发电机励磁调差电路正确分析
- 格式:pdf
- 大小:1.17 MB
- 文档页数:2
发电机励磁系统常见故障及对策分析摘要:电力资源作为非常重要的基础资源,为各行业的发展带来了极大的便利,当然,火力发电厂也不例外。
本文结合以往的调试和运行实践经验,分析了发电机励磁系统常见故障,并提出了解决故障的对策,以供参考。
关键词:火力发电厂;励磁系统;常见故障;对策前言火力发电厂能够顺利运行必然离不开发电机设备,发电机作为其非常核心的设备,运行质量关系着整个火力发电厂能否顺利运行。
若是发电机在运行的过程中,励磁系统发生故障,会影响电能生产的安全性,带来非常大的损失。
所以,在实际工作中,我们需要认识到发电机的重要性,尤其是要处理好励磁系统存在的各种故障问题,以保证励磁系统能够正常运行。
1.发电机励磁系统常见故障通过实践可以知道发电机励磁系统在工作的过程中,一般会出现的故障有:发电机误强励故障、发电机失磁故障、发电机励磁回路一点接地。
这些故障的出现都会导致发电机运行异常,让发电机不能正常运行。
下面对这些问题的具体表现及带来的影响做一下简要分析。
1.1发电机误强励故障发电机在实际运行的过程中出现事故,电压持续性降低时,励磁系统会强行快速地给发电机最大的励磁,从而让系统电压能够在第一时间恢复,这种强行施加励磁的行为,就是强励磁[2]。
强励对保持系统稳定运行,有效调节励磁系统各项参数等各方面都有着非常重要的作用。
在工作中,我们常常都会将关注的重点放在强励倍数是否满足标准要求,而忽视了误强励问题,影响了设备的安全稳定运行。
发电机误强励现象可以分成两种形式,即负载、空载误强励。
其中,前者体现在系统没有故障的条件下,并列运行机组的无功功率瞬间增加,工作人员无法手动进行控制,同时,机组声音出现异常,或者是机组过流问题的发生;而后者主要体现在启动发电机没有并入电网,导致电压持续升高,无法通过手动的方式进行控制,且机组声音出现异常。
无论是负载误强励,还是空载误强励故障的发生都是因为设备故障或者是操作不正确导致的。
励磁系统常见故障及其处理方法1、起励不成功原因1:起励按钮/按键接通时间短,不足以使发电机建立维持整流桥导通的电压。
处理方法:保持起励按钮持续接通5 秒以上。
原因2:发电机残压太低,却仍然投入“残压起励”,这样即使按起励按钮超过5 秒,也不会起励成功。
处理方法:切除“残压起励”功能,直接用辅助电源起励。
原因3:将功率柜的脉冲投切开关仍置于切除位置。
原因4:整流桥的交流电源未输入(励磁变高压侧开关或低压侧开关未合上)。
原因5:同步变压器的保险丝座开关未复位。
原因6:机组转速未到额定,而转速继电器提前接通,造成自动起励回路自动退出。
原因7:起励电源开关未合,起励电源未送入起励回路。
原因8:起励接触器未动作或主触头接触不良。
原因9:起励电源正负极输入接反,导致起励电流无法输入转子。
原因10:起励电阻烧毁开路。
原因11:转子回路开路。
原因12:转子回路短路。
原因13:始终存在“逆变或停机令”信号。
(近方逆变旋钮开关未复位;远方监控或保护的停机令信号未复位)原因14:灭磁开关控制回路的分闸切脉冲或分闸逆变信号始终保持。
原因15:调节器没有开机令信号输入。
原因16:可控硅整流桥脉冲丢失或可控硅损坏。
原因17:调节器故障原因18:调节器脉冲故障。
原因19:脉冲电源消失或电路接触不良原因20:灭磁开关触头接触不良。
2、起励过压原因1:励磁变压器相序不对。
原因2:PT 反馈电压回路存在故障。
原因3:残压起励回路没有正确退出原因4:调节器输出脉冲相位混乱。
3、功率柜故障原因1:风压低,风压继电器接点抖动。
