壳聚糖的结构、性质及其应用--综述
- 格式:pdf
- 大小:171.70 KB
- 文档页数:5
壳聚糖简介壳聚糖的化学名为β-(1,4)- 2 -氨基- 2 -脱氧-D-葡萄糖,是甲壳素脱乙酰甲壳素经过脱乙酰度的壳聚糖产品,超过55%。
事实上,脱乙酰甲壳素的N-程度均大于在稀溶液中的酸溶液55%。
N -脱乙酰度达70%之上,可作为工业用品。
这已经看到,壳聚糖和N -甲壳素脱乙酰化程度的差异是不同的。
壳聚糖(CS)是一类新型的优良的性能和普遍的用途的材料,其生物活动性表现出优异的吸附,透明,可以成为膜状结构,多孔可以帮助吸除水分和多孔使其不易挥发具备保湿的性能,纤维。
CS的优点,例如,止血,抗菌活性,时间久了自己可以降解掉,壳聚糖在生物体内可以存在,无毒性,药物损伤和具有抗菌的作用伤口愈合作用,由于其独特的性质,可应用于药物控制释放载体[29]。
因为小,低粘度的壳聚糖的溶解性能,力学性能差,提出了阳离子聚电解质壳聚糖的性质,所以依赖较强的酸碱度,这些劣势使纯壳聚糖溶液电纺很难的。
当前,电纺一般采用壳聚糖和一些聚合物共混进行,如壳聚糖/聚乙烯醇(PV A/CS)[30]、壳聚糖/丝素(CS/SF)[31]、壳聚糖/聚氧化乙烯(CS/PEO)[32]等,这些高分子化合物的壳聚糖含量大多小于43%,但随着CS含量的继续增加,使溶液的浓度稀释,电纺纤维形态的变化,开始出现液滴和主轴,并伴有纤维纠缠和折断现象。
壳聚糖的性质壳聚糖(CS)的制备方法和原料的不同,使壳聚糖固体出现灰白色或半透明的白色,非晶特性。
它的分子数从数十万到数百万之间到大不相同,CS的溶解性对酸碱性的要求很严格,可以溶于稀酸盐这种酸性溶液,如无机酸,无机盐和大多数有机酸,通常不溶于稀的磷酸和硫酸,更不溶于碱性溶液和中性的水。
在较稀的酸溶液中壳聚糖能够少量溶于稀酸溶液中,壳聚糖通常是现配现用的,因为它的主链会因为溶液呈现酸性而缓慢水解,使溶液的粘度逐渐降低。
壳聚糖大分子中存在很多羟基和氨基,它们的化学反应活性都很强,使壳聚糖能在特定条件下反应生成具有不同性能的衍生物,应用范围得到扩大。
壳聚糖的应用领域介绍1.1 壳聚糖及其结构特点壳聚糖(Chitosan)是甲壳素(Chitin)脱乙酰基后的产物,是甲壳素最基本、最重要的衍生物。
甲壳素又名甲壳质、几丁质,化学名为(1,4)—2—乙酰胺—2—脱氧—β—D—葡聚糖,主要存在于虾、蟹、蛹及昆虫等动物外壳以及菌类、藻类植物的细胞壁中。
节肢类动物的干外壳约含20~50%甲壳素。
自然界中甲壳素有三种结构:α、β、γ,其中最为常见、普通的是α型。
地球上每年甲壳素的生物合成量为数十亿吨,是产量仅次于纤维素的天然高分子化合物。
下图1-1是甲壳素和壳聚糖的结构:图1-1 甲壳素、壳聚糖分子的结构示意图Fig.1-1 The configuration schematic of chitin and chitosan 纯净的甲壳素和壳聚糖均为白色片状或粉状固体,比重0.3,常温下能稳定存在。
甲壳素分子之间存在强烈的氢键作用,使得甲壳素形成高度的结晶结构,因而甲壳素分子高度难溶。
甲壳素不溶于水及绝大多数有机溶剂,也不溶于稀酸、稀浓碱,只溶于浓酸和某些溶剂。
壳聚糖分子的活性基团为氨基而不是乙酰基,因而化学性质和溶解性较甲壳素有所改善,可溶于稀酸、甲酸、乙酸,但也不溶于水和绝大多数有机溶剂。
由于氨基和羟基比较活泼,壳聚糖的化学性质较甲壳素活泼,可以发生多种化学反应,比如烷基化、酰基化反应等等。
1.2 壳聚糖及其衍生物产品的应用壳聚糖及其衍生物由于其可再生性、生物相容性以及结构中的多种活性基团,具有多种优良的性质,已经广泛应用于化妆品、食品、医药、农业、环保等多个行业中。
