人教版数学八年级上册 轴对称填空选择专题练习(解析版)
- 格式:doc
- 大小:835.50 KB
- 文档页数:27
人教版八年级数学上册 轴对称填空选择单元测试卷附答案一、八年级数学全等三角形填空题(难)1.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D ,下列四个结论:①EF =BE +CF ;②∠BOC =90°+12∠A ; ③点O 到△ABC 各边的距离相等;④设OD =m ,AE +AF =n ,则AEF S mn ∆=.其中正确的结论是____.(填序号)【答案】①②③【解析】【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形的内角和定理,即可求出②∠BOC =90°+12∠A 正确;由平行线的性质和角平分线的定义可得△BEO 和△CFO 是等腰三角形可得①EF =BE +CF 正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故③正确;由角平分线定理与三角形的面积求法,设OD=m ,AE+AF=n,则△AEF 的面积=12mn ,④错误. 【详解】在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,∠A+∠ABC+∠ACB=180°, ∴∠OBC+∠OCB=90°-12∠A , ∴∠BOC=180°-(∠OBC+∠OCB )=90°,故②∠BOC =90°+12∠A 正确; 在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC=∠EOB ,∠OCB=∠OCF ,∵EF ∥BC ,∴∠OBC=∠EOB ,∠OCB=∠FOC ,∠EOB=∠OBE,∠FOC=∠OCF ,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF , 即①EF =BE +CF 正确;过点O 作OM ⊥AB 于M ,作ON ⊥BC 于点N ,连接AO , ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON=OD=OM=m ,即③点O 到△ABC 各边的距离相等正确;∴S △AEF=S △AOE+ S △AOF=12AE·OM+12AF·OD=12OD·(AE+AF )=12mn ,故④错误; 故选①②③【点睛】此题主要考查角平分线的性质,解题的关键是熟知等腰三角形的判定与性质.2.如图,已知OP 平分∠AOB ,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .CP =254,PD =6.如果点M 是OP 的中点,则DM 的长是_____.【答案】5.【解析】【分析】由角平分线的性质得出∠AOP=∠BOP ,PC=PD=6,∠PDO=∠PEO=90°,由勾股定理得出2274CE CP PE =-=,由平行线的性质得出∠OPC=∠AOP ,得出∠OPC=∠BOP ,证出254CO CP ==,得出OE=CE+CO=8,由勾股定理求出2210OP OE PE +=,再由直角三角形斜边上的中线性质即可得出答案.【详解】∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°,∴222257446CE CP PE ⎛⎫⎪⎭-⎝=-==, ∵CP ∥OA ,∴∠OPC =∠AOP ,∴∠OPC =∠BOP ,∴254CO CP ==, ∴725448OE CE CO =+=+=, ∴22228610OP OE PE =+=+=,在Rt △OPD 中,点M 是OP 的中点,∴125DM OP ==; 故答案为:5.【点睛】 本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP 是解题的关键.3.如图,在等腰三角形ABC 中,90ABC ∠=,D 为AD 边上中点,多D 点作DE DF ⊥,交AB 于E ,交BC 于F ,若3AE =,2CF =,则ABC ∆的面积为______.【答案】252【解析】【分析】 利用等腰直角三角形斜边中点D 证明AD=BD ,∠DBC=∠A=45︒,再利用DE DF ⊥证得∠ADE=∠BDF ,由此证明△ADE ≌△BDF ,得到BC 的长度,即可求出三角形的面积.【详解】∵90ABC ∠=︒,AB=BC,∴∠A=45︒,∵D 为AC 边上中点,∴AD=CD=BD ,∠DBC=∠A=45︒,∠ADB=90︒,∵DE DF ⊥,∴∠EDB+∠BDF=∠EDB+∠ADE=90︒,∴∠ADE=∠BDF,∴△ADE ≌△BDF,∴BF==AE=3,∵CF=2,∴AB=BC=BF+CF=5,∴ABC ∆的面积为212BC ⋅=252, 故答案为:252. 【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质.4.如图,已知点(,0)A a 在x 轴正半轴上,点(0,)B b 在y 轴的正半轴上,ABC ∆为等腰直角三角形,D 为斜边BC 上的中点.若2OD =,则a b +=________.【答案】2【解析】【分析】根据等腰直角三角形的性质,可得AP 与BC 的关系,根据垂线的性质,可得答案【详解】如图:作CP ⊥x 轴于点P ,由余角的性质,得∠OBA=∠PAC ,在Rt △OBA 和Rt △PAC 中,OBA PAC AOB CPA BA AC ∠∠⎧⎪∠∠⎨⎪⎩===,Rt △OBA ≌Rt △PAC (AAS ),∴AP=OB=b ,PC=OA=a .由线段的和差,得OP=OA+AP=a+b ,即C 点坐标是(a+b ,a ),由B (0,b ),C (a+b ,a ),D 是BC 的中点,得D (2a b +,2a b +), ∴OD=22a b +() ∴22a b +()=2, ∴a+b=2.故答案为2.【点睛】本题解题主要①利用了等腰直角三角形的性质;②利用了全等三角形的判定与性质;③利用了线段中点的性质.5.如图,ABC ∆中,090,,102ACB AC BC AB ∠===,点G 为AC 中点,连接BG ,CE BG ⊥于F ,交AB 于E ,连接GE ,点H 为AB 中点,连接FH ,以下结论:①ACE ABG ∠=∠;②5CF =;③AGE CGB ∠=∠;④FH 平分BFE ∠。