处理方法:调整风压继电器行程开关的角度。
原因2:风温过高,温度高于50 度。
处理方法:对比两个功率柜,检查测温电阻是否正常。
原因3:电流不平衡,6 个可控硅之间均流系数<0.85。
处理方法:检查是否有可控硅不导通或霍尔变送器测量误差。
4、PT 故障条件:PT 电压>10%,任一相电压低于三相平均值的83%。
发电厂发电机励磁系统常见故障分析发布时间:2021-12-07T03:19:38.221Z 来源:《当代电力文化》2021年25期作者:吕良贤[导读] 伴随着国内社会经济的持续发展,各个行业对于电子资源的需求量大幅度提升吕良贤南宁交通资产管理有限责任公司广西南宁 530000摘要:伴随着国内社会经济的持续发展,各个行业对于电子资源的需求量大幅度提升,经济工作的持续进步以及人民生活的改善,都对现有电力的供应提出了更高的要求。
为了能够确保发电机处于正常运转的状态,那么内部的重要构成部分励磁系统应当得到全面化的维护与加强,最为关键的便是,确保其常见的故障问题得到分析,并采取科学的措施加以解决。
本文在接下来的环节中,将会对发电机励磁系统的常见故障问题展开分析,希望为有关发电厂工作人员提供参考,推动相关工作的进步发展。
关键词:发电厂;励磁系统;故障问题;应对措施我国国内经济的持续发展以及人民基础生活水平的提升,关键来自于电力资源的稳定供应,水力发电是我国电力结构中的重要组成部分,占据了不小的发电比例。
励磁系统故障问题产生的消极影响较大,因为它会导致发电机难以正常工作,所以直接导致相关安全事故问题的发生。
所以为了切实的避免这一问题,也就需要对发电机励磁系统的常见故障展开分析,采取有效的措施加以解决。
发电机励磁系统本身的结构存在一定的复杂性,在实际运转中可能遭遇一些因素影响而表现出问题,这需要对其做好处理。
一、简要分析发电机励磁系统的结构与作用励磁系统是构成发电机的重要组成部分,其安全可靠运行,对确保水电站及发电机正常运转具有重要作用。
在进一步展开后续主题内容分析之前,首先需要对发电机励磁系统的结构与作用展开分析,希望通过这些方面内容的分析,能够为有关人员提供参考:(一)关于励磁系统结构的分析励磁系统是供给同步发电机励磁电流的电源以及附属设备,包含了励磁功率单位以及励磁调节装置两个主要构成部分,所以有关人员需要明确这一概念。
发电机励磁故障分析及处理对策摘要:近年来,我国对电能的需求不断增加,发电厂建设越来越多。
水轮发电机运行时励磁回路直流电压约数百伏,励磁回路对地电压约为励磁电压的一半,转子绕组及励磁系统对地绝缘,当励磁回路发生一点接地时,不会构成对发电机的直接危害,可平稳停机后再排查故障点。
因此本文就发电机励磁故障及处理对策进行研究,以供参考。
关键词:发电机;励磁系统;故障引言电励磁直驱水电机组是我国水力发电机常用的机组,机组主传动链使用双列圆锥滚子轴承,整个传动轴系采用单主轴承、外圈旋转结构,内圈通过过盈固定到支撑锥轴上,发电机为电励磁的内转子、外定子布局。
1低励限制原理水力发电机励磁系统的主要原理为:励磁电压的控制权由励磁控制系统中的主环稳定器以及低励控制中的控制信号通过竞比门方式决定。
开始低励限制动作前,通过电压稳定器实现水力发电机励磁系统的控制;低励限制动作开始后,励磁控制由低励限制实现。
2发电机励磁故障2.1励磁AVR柜报警电气专业对励磁系统的相关报警进行检查,信息如下。
(1)AVR柜控制面板警报。
AVR柜控制面板显示“警报(Alarm)”“出错(Error)”,按故障时报警时刻的先后时序。
通过查阅报警(Alarm)的故障代码“25010”,提示励磁系统发生可控硅异常,同时从表2中获知,励磁AVR通道1(CH1)及AVR通道2(CH2)均发生故障,触发励磁故障动作跳闸(Trip)。