1.2.1 在环保中的应用壳聚糖及其衍生物能够通过分子中的氨基和羟基与多种金属离子形成稳定的整合物且可帮助微粒凝聚,故广泛用作化工、轻工纺织等废水处理中的吸附剂和絮凝剂。
壳聚糖作为吸附剂和絮凝剂,能够有效地捕集溶液中的重金属离子和有机物,并可以抑制细菌生长,使污水变清,特别是对于汞、铬、铜、铅、钴、锌和砷等元素的离子有明显的吸附滤除作用。
壳聚糖的生物学特性与应用壳聚糖是一种由葡萄糖基单元组成的生物高分子,在自然界中广泛存在于贝壳、虾、蟹等海洋生物的外壳中。
壳聚糖具有许多生物学特性,如生物相容性、生物可降解性和生物活性,因此被广泛研究并应用于医药、食品、化妆品、环境保护等领域。
作为一种生物高分子,壳聚糖的生物相容性非常好,具有良好的组织相容性和生物降解性。
这些特性使得壳聚糖被广泛应用于医药领域。
例如,在制备缓释药物领域中,壳聚糖可以用于制备低毒性、高效率的缓释药物;在制备组织工程材料中,壳聚糖可以与其他生物材料结合,制备具有良好生物相容性的组织工程材料,如人工软骨、人工骨等。
另外,壳聚糖还具有一定的生物活性,如抗菌活性、抗氧化活性和免疫调节活性。
因此,在食品、化妆品以及保健品领域也有广泛应用。
例如,在制备食品保鲜剂领域中,壳聚糖可以作为天然保鲜剂,将食品的存储寿命延长;在制备化妆品中,壳聚糖可以作为天然保湿剂,增强化妆品的保湿效果。
此外,壳聚糖还具有对环境的保护作用。
由于壳聚糖可降解性好,且在自然界中较易被分解和吸附,因此是一种很好的环保材
料。
在环保领域中,壳聚糖可以用于处理水中的重金属离子和有
机物,以及生物膜的制备等。
总的来说,壳聚糖具有广泛的应用前景。
由于其生物相容性好、生物可降解性强、生物活性高和对环境的保护作用,使得壳聚糖
在医药、食品、化妆品、环保等领域中得到广泛应用。
未来,壳
聚糖的应用领域还将不断扩展,成为一种重要的生物高分子材料。
羧甲基壳聚糖的性能及应用概况一、本文概述《羧甲基壳聚糖的性能及应用概况》这篇文章旨在全面介绍羧甲基壳聚糖(Carboxymethyl Chitosan,简称CMC)的基本性能及其在各个领域的应用情况。
羧甲基壳聚糖是一种由壳聚糖经过化学改性得到的水溶性多糖衍生物,具有良好的水溶性、生物相容性、生物可降解性和独特的物理化学性质。
由于其独特的性质,羧甲基壳聚糖在医药、食品、环保、农业和化妆品等多个领域得到了广泛应用。
本文将系统介绍羧甲基壳聚糖的基本性质、合成方法、改性技术,以及在不同领域中的应用实例和研究进展,以期为相关领域的研究人员和企业提供有价值的参考信息,推动羧甲基壳聚糖在各领域的应用和发展。
二、羧甲基壳聚糖的基本性质羧甲基壳聚糖(Carboxymethyl chitosan,简称CMC)是一种重要的壳聚糖衍生物,具有一系列独特的物理化学性质。
其最基本的性质源于其分子结构中的氨基和羧基官能团,这些官能团赋予了CMC出色的水溶性、离子交换能力和生物活性。
羧甲基壳聚糖的溶解性相较于未改性的壳聚糖有了显著提升。
由于羧甲基的引入,CMC在水中的溶解度大大增加,可以在广泛的pH值范围内溶解,这使得其在各种水溶液体系和生物应用中具有更大的灵活性。
CMC具有良好的离子交换能力。
其分子中的羧基可以发生电离,产生带有负电荷的离子,从而与带有正电荷的离子进行交换。
这种离子交换性质使得CMC在重金属离子吸附、水处理、药物载体等领域具有广泛的应用前景。
羧甲基壳聚糖还表现出良好的生物相容性和生物活性。
其分子结构中的氨基和羧基可以与生物体内的多种物质发生相互作用,如蛋白质、多糖、核酸等,从而显示出良好的生物相容性。
其生物活性使得CMC在生物医药、组织工程、生物传感器等领域具有潜在的应用价值。
