方数与结果的小数点规律
教学重点 ,运用逼近法估计算术平方根的大小,会比较两个算术平方根的大小
教学难点 , 运用算术平方根 的大小比较方法解决实际问题
【活动一】知识回顾
正数x 满足x 2=a,则x 叫做a 的算术平方根
【活动二】新课导入 你能估计的大小吗?它会在一个什么范围内?越精确越好.
T :深入小组参与活动,倾听学生的交流,对学生的探究过程进行指导和帮助,引导对学生的探究结果进行总结和交流,在此基础上教师明确: 2是无限不循环小数,许多正有理数的算术平方根都是无限不循环小数,如
等 T :
2的大小
T :本次活动中要关注: =
=x a 时,当222Λ
41421356.12=Λ097801688724223730950481.41421356=2 14196196===x a 时,当 ?
2
2221<<Θ221<<∴2
25.124.1<<Θ5.124.1<<∴2242.1241.1<<Θ42
.1241.1<<∴22415.12414.1<<Θ415.12414.1<<∴96.14.12=25.25.12=9881.141.12=999396.1414.12=
a x a x ==,则即:24
1616===x a 时,当
①探究2大小的活动中,学生怎样初步估计2接近哪一个数; ②怎样利用无限逼近的方法将2的位数不断增加;
③在与学生沟通的过程中及时发现学生探究过程中的困难,给予及时指导; ④学生能否用自己的语言来谈出对2探究过程中采用的方法; ⑤学生能否对2的无限及不循环有所体会; ⑥能否感受到2与我们以前接触的数都不一样.
【活动三】探究新知
例1 试比较下列各组数的大小
⑴ ⑵ T :运用平方法比较上述各组数的大小
例2 用计算器计算下列各式的值
T :用150计算器模拟器展示方法,再用学生带来的计算器通过实物投影展示
例3 目前,户外活动中,刺激度排名榜首的是“蹦极”。
“蹦极”就是跳跃者站在高约40米以上(相当于10层楼高)的跳台上,把一端固定的长长的橡皮条绑牢跳下。
跳跃者在空中享受 “自由落体”。
某人将要参加 的“蹦极”运动的起跳点高度是34.3米,那么他在空中能享受 秒钟的“自由落体”。
(h=4.9t 2)
【活动四】拓展提高 探究1
利用计算器计算,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?
T :指导学生利用计算器计算并给予点评
154与7与6
(1)(2)3136)001.0(2精确到?
303,30000,300,03.043是多少吗的值说出根据你能的近似值你发现的规律说出为有效数字),并利用(经果保留用计算器计算
结论:
被开方数的小数点每向右(或左)移动2位,
它的算术平方根的小数点就向右(或左)移动1位;
探究2
小丽想用一块面积为400c㎡的正方形纸板片,沿着边的方向裁出一块面积为300c㎡的长方形纸板片,使它的长宽之比为3:2.不知能否裁出来,正在发愁,小明见了说”别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”,你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?
T:引领学生读题,解决问题
预设1:见比设k,方程思想
预设2:设长方形纸板的长为x cm,则宽为2
x
3cm
【活动五】当堂巩固
书P72 练习1、2
【活动六】整体感知
这节课同学们学到了什么知识?
1.你对正数a
的结果有怎样的认识呢?
的结果有两种情况:
①当a是完全平方数时,是一个有限数;
②当a不是完全平方数时,是一个无限不循环小数。
2.被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值;
3.利用计算器可以求出任意正数的算术平方根的近似值;
4.被开方数扩大(或缩小)与它的算术平方根的近似值;
5.怎样的数是无限不循环小数?
【活动七】布置作业
书P47 5、6、7、9。