(2)AVR装置故障录波情况。
查阅AVR装置,确认在故障时刻AVR装置自带的故障录波功能录取了相关的数据波形记录,但记录的是数据文件,在装置显示器上无法查阅波形,需要导出文件后在电脑上用专用软件复原数据文件形成电气波形。
(3)发变组保护盘动作检查。
故障发生后,检查发变组保护盘(A盘、B盘)仅存在“Trip”“Alarm”指示灯亮,86T3出口继电器动作,无详细保护动作指示灯亮;控制面板仅记录低频保护动作信息。
检查发变组保护压板,发现0号机发变组保护盘改造后图纸中标注为“备用”的LP13压板存在手写字样“AVR联跳”且处于投入状态,但查阅保护图纸,发现LP13压板的联跳信息及回路在图纸中缺失,即存在图纸与实际跳闸回路不相符合的问题。
发电机励磁系统调试方案河南电力建设调试所鹤壁电厂二期扩建工程2×300M W 机组调试作业指导书HTF-DQ306目次1 目的 (04)2 依据 (04)3 设备系统简介 (04)4 试验内容 (05)5 组织分工 (05)6 使用仪器设备 (05)7 试验应具备的条件 (05)8 试验步骤 (06)9 安全技术措施 (10)10调试记录 (10)11 附图(表) (10)1 目的为使发电机励磁系统安全可靠地投入运行,须对励磁系统的回路接线的正确性、自动励磁调节器的性能和品质以及励磁系统所有一、二次设备进行检查和试验,确保励磁调节器各项技术指标满足设计要求,特编制此调试方案。
2 依据2.1 《电力系统自动装置检验条例》2.2 《继电保护和安全自动装置技术规程》2.3 《大、中型同步发电机励磁系统技术要求》2.4 《大型汽轮发电机自并励静止励磁系统技术条件》2.5 《火电工程调整试运质量检验及评定标准》2.6 设计图纸2.7 制造厂技术文件3 设备系统简介河南鹤壁电厂二期扩建工程同步发电机的励磁系统设计为发电机机端供电的自并励静态励磁系统,采用瑞士ABB公司生产的UNITROL5000励磁系统设备。
整个系统可分为四个主要部分:励磁变压器、两套相互独立的励磁调节器、可控硅整流桥单元、起励单元和灭磁单元。
在该套静态励磁系统中,励磁电源取自发电机端。
同步发电机的磁场电流经由励磁变压器、可控硅整流桥和磁场断路器供给。
励磁变压器将发电机端电压降低到可控硅整流桥所需的输入电压,为发电机端电压和磁场绕组提供电气隔离以及为可控硅整流桥提供整流阻抗,可控硅整流桥将交流电流转换成受控的直流电流提供给发电机转子绕组。
励磁系统可工作于AVR方式,自动调节发电机的端电压,最大限度维持发电机端电压恒定;或工作于叠加调节方式,包括恒功率因数调节、恒无功调节;也可工作于手动方式,自动维持发电机励磁电流恒定。
自动方式与手动方式相互备用,备用调节方式总是自动跟随运行调节方式,在两种运行方式间可方便进行切换。
发电机励磁系统及常见故障分析摘要:近年来人们用电量不断增加,促使电力系统发展速度加快,这也对发电机励磁系统提出了更高的要求。
励磁系统作为发电机重要组成部分,其运行的稳定性和可靠性直接关系到电力系统运行的安全。
因此文中从发电机励磁系统概述入手,并进一步阐述了发电机励磁系统中常见故障及解决对策,以此来保证发电机和电力系统安全、稳定的运行。
关键词:发电机;励磁系统;电力系统;常见故障1发电机励磁机逆励磁在正常运行状态的时候,发电机在升压时交流电压也会随之上升,而电流表、电压表指针所反映出来的内容刚好与之相反。
具体表现为,励磁电压表和电流表当中的指针会向反方向运转,而定子回路电压表和电流表指针会与之方向相同,这也证明了励磁机为反方向极性。