羧甲基壳聚糖的基本性质使其在多个领域具有广泛的应用前景。
随着科学技术的不断发展,对CMC的研究和应用将会越来越深入,其在各个领域的应用也将不断拓展。
壳聚糖的应用及发展壳聚糖是一种天然产物,由大自然中的有机物壳聚糖骨架构成,是壳类动物、甲壳动物和真菌细胞的主要组分。
壳聚糖在近年来得到越来越多的关注,并在各个领域中得到广泛的应用和发展。
首先,在医药领域,壳聚糖具有良好的生物相容性、生物可降解和生物活性。
因此,壳聚糖被广泛应用于药物传递系统中,可以包裹和保护药物,提高药物的稳定性和口服吸收率。
同时,壳聚糖也可以作为生物材料被用于修复和重建组织,如骨骼和软组织。
此外,壳聚糖还具有抗菌、抗病毒和抗肿瘤等活性,成为药物研发的重要组成部分。
其次,在食品工业中,壳聚糖被用作食品添加剂,用于增稠、乳化、保鲜、防腐等功能。
壳聚糖具有良好的胶凝性和稳定性,可以用于制备果冻、酱料、甜品等食品,提高食品品质和口感。
此外,壳聚糖还可以用于纳米包装食品,增加食品的存储期限和安全性。
再次,在环境保护领域,壳聚糖具有吸附重金属离子、染料、有机污染物等优良性能。
因此,壳聚糖被广泛应用于废水处理中,可以用来提取和回收有价值的金属离子,同时减少废水对环境的污染。
此外,壳聚糖还可以用于土壤修复,提高土壤的肥力和营养含量。
最后,在纺织工业中,壳聚糖被用作纺织品的功能改性剂。
壳聚糖可以与纤维表面发生化学反应,具有改善纤维表面性能、增强纤维强度和耐磨性的作用。
此外,壳聚糖还可以用于制备智能纺织品,如防水透气、阻燃、抗菌等功能纺织品,提高纺织品的附加值和竞争力。
总之,壳聚糖作为一种天然产物,在医药、食品、环境保护和纺织等领域中具有广泛的应用和发展潜力。
随着科技的进步和人们对可持续发展的关注,壳聚糖的应用和研究也将不断拓展,为人类的生活和健康带来更多的好处。
壳聚糖的应用及发展单位:贵阳中医学院姓名:代奎学号;s20085311019摘要:高分子缓控释材料因其原材料来源广泛药剂应用能力强受环境影响因素多而成为调节药物释放载体材料的研究重点,极具发展前景分类祥述了壳聚糖的性质,生物活性,抗菌性,衍生物以及它们的性能特点和应用,并简明介绍了壳聚糖的研究价值与动向。
关键词:壳聚糖;降解;抗菌性;缓释材料;衍生物壳聚糖(chitosan)又名β-1,4聚葡萄糖胺,是迄今为止发现的唯一天然碱性多糖,具有良好成膜性、安全性、生物降解性,在化工、食品、农业等领域有着广泛的用途。
壳聚糖是一种新型的天然医用生物材料虾蟹类作为壳聚糖的原料,在我国具有分布量大,资源丰富的特点,从环保经济可持续发展的角度来考虑,1)壳聚糖作为一种天然的材料不仅无毒无污染,而且还具有很好的生物降解性和相容性因此非常有必要加大对壳聚糖的研究,以开发更多的产品本文综述了壳聚糖的结构性质制备体内降解过程及其在生物医用材料的应用等方面。
一、壳聚糖的生物活性壳聚糖是一种天然无毒可生物降解的化合物,与机体之间有良好的生物相容性主要壳聚糖的研究进展物活性有:(1)壳聚糖属天然高分子化合物,其分子链上的游离氨基在弱酸溶中结合一个质子,生成阳离子聚合体,有很强的吸附能力,是一种良好的絮凝剂(2)带有正电荷的壳聚糖与带有负电荷的粘多糖蛋白多糖等相互发生静电作用,这一特性是相当有意义的,因为大量的细胞浆和生长因子的移动都和粘多糖有关,特别是对于肝磷脂和类肝素硫酸盐,包含有壳聚糖和粘多糖的支架借助于细胞繁殖可以维持和促进生长因子分泌(3)壳聚糖可以做成不同的几何结构,例如容易形成多孔结构,多孔支架可用于体内细胞生长和骨重建(4)壳聚糖具有抗菌性,研究表明它可以减缓实验白兔金葡萄球菌引起的骨髓炎感染壳聚糖在细菌细胞膜表面可以抑制生物合成,破坏穿过细菌细胞膜的能量传输,加快细菌的死亡此外,壳聚糖还可作为药物释放载体,如与羟基磷灰石等复合能够持续释放万古霉素和磷霉素,在骨科感染疗程中发挥作用2)二、壳聚糖的抗菌性壳聚糖具有广泛抗菌性, 对几十种细菌和霉菌生长都有明显的抑制作用。
