深度塑性变形工艺
- 格式:ppt
- 大小:1.23 MB
- 文档页数:16
基于有限元分析的深度塑性变形技术研究进展刘帅;彭必友;孙鹏飞;周超;羊凡【摘要】It is very important to research severe plastic deformation (SPD) techniques, which can make material produce ultra-fine-grain organizations and improve the properties of the material significantly. In recent years, SPD became a hot spot in research. In this paper, principles, characters, applications and development of SPD techniques were introduced and the simulation and parameter optimization process of SPD by using the finite element method were summarized. The existing problems and development prospects of SPD were also presented.%介绍了几种深度塑性变形工艺的工作原理、特点及发展状况,综述了有限元分析技术对深度塑性变形过程的模拟和对其工艺参数的优化,概述当前有限元法在模拟深度塑性变形过程中的应用和重大作用,并指出其存在问题和发展前景.【期刊名称】《西华大学学报(自然科学版)》【年(卷),期】2012(031)002【总页数】7页(P106-112)【关键词】深度塑性变形;有限元分析;等径角挤压;高压扭转【作者】刘帅;彭必友;孙鹏飞;周超;羊凡【作者单位】西华大学材料科学与工程学院四川成都610039;西华大学材料科学与工程学院四川成都610039;西华大学材料科学与工程学院四川成都610039;西华大学材料科学与工程学院四川成都610039;西华大学材料科学与工程学院四川成都610039【正文语种】中文【中图分类】TG146.1;TG376材料是人类赖以生存和发展的物质基础,随着各行业的飞速发展,对材料性能的要求越来越高。
第四章金属塑性成形在工业生产中,金属塑性成形方法是指:金属材料通过压力加工,使其产生塑性变形,从而获得所需要工件的尺寸、形状以及性能的一种工艺方法。
常用的金属塑性成形方法如下:自由锻造:手工自由锻、机器自由锻锻造成形模型锻造:锤上模锻、压力机上模锻金属塑性成形冲压成形、挤压成形、拉拔成形、轧锻成形金属材料经过塑性成形后,其内部组织更加致密、均匀,承受载荷能力及耐冲击能力有所提高。
因此凡承受重载荷及冲击载荷的重要零件,如机床主轴、传动轴、齿轮、曲轴、连杆、起重机吊钩等多以锻件为毛坯。
用于塑性成形的金属必须具有良好的塑性,以便加工时易于产生永久性变形而不断裂。
钢、铜、铝等金属材料具有良好的塑性,可进行锻压加工;铸铁的塑性很差,在外力作用下易裂碎,不用于锻压。
在金属塑性成形方法中,锻造、冲压两种成形方法合称锻压,主要用于生产各种机器零件的毛坯或成品。
挤压、拉拔、轧锻三种成形方法是以生产金属材料为主,如型材、管材、线材、板料等,也用于制造某些零件,如轧锻齿轮、挤压活塞销等。
第一节锻造锻造是金属热加工成形的一种主要加工方法,通常采用中碳钢和低合金钢作锻件材料,锻造加工一般在金属加热后进行,使金属坯料具有良好的可变形性,以保证锻造加工顺利进行。
基本生产工艺过程如下:下料→坯料加热→锻造成形→冷却→热处理→清理→检验。
一、锻坯的加热和锻件的冷却1.加热的目的锻坯加热是为了提高其塑性和降低变形抗力,以便锻造时省力,同时在产生较大的塑性变形时不致破裂。
一般地说,金属随着加热温度的升高,塑性增加,变形抗力降低,可锻性得以提高。
但是加热温度过高又容易产生一些缺陷,因此,锻坯的加热温度应控制在一定的温度范围之内。
2.锻造温度范围各种金属材料在锻造时允许的最高加热温度,称为该材料的始锻温度。
加热温度过高会产生组织晶粒粗大和晶间低熔点物质熔化,导致过热和过烧现象。
碳钢的始锻温度一般应低于其熔点100~200︒C,合金钢的始锻温度较碳钢低。