1.1 原因对于发电机励磁机出现逆励磁现象,其原因在不同的运行状况下也会存在一定差异,以下就将其分成两种情况:1.1.1在发电机正常运行过程中出现逆励磁一是在低负荷或者深度调峰运行过程中,发电机励磁电流偏小,如果负荷增加,也会随之增大电枢电流,形成电枢反应,进而会在一定程度上削弱励磁机磁场。
就励磁机磁场来说,通过自动调整或手动调整,励磁都不可能实现瞬时增加,那么在这种状况中就会抵消励磁机磁场,或者是变反。
二是发电机定子绕组在系统发生短路现象之后,会随之产生瞬时电压,如果励磁电压与原先的电压相反,那么就会直接被抵消,使之变反。
三是在断开励磁回路后再接通的话,励磁机也有可能会出现逆励磁现象,这主要是由于在励磁回路断开之后,其中的电流就会瞬间消失,而在某种因素的作用下,转子绕组电流方向在短时间内不会发生改变,这样就会改变其电枢正负极。
1.1.2 励磁机在升压过程中出现逆励磁一般情况下,还没有投入使用的发电机励磁都会比较弱,这样在电压试验的过程中如果接错了正负极,就会直接抵消剩余的励磁或者是改变方向,进而出现逆励磁现象。
1.2 处理措施在对逆励磁故障进行判断的过程中,虽然改变了励磁机的磁场极性,但还是可以建立相应的电压,因此就可以继续运行,只需要调整好励磁电压表和电流表的正负极,而且也不需要安装自动励磁装置。
发电机自动电压运行时励磁调节器调差系数的整定与试验作者:姚晋瀚来源:《中国科技纵横》2017年第22期摘要:本文以发电机自动励磁调节装置为研究对象,基于发电机自动励磁调节器作业原理,分析其装置用途、工作特性、调节特性、调差原理,继而探讨发动机励磁调节器调差系数的整定与试验。
关键词:发电机;自动励磁调节装置;调节;整定中图分类号:TM31 文献标识码:A 文章编号:1671-2064(2017)22-0083-021 发电机自动调节装置用途自动励磁调节装置作为自动励磁控制系统中最为重要的部分,主要用于对发电机电压电流的运行监测,根据预先设定的调节指令,向电源发出调节控制信号,继而完成控制操作。
励磁控制装置原理图如图1所示。
自动励磁调节装置可对发电机机端电压进行调节,发电机出口电压是励磁调节器输入量之一,从TV中机端电压可获取二次电压量,将其与给定值做出对比,获取偏移值△U,由此输出控制信号,从而改变晶闸管整流器触发角,对机组励磁电流进行相关的调整,使发电机端电压为预先规定值。
利用反馈系统,使励磁控制达到电压恒定值。
2 发电机励磁调节器工作要求励磁能源可维持发电机运行,满足故障工况下的运行需求;确保发电机端电压保持稳定,维持电压精度,使得并联机组分担功率的可靠性与稳定性;强励容量恒定,2倍强励倍数下,确保响应比为3.5倍/秒;欠励区域内发电机应保持稳定运行;保护机组过电压;以正阻尼规范机组振荡,确保机组动态平衡;较小时间常数下,对输入量变化做出快速响应;调节度精准无误,确保存在极小或不存在失灵区;确保发电机运行的稳定性,在系统调节上简便灵敏、稳定可靠。
3 发电机励磁调节器工作原理3.1 励磁调节器组成发电机励磁调节器有很多不同类型,但其框架类似。
以135MW发电机励磁调节器为例,其框架图如图2所示,由调差、比较单元、放大单元、触发单元等组成。
3.2 发电机励磁调节器调差系数的整定与试验发电机励磁调节器在自动电压调节方式(AVR)运行时,为使多台并联运行的发动机之间的无功功率合理分配或为补偿在发变组单元中主变压器的电压降,励磁调节器须要设置附加无功调差功能,来改变发电机电压调节特性。
发电厂发电机励磁系统常见故障分析发电厂发电机励磁系统是确保发电机正常发电的关键系统之一,其故障可能导致发电机失效、甚至造成发电机损坏。
本文将介绍一些发电机励磁系统常见故障,并分析其原因。