壳聚糖性状:白色、无毒、无味、无定形半透明固体,溶于酸、不溶于水和碱、也不溶于一般有机溶剂,于185°C分解。
用途:在食品领域:用作食品添加剂、增稠剂、果蔬保鲜剂、果汁澄清剂、成形剂、吸附剂和保健食品等;在医药、保健品领域:由于壳聚糖无毒, 有很好的生物相容性、生物活性和可生物降解性, 而且具有抗菌、消炎、止血、免疫等作用,可用作人造皮肤、自吸收手术缝合线、医用敷科、人工骨、组织工程支架材料、免疫促进剂、抗血栓剂、抗菌剂、制酸剂和药物缓释材料;由于壳聚糖的纯天然活性及无毒副作用,对人体有良好的亲和性,可螯合重金属,调节人体PH值,增强免疫活性细胞的质量和数量,强化肝功能,改善消化机能,降血脂、降血糖、抑制肿瘤转移,并能吸附和络合重金属并排出体外等等,被大力应用于保健食品和药品添加剂;在环境保护领域:壳聚糖及其衍生物是很好的絮凝剂,可用于废水处理及从含金属废水中回收金属;在纺织印染领域:用作媒染剂、保健织物、上浆剂、印染助剂等;在农业领域:用作生长促进剂、生物农药、饲料添加剂、种子处理等;在烟草领域:用作烟草薄片胶粘剂、低焦油过滤嘴等。
高密度壳聚糖性状:无毒、无味、类白色或淡黄色粉末状。
用途:高密度壳聚糖的密度(≥0.6g/ml)是普通型壳聚糖的2-3倍,相同体积时其吸附油脂的能力是普通壳聚糖的3倍以上,一般只需服用1粒胶囊,能短时间在胃酸条件下速溶并吸附大量的油脂、胆固醇和氯离子,在肠道时凝絮而不被吸收而被直接排出体外,达到减肥、降血脂、降血压的目的,大力应用于保健食品和药品添加剂。
水溶性壳聚糖性状:白色或类白色、无味、无定形、半透明片状或粉末状,遇水即溶,水溶液清澈透明,性质稳定。
用途:水溶性壳聚糖是从壳聚糖经羧化改性而制成,易溶于水,性质稳定,具有良好的吸湿、保湿、调理、抑菌等功能。
适用于润肤霜、淋浴露、洗面奶、摩丝、高档膏霜、乳液、胶体化妆品等;同时也适用于食品、果蔬保湿、保鲜剂、污水处理絮凝剂、药物缓释剂、无毒粘合剂、印染、造纸助剂等领域产品。
壳聚糖在药物缓释系统中的应用壳聚糖是一种多糖类化合物,由葡萄糖和壳聚糖酸组成。
它具有生物相容性、生物可降解性和低毒性等特性,因此在药物缓释系统中得到了广泛的应用。
本文将重点讨论壳聚糖在药物缓释系统中的应用。
1. 壳聚糖的特性壳聚糖具有多种优异特性,使其成为理想的药物缓释系统载体。
首先,壳聚糖具有良好的生物相容性和生物可降解性,可以在体内快速降解而无毒副作用。
其次,壳聚糖分子结构规整,具有较大的表面积和丰富的官能团,可以与药物分子进行多种相互作用,如静电相互作用、氢键或疏水作用。
最后,壳聚糖可以通过改变分子结构、分子量和孔结构等方法来调控其生物降解性和溶解度,以满足不同药物的缓释需求。
2. 壳聚糖作为药物缓释系统载体的应用壳聚糖可以作为药物缓释系统中的载体,实现药物缓慢释放,提高药物疗效和减少药物副作用。
壳聚糖的缓释机制主要有以下几种:2.1 壳聚糖微球缓释系统壳聚糖微球是一种常用的药物缓释系统。
通过控制微球的粒径、孔隙和组分,可以实现药物的缓慢释放。
在制备过程中,可以将药物直接包裹在壳聚糖微球中,或者将药物与壳聚糖交联形成复合微球,从而实现药物的稳定包埋和缓慢释放。
壳聚糖微球可以通过肠道给药、局部给药和靶向给药等方式实现药物的定向释放,减少剂量和频率。
2.2 壳聚糖薄膜缓释系统壳聚糖薄膜是一种新型的药物缓释系统,可以将药物包裹在壳聚糖薄膜中,形成壳聚糖-药物复合物。
壳聚糖薄膜具有较大的表面积和渗透性,可以实现药物的缓慢释放。
此外,壳聚糖薄膜还可以通过微孔调节药物的释放速度和释放行为,以满足不同药物的缓释需求。
2.3 壳聚糖纳米颗粒缓释系统壳聚糖纳米颗粒是一种新型的药物缓释系统,具有较小的粒径和较大的比表面积。
壳聚糖纳米颗粒可以通过改变壳聚糖和药物的质量比、表面修饰和包覆技术等方式来调控药物的缓释性能。
此外,壳聚糖纳米颗粒还可以通过改变药物在颗粒内的位置,实现药物的逐渐释放和稳定性控制。
3. 壳聚糖在药物缓释系统中的优势和挑战壳聚糖作为药物缓释系统的载体具有许多优势。
壳聚糖与聚丙烯酸的化学结构及物理性质比较壳聚糖与聚丙烯酸是两种常见的生物材料,它们在许多应用领域具有广泛的用途。
本文将对壳聚糖和聚丙烯酸的化学结构和物理性质进行比较,并探讨它们的特点和应用前景。
壳聚糖是一种多糖类化合物,由N-乙酰葡萄糖胺和葡萄糖组成。
它具有线性的聚合物结构,其中N-乙酰葡萄糖胺和葡萄糖单元通过β-(1→4)糖苷键连接。
壳聚糖是天然的生物高分子材料,在海洋生物中广泛存在,如虾、螃蟹的外壳和昆虫的外骨骼等。
其化学结构中的羟基和胺基使得壳聚糖具有良好的生物相容性和生物可降解性。
聚丙烯酸是一种合成的聚合物,由丙烯酸单体通过自由基聚合反应得到。
它通常以无色结晶或玻璃状固体存在,其化学结构中含有大量的羧基。
聚丙烯酸的聚合度和结构可以通过聚合反应的条件(如反应时间、温度和引发剂类型)进行调控,从而获得不同分子量和架构的聚丙烯酸。
从物理性质的角度来看,壳聚糖和聚丙烯酸具有一些共同点,同时也存在一些差异。
首先,壳聚糖和聚丙烯酸都是水溶性的高分子材料,能够在水中形成胶体溶液。
其次,壳聚糖和聚丙烯酸都可以呈现凝胶态,形成三维网络结构。
这种凝胶结构可以通过物理或化学交联实现,用于制备各种材料。
然而,壳聚糖和聚丙烯酸在许多方面也存在差异。
首先,壳聚糖具有更高的生物相容性,不会引起明显的免疫反应和细胞毒性。
它可以在生物体内发挥生物活性,如促进伤口愈合、抗菌和抗氧化等。
而聚丙烯酸的生物相容性相对较低,需要通过改性或与其他生物材料的组合来改善其生物相容性。
另外,壳聚糖和聚丙烯酸在应用领域上也有一些差异。
壳聚糖主要用于医药领域,如制备药物载体、伤口敷料和组织工程支架等。
它还可以用于食品工业,如添加剂和包装材料。
而聚丙烯酸广泛应用于水净化、涂料、纺织品和生物传感器等领域。
其化学结构中的羧基可以与其他物质发生反应,具有一定的功能化修饰性能。
综上所述,壳聚糖和聚丙烯酸作为常见的生物材料,具有不同的化学结构和物理性质。
壳聚糖化学组成结构化学性质
组成结构:
壳聚糖是甲壳素经脱乙酰化处理后的产物,即脱乙酰基甲壳素,学名聚氨基葡萄糖,又名可溶性甲壳质,化学名称为(1,4)聚-2-氨基-2-脱氧-β-D-葡聚糖,别名甲壳胺,是由N-乙酰-D-氨基葡萄糖单体通过β-1,4-糖苷键连接起来的直链状高分子化合物。
化学性质:
壳聚糖含有游离氨基,能与稀酸结合生成胺盐而溶于稀酸。
由于分子中2-C位上的氨基反应活性大于-OH基,易发生化学反应,使壳聚糖可在较温和的条件下进行多种化学修饰,形成不同结构和不同性能的衍生物。
通过酰化、羟基化、氰化、醚化、烷基化、酯化、酰亚胺化、叠氮化、成盐、鳌合、水解、氧化、卤化、接枝与交联等反应,可制备壳聚糖衍生物。
壳聚糖是一种天然抗菌剂,可以抑制多种细菌和真菌的生长,具有毒性低、生物相容性好且无抗原性的优点,但其水溶性差,只能在酸性条件下抑菌。
壳聚糖分子链上有很多氨基、羟基等活性基团,具有很高的反应活性,能进行多种化学改性,从而获得独特的物理、化学性质及生理功能。