1. 励磁电源故障发电机励磁系统的首要故障就是励磁电源的问题。
一般来说,励磁电源故障可能包括电源电压过低、电源电压不稳定、电源线路接触不良等。
励磁电源故障将导致发电机失去励磁,无法维持磁场,从而无法产生电功率。
2. 自励磁场失效自励磁场失效指的是发电机由于线路接触不良等原因,无法自行形成磁场。
这种故障可能是由于励磁电源故障导致的,也可能是由于多次短暂的停机导致的。
一旦发电机失去了自励磁场,就需要采用外部电源来恢复磁场,否则会导致发电机无法正常工作。
3. 稳压系统故障发电机的稳压系统是确保输出电压稳定的重要系统。
在励磁电源稳定的情况下,如果稳压系统出现问题,将导致输出电压波动或不稳定,甚至无法输出电压。
这种故障可能是由于调节电路故障、传感器故障、控制回路故障等引起的。
4. 电极接触不良在发电机的励磁系统中,电极之间的电接触情况也可能导致故障。
通常情况下,电极之间的接触不良可能导致电极和绕组受损,影响励磁电流。
电极接触不良也可能会导致未能正常工作的再生型励磁系统。
励磁机由于老化、磨损等因素可能导致故障。
励磁机故障通常表现为输出电压不稳定、输出功率下降等情况。
6. 翻转失效在某些发电机励磁系统中,翻转是确保磁场方向正确的关键部分。
当翻转失效时,磁场可能会发生方向改变,导致发电机无法正常工作。
关于励磁调节的作用及应用调试探究发表时间:2017-05-27T10:40:08.800Z 来源:《电力设备》2017年第5期作者:王博[导读] 摘要:励磁调节对于电力系统的静态稳定性和动态稳定性起着至关重要的作用。
(新疆华电发电有限公司红雁池电厂新疆 830047)摘要:励磁调节对于电力系统的静态稳定性和动态稳定性起着至关重要的作用。
它是同步发电机和同步调相机的励磁进行自动调节,电力系统维持母线电压及稳定分配机组间无功功率和提高输电线路传输能力的重要措施。
随着电网规模的不断扩大,电力系统稳定的问题越来越突出,对电力系统稳定分析计算的要求也越来越高。
进行励磁系统模型和参数测试,得到符合实际的模型和参数,对于提高电网的安全稳定运行具有重要意义。
本文对励磁调节的原理作用及我厂励磁调节器的静态定标试验、动态空载与阶跃试验的方法进行简要阐述。
关键词:励磁调节;定标试验;空载;阶跃试验前言新疆红雁池电厂4号机组采用HWLT-4型微机励磁调节器由两套独立的微机通道和一套独立的模拟通道组成,每个微机通道分为两个环:电压环和电流环。
电流环取转子电流信号进行闭环,电压环取发电机端电压信号进行闭环。
为保证调节的快速性,系统连续采样,在一个周期内完成各种运算。
电压环由机端电压与给定值的差值进行、或运算。
电流环由转子电流与给定的差值进行、运算。
在正常调节的同时进行各种限制、保护的判断并完成各种功能。
1.励磁系统的概述1.1励磁系统的定义励磁系统是同步发电机中的重要元件,它不仅能为同步发电机提供电机磁场电流也能供给同步发电机励磁电源。
它既包括调节与控制元件,又包括磁场放电装置、保护装置等。
通常来说,功率输出及其相关的控制元件组成了电力工程中所使用的励磁系统。
使人们在运行电力系统时能够更好地保护并控制发电设施,使之不受外界因素的干扰,从而避免出现使用故障问题。
励磁系统目前在电力工程建设中处于重要的位置,并且已在实际工作中得到广泛应用,可以提高电力系统的动、静态稳定性。
浅谈同步发电机励磁系统及常见故障分析
同步发电机是一种常见的发电机,其工作原理是通过励磁系统激励电机产生磁场,使电机在旋转时产生电能。
同步发电机的励磁系统是至关重要的组成部分,它能够帮助电机工作更加稳定、高效。
同步发电机的励磁系统主要包括励磁电源、励磁转换装置、励磁调速器、控制电路和接地电阻。