目前,提高壳聚糖抗菌活性的途径主要集中在对壳聚糖的衍生改性等方面,包括壳聚糖的羧甲基化、硫酸酯化、季铵盐化等,但尚未开发出壳
聚糖胍盐类衍生物。
壳聚糖胍盐衍生物是具有生物活性的胍基化合物,其生物活性比壳聚糖更高,同时大大降低了甲眯磺酸的毒性,可以作为新型抗菌杀菌剂、抗菌药物等应用于医药、纺织和农业等领域。
因此,对该类化合物的研究具有实际意义。
壳聚糖的结构、性质及其应用张洁海洋药学0844130摘要:生物相容性好、可降解、对组织和细胞无毒副作用的生物材料一直是生物医学领域研究的热点。
壳聚糖(α(1-4)2-氨基2-去氧β-D葡聚糖)是甲壳素脱乙酰得到的天然多糖中惟一的碱性多糖,具有很多优良的特性。
本文就壳聚糖的结构、性质及其应用进行综述。
关键词:壳聚糖,结构,性质,应用壳聚糖(Chitosan,简称CTS),壳聚糖是由N-乙酰糖胺组成,其中糖胺的含量超过90%,具有黏多糖相似的结构特点,而黏多糖在组织中分布广泛,是细胞膜有机组成成分之一,故壳聚糖具有优异的生物相容性⑴~⑵。
表现为无毒、无刺激、无免疫抗原、无热原反应、不溶血,有抗菌消炎、促进伤口愈合,抗酸、抗溃疡、降脂和降低胆固醇的作用⑶~⑸。
而且具有直接抑制肿瘤细胞的作用,并可通过活化免疫系统显示抗癌活性,与现有的抗癌药合用可增强抗癌效果,近年来其作为药物微球材料的研究也受到了极大的重视⑹,是一种安全可靠的天然生物活性多糖。
本文就壳聚糖的结构、性质及其应用进行综述。
一.壳聚糖的结构与性质1.壳聚糖的来源—甲壳素壳聚糖来源于一种自然资源十分丰富的线性聚合物一甲壳素,是甲壳素经脱乙酰化反应后得到的一种生物高分子Ⅲ。
甲壳素是一种天然多糖类生物高分子聚合物,在自然界中广泛存在于低等生物菌类、藻类的细胞,节支动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和软骨,高等植物的细胞壁等,将甲壳动物的外壳通过酸碱处理,脱去钙盐和蛋白质,即可得到甲壳素。
甲壳素化学名为[(1,4)一2一乙酰胺基一2一脱氧一B—D-葡萄糖],分子式为(C8H13N05)。
,单体之间以B(1-4)糖苷键连接,分子量一般在lO6左右,理论胺含量为6.9%。
甲壳素的化学结构与植物中广泛存在的纤维素结构非常相似(见图l),故又称为动物纤维素。
(a)甲壳素(b)纤维素图1甲壳素和纤维素的结构甲壳素是白色或灰白色无定型、半透明固体,不溶于水、稀酸、碱和一般的有机溶剂,可溶于浓的盐酸、硫酸、磷酸和无水甲酸。
采用不同的原料和方法制备的甲壳素,溶解度、分子量、乙酰基值和比旋光度等均有差别。
2.壳聚糖的结构和性质壳聚糖,化学名为(1,4).2-胺一2.脱氧一0.D一葡聚糖,是生物界中大量存在的唯一碱性多糖,结构如图2所示。
图2壳聚糖的结构壳聚糖是白色无定型、半透明、略有珍珠光泽的固体,因原料不同和制备方法不同,相对分子质量从数十万至数百万不等。
不溶于水和碱溶液,可溶于稀的醋酸、盐酸、硝酸等无机酸和大多数有机酸,不溶于稀的硫酸、磷酸。
在稀酸中,壳聚糖会缓慢水解,所以壳聚糖溶液一般是随用随配。
壳聚糖在密闭干燥容器中保存,常温下3年内不变质;吸湿或遇水引起分解反应,温度升高会加速分解反应。
壳聚糖在酸性溶液中加热到100。
C时可完全水解为胺基葡糖,而在比较温和的条件下则水解为胺基葡糖、壳二糖、壳三糖等低分子量多糖。
壳聚糖分子具有复杂的双螺旋结构,含有大量的羟基和胺基,还有N一乙酰胺基,易形成多种分子内和分子间的氢键。
另外,壳聚糖分子中的羟基和胺基也会参与多种反应,如可通过修饰、活化和偶联等改性壳聚糖,形成性质不同的衍生物。
①通过羧基化反应在壳聚糖分子中的活性_NH2上导入羧基官能团,导入羧基后一方面能得到完全水溶性的高分子,更重要的是可得到含阴离子的两性壳聚糖衍生物。
羧甲基的壳聚糖具有水溶性、抑菌性和无毒性,在日用化学方面显示了一定的应用前景。
②壳聚糖分子中的--OH和--NH2可与交联剂进行交联,生成网状聚合物,改善其溶酸性和机械性能,并为进一步接枝改性提供条件。
③壳聚糖分子中的--OH和一NH2具有配位螯合功能,可先与过渡金属离子形成配合物,再与交联剂进行交联,可制备具有“模板荆”的“记忆力”和选择吸附性能的壳聚糖。
④壳聚糖分子中的--OH和--NH2可与多种有机酸的衍生物如酸酐、酰卤等发生酰化反应,导入不同分子量的脂肪族或芳香族酰基,反应一般得到N一酰化产物,所得产物在有机溶剂中的溶解度大大改善。
⑤壳聚糖分子中的--OH可与烃基化试剂如甲基醚、乙基醚、苄基醚、羟乙基醚等进行醚化反应,生成醚。
此类反应可以开发出一些新型材料。
二、壳聚糖的应用壳聚糖无毒、无害、安全可靠、易于生物降解、不造成二次污染,是典型的环境友好材料,因此壳聚糖在许多领域里都有重要的应用。
1、食品工业食品工业中,壳聚糖可用作果蔬涂膜保鲜剂酿酒和果汁澄清剂、食品添加剂、食醋防沉淀剂、原料糖汁纯化剂、饮用水高效复台絮凝剂等。
2、医药方面由于壳聚糖良好的生物和血液相容性以及极佳的安全性,在医学临床应用中作为免疫吸附剂和脱毒剂,以清除血液中的内源性或外源性致病物质。
在医药工业,壳聚糖用做药物载体缓释剂、血液凝固止血剂、体内重金属离子排泄剂、手术免拆缝合线,以及作为人造血管和人工肺基材等。
3、生化工程生化工程壳聚糖主要作为酶蛋白吸附剂、固定化菌体法酶载体和产酶促进剂,利用不同壳聚糖衍生物的吸附差异性,有效地实现多种酶和抑制剂的吸附、分离和提纯。
4、环保方面在环保和污水处理方面,由于游离胺基的存在,壳聚糖在酸性溶液中具有阳离子型聚电介质的性质,因此可作为凝聚剂。
Huang报道,壳聚糖能有效地凝聚膨润土悬浮液,可用于水的澄清。
壳聚糖是高性能的重金属离子吸附剂,因此可用于污水处理和贵金属的回收,或放射性元素铀的捕集和核工业污水的处理。
5、其他方面另外,壳聚糖还可作为烟草薄片胶粘剂、造纸工业添加剂、印染助剂、牙膏防龋抑菌剂、饲料添加剂等,并在组织工程⑺、酶和细胞的固定化、生化药物的分离精制、农业、纺织⑻、化工环保⑼、日用化学工业等工业中都显示了它保湿、透气、无毒、可生物降解、无二次污染等优良特性⑽。
三.研究进展与展望从1859年发现壳聚糖到1910年期间,全世界仅有20篇论文发表,其开创性工作大多为法国人所做。
1934年在美国首次出现了关于制备壳聚糖、壳聚糖膜、壳聚糖纤维的专利,并在1941年制备出壳聚糖人造皮肤和手术缝合线。
1936年和1943年,苏联和R本人分别投入到壳聚糖的研究。
20世纪70年代以前主要是欧美国家的科学家在研究壳聚糖,从70年代开始其重心便转移到了同本,从80年代中期到90年代后期的十几年中日本几乎每三天就申请~项专利,他们的科学家和工程师对甲壳素和壳聚糖的研究、新产品的开发及产业化,做出了很大的贡献。
在英国工作的意大利科学家R.A.A.Muzzarelli对甲壳素和壳聚糖的研究做出了巨大的贡献,他发表的论文超过百篇,今天世界上许多国家对壳聚糖的重视与他的研究是息息相关的。
我们中国是从1952年开始进行甲壳素研究的,20世纪80年代上半期,国内逐渐开始宣传甲壳素和壳聚糖,影响较大的是谢雅明和严俊㈣的文章。
经过最近20年的发展,我国对甲壳素和壳聚糖的研究得到了空前的进展,特别是开发出了一批新产品,中国出现了一个以甲壳素和壳聚糖为原料生产新产品的新兴产业。
由于壳聚糖的众多优点与特性,在人类生活各个方面都有对其研究,特别是在医药方面。
现在壳聚糖纳米粒成为研究的热点,它是新开发的一种安全、有效的非病毒基因载体。