其中励磁电源提供励磁电流,励磁转换装置将励磁电流调整成适合电机运行的电流,励磁调速器控制励磁电流的大小和方向,控制电路将控制信号传输到励磁调速器,而接地电阻则是为了防止涡流损失和电压浪涌。
同步发电机的故障会给电力系统带来很大的影响,以下是常见的同步发电机故障及其分析:
1. 励磁断路器故障
励磁断路器是励磁系统中最关键的元件之一,如果励磁断路器出现故障,整个励磁系统将无法正常工作。
故障原因可能包括接触不良、烧毁或机械故障。
励磁控制器主要用于控制励磁电流和电场强度大小,如果励磁控制器出现故障,电机可能无法正常运行或励磁过强导致电机过热。
故障原因包括电子元件故障、线路问题或者不恰当的调整参数。
3. 励磁转换装置故障
励磁转换装置主要用于将直流电源转换为交流电源,并将电流调整到合适的大小。
如果励磁转换装置出现故障,可能会导致励磁电流过强或过弱,从而影响电机的稳定性。
4. 接地电阻故障
接地电阻主要用于限制电机电流和电压的增长率,防止涡流损失和电压浪涌。
如果接地电阻出现故障,将会使电机运行不稳定,甚至可能导致电机损坏。
故障原因也可能是接触不良或损坏。
总结来说,同步发电机励磁系统的故障由于涉及到电子元件、线路、机械构造等多个方面,因此必须对励磁系统进行定期检查和维护,以确保其长期稳定运行。
东风4B型内燃机车励磁电路故障原因分析与对策黄水泉(广梅汕铁路龙川机务段广东龙川邮编517300)摘要:对东风4B型内燃机车励磁电路中常见故障加以分析阐述,从而提出解决DF4B型内燃机车励磁电路故障的几点处理措施。
为全面提高机车质量技术保证,为机车运用安全运行提供了坚实后盾。
关键词:内燃机车励磁电路常见故障原因分析对策措施一、概述我段是广铁集团公司内燃机车的中修基地之一,共配属东风4B型内燃机车63台,每年中修机车能力达到34台。
而东风4B型内燃机车励磁电路故障频繁发生,严重影响正常的运输生产秩序。
经过认真地分析励磁电路工作原理,在不断采取相应的对策,有效地实施措施,使励磁电路常见故障得到了有效控制,使机车质量不断提高,达到了机车质量有序可控。
二、励磁电路常见故障与原因分析(一)Rlcf1电阻卡箍热胀冷缩,机车正常励磁时功率反复突变。
Rlcf1为同步牵引发电机的最大励磁电流调节电阻,串接于测速发电机(CF)励磁电路(主发的一级励磁电路)中。
其接线原理图如图1所示:图1Rlcf1接线电原理图Rlcf1电阻的规格型号为ZG11—200A.200Ω,而电阻的实际通过电流为0.16至0.50A左右。
当油马达电阻(Rgt)处于增载极限位时,电路电流约为0.50A,由CF他励绕组E1-E2的电阻值(约160欧姆)可以算出Rlcf1的有效电阻(由641#、642#线短接后的电阻)值:Rlcf1(有效)=110/0.50-160=104(A)其阻值为总电阻的52%。
虽然实际通过电阻电流小于电阻的设计额定电流(约0.54A),但由于管形珐琅电阻的特点,总电阻越大,其电阻丝的横截面积则越小。
这样一方面不利于活动调节卡箍触点的可靠接触;另一方面也不利于电阻的局部散热。
当电阻的有效部分通过电流发热至一定程度时,因卡箍的热胀系数大于电阻瓷管,加上触点的紧余量非常有限,造成图1中触点A虚接,电流由触点B通过,呈电阻制动励磁状态,电阻激增,电流变小,机车功率严重不足。
励磁电路的分析与计算公式引言。
在电气工程中,励磁电路是一种常见的电路结构,用于产生磁场以激励电磁设备如发电机、变压器等。
励磁电路的分析与计算是电气工程中重要的内容之一,本文将介绍励磁电路的基本原理、分析方法和计算公式。
一、励磁电路的基本原理。
励磁电路是通过电流在线圈中产生磁场,从而激励电磁设备工作的电路。