其不溶于水和一般的有机溶剂,但能溶于大部分有机酸的水溶液而形成一种玻璃状的胶状物。
部分有机酸的水溶液而形成一种玻璃状的胶状物。
由于壳聚糖在pH<6的酸性溶液中氨基可以质子化带正电荷,增强了壳聚糖的溶解性能,这种性质使壳聚糖在水相中与带有负电荷的DNA通过快速混合形成纳米级的复合物⑿后者能浓缩质粒,使其免受DNaseⅠ的降解。
相信随着研究的深入和新剂型的开发,壳聚糖纳米粒作为一种安全有效的非病毒基因载体将会在基因治疗中发挥重要作用。
参考文献:⑴Patil SD,Rhodes DG,Burgess DJ.DNA2based therapeutics andDNA delivery systems:a comp rehensive review[J].AAPS J,2005,7(1):61-77⑵BakerLG,Specht CA,DonlinMJ,et al.Chitosan,the deacetylatedform of chitin, is necessary for cell wall integrity in cryp tococcusneoformans[J].Eukaryot Cell, 2007,6(5):855-867⑶Yoo HS,Lee JE,Chung H,et al.Self2assembled nanoparticlescontaining hydrophobically modified glycol chitosan for gene de2livery[J].J ControlledRelease,2005,103(1):235-243.⑷Chew JL,Wolfowicz CB,Mao HQ,et al.Chitosan nanoparticlescontaining p lasmid DNA encoding house dust mite allergen,derp1for oral vaccination in mice[J]. Vaccine,2003,21(21-22):2720-2729.⑸Pouton CW,Seymour LW.Key issues in non2viral gene delivery[J].Adv Drug Deliv Rev,1998,34(1):3-19.⑹Suri SS,Fenniri H,Singh B.Nanotechnology2based drug deliverysystems[J]. Occup Med Toxicol,2007,2:16-21.⑺Howing GI,Dettmar P W,Goddard PA,et a1.The effect of ohitin and chitosan onthe proliferation of human skin fibrolasts and keratinocytes in vitro.Biomaterials[J],2001,22(22):2959"一2966.⑻俞卫华,马正升.金山油化纤[J]。
第22卷.⑼杨安乐,陈长春,现代化工[J]。
1999,19(4):50~52.⑽Majeti N V,Ravi Kumar.A Review of Chitin and Chitosan Applications Reactive &Functional Polymer[J],2000.46:I.⑾谢雅明.《化学世界》[J],1983(4):118~121.⑿Siau K.Health care informatics[J].IEEE Trans Inf TechnolBiomed,2003,7 (1):1-7.。