在励磁电路中,通常包括电源、电阻、电感和磁场等元件。
电源提供电流,电阻限制电流,电感储存能量,磁场则是励磁的目标。
二、励磁电路的分析方法。
励磁电路的分析方法主要包括基本电路分析方法和磁场分析方法。
基本电路分析方法包括欧姆定律、基尔霍夫电流定律和基尔霍夫电压定律等。
磁场分析方法包括磁通连续性方程和安培环路定律等。
1. 欧姆定律。
欧姆定律是电路分析中最基本的定律之一,它描述了电流、电压和电阻之间的关系。
欧姆定律的数学表达式为:\[V = I \times R\]其中,V表示电压,I表示电流,R表示电阻。
2. 基尔霍夫电流定律。
基尔霍夫电流定律是描述电流在电路中分布和流动的定律。
它表明了在电路中节点处的电流代数和为零。
基尔霍夫电流定律的数学表达式为:\[\sum_{k=1}^{n} I_k = 0\]其中,n表示节点的数量,I_k表示第k个节点处的电流。
3. 基尔霍夫电压定律。
基尔霍夫电压定律是描述电压在闭合回路中分布和变化的定律。
它表明了在电路中闭合回路中各段电压代数和为零。
基尔霍夫电压定律的数学表达式为:\[\sum_{k=1}^{n} V_k = 0\]其中,n表示闭合回路的数量,V_k表示第k个闭合回路中的电压。
4. 磁通连续性方程。
磁通连续性方程描述了磁场在闭合回路中的分布和变化。
它表明了在闭合回路中磁通的代数和为零。
磁通连续性方程的数学表达式为:\[\sum_{k=1}^{n} \Phi_k = 0\]其中,n表示闭合回路的数量,Φ_k表示第k个闭合回路中的磁通。
5. 安培环路定律。
安培环路定律描述了磁场在闭合回路中的分布和变化。
火电厂发电机调差率实验及简单计算方法解析赵祖光发布时间:2021-08-17T05:43:08.917Z 来源:《电力设备》2021年第6期作者:赵祖光[导读] 本文通过惠州某火电厂发电机励磁系统调差率实验实测对调差率原理进行进一步解析,并介绍一种简单计算方法,对进一步加深励磁系统原理理解有一定的借鉴意义。
赵祖光(中国神华能源股份有限公司惠州热电分公司广东惠州 516000)摘要:本文通过惠州某火电厂发电机励磁系统调差率实验实测对调差率原理进行进一步解析,并介绍一种简单计算方法,对进一步加深励磁系统原理理解有一定的借鉴意义。
关键词:大型火电厂;励磁系统;调差系数;1 发电机调差率基本原理发电机调差系数即发电机调差率,通过在A VR测量回路引入一与无功电流成比例的电压,使机端电压随无功的改变而改变。
根据国标《0-DLT583大中型水轮发电机静止整流励磁系统及装置技术条件》对发电机电压调差率的描述:指在自动电压调节器调差单元投入、电压给定值固定、功率因数为零的情况下,无功电流变化所引起的发电机端电压的变化率,用任选亮点无功功率值下的电压变化率除以两点的电流变化率的百分数来表示:发电机电压调差率:现代励磁控制系统稳态增益很大,自然调差率很小,等同于无差调节,对于机端直接并联运行的发电机组,为使无功能稳定分配,一般采用正调差。
对于大型火电或水电机组,一般采取在高压侧并联方式,由于升压变压器电抗较大,发电机无功负荷增大时,主变无功消耗增加,高压侧母线电压下降。
变压器压降计算公式:式中、均以发电机视在容量为基值,、为折算至发电机侧变压器电阻、电抗标幺值。
所以为补偿变压器无功压降,大型发电机组励磁系统调差均设置为负值。
2 发电机调差率试验根据《DL T 843-2010 大型汽轮发电机励磁系统技术条件》,发电机电压调差率及静差率为励磁系统型式实验,为机组投运必做项目。
在工程实践中,可以采用甩无功功率测量方法,也可采用推算法来计算,但更多采用无功间接调整法。