人教版八年级上册数学十三章轴对称单元训练题 (15)一、单选题1.在△ABC中,已知AB=AC,且一内角为100°,则这个等腰三角形底角的度数为A.100°B.50°C.40°D.30°2.坐标平面内一点A(1,2),O是原点,P是x轴上一个动点,如果以点P、O、A为顶点的三角形为等腰三角形,那么符合条件的动点P的个数为()A.1 B.2 C.3 D.43.如图,△ABC中,AB=AC,D为BC的中点,DE⊥AC于点E,已知AB=5,AD=3,则DE的长为( )A.1.2 B.2 C.2.4 D.4.84.如图,在△PAB中,∠A=∠B,D、E、F分别是边PA、PB、AB上的点,且AD=BF,BE=AF.若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°5.如图,轮船从B处以每小时50海里的速度沿南偏东30方向匀速航行,在B处观测灯塔A位于南偏东75︒方向上.轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60︒方向上,则C处与灯塔A的距离是()A.50海里B.45海里C.35海里D.25海里6.等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°7.若等腰三角形中有两边长分别为2和3,则这个三角形的周长为( )A.7 B.7或8 C.8 D.9或78.如图,已知等腰△ABC中,AB=AC,AD⊥BC,下列不正确的是()A.BD=CD B.∠DAB=∠DAC C.当∠B=60°时,AB=2BD D.AD=BC 9.点M(﹣5,2)关于x轴对称的坐标是()A.(﹣5,﹣2)B.(5,﹣2)C.(5,2)D.(﹣5,2)10.下列轴对称图形中只有一条对称轴的是()A.B.C.D.11.将长方形纸片按如图所示的方式折叠,BC、BD为折痕,若∠ABC=35°,则∠DBE的度数为A.55°B.50°C.45°D.60°12.下列图形中,是轴对称图形但不是中心对称图形的是 ( )A.B.C.D.二、填空题13.平面直角坐标系中,与点(4,-3)关于x轴对称的点是______.14.若点P(m,m﹣1)在x轴上,则点P关于x轴对称的点为_____.15.已知点P(m+1,5)与Q(4,n+2)关于x轴对称,则m-n=_________.16.和已知线段的两端点距离相等,且到一个已知点的距离等于定长的点最多有______个.17.如图,Rt △ABC 中,∠C =90°,AB 边上的中垂线分别交BC 、AB 于点D 、E ,若BC =7cm ,AC =4cm ,△ADC 的周长为_____cm .18.如图,△ABC 申,BC 的垂直平分线DP 与∠BAC 的角平分线相交于点D ,垂足为点P ,若∠BAC=82︒,则∠BDC=____.三、解答题19.如图,在ABC ∆中,60A ∠=︒,2ABC C ∠=∠,BC 边的垂直平分线交AC 边于点D ,交BC 边于点BC ,连接BD ,求ADB ∠的度数.20.如图梯形ABCD 中,AD ∥BC ,AB =AD =CD ,BD ⊥CD ,求∠C 的度数.21.已知射线AC 是MAN ∠的角平分线,60NAC ∠=︒,点B 是射线AN 上的点,连接BC .(1)如图1,当点D 在射线AM 上时,连接BD ,CD .若90ABC ADC ∠=∠=︒,则BCD ∆的形状是_____.(2)如图2,当点D 在射线AM 的反向延长线AG 上时,连接BD ,CD .若ABC ADC ∠=∠,则(1)中的结论是否成立?请说明理由.22.已知:Rt△ABC中,∠C=90°,∠ABC=30°.(1)探究应用1:如图1,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB上,以AD为边作等边△ADE,连接BE,为探究线段BE与DE之间的数量关系,组长已经添加了辅助线:取AB 的中点F,连接EF.线段BE与DE之间的数量关系是_________,并说明理由;(2)探究应用2:如图2,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB的延长线上,以AD 为边作等边△ADE,连接BE.线段BE与DE之间的数量关系是__________,并说明理由。
2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题07 轴对称及轴对称图形画法问题一、选择题1.(2023深圳)下列图形中,为轴对称的图形的是()A. B. C. D.【答案】D【解析】根据轴对称图形的概念对各选项分析判断即可得解.A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题主要考查了轴对称图形,解决问题的关键是熟练掌握轴对称图形的概念,轴对称图形概念,一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就是轴对称图形.2. (2023广东省)下列出版社的商标图案中,是轴对称图形的为()A. B. C. D.【答案】A【解析】根据轴对称图形的概念:一个图形沿一条直线折叠,直线两旁部分能够完全重合的图形;由此问题可求解.符合轴对称图形的只有A选项,而B、C、D选项找不到一条直线能使直线两旁部分能够完全重合;故选A.【点睛】本题主要考查轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键.3. (2023湖南湘潭)中国的汉字既象形又表意,不但其形美观,而且寓意深刻,观察下列汉字,其中是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C【解析】根据轴对称图形的定义逐项判断即可.将选项A,B,D中的汉字沿某直线折叠后不能与本身重合,所以不符合题意;将图C中的汉字沿过中心的竖直方向的直线折叠直线两旁的部分能够重合,所以符合题意.故选:C.【点睛】本题主要考查了轴对称图形的判断,掌握定义是解题的关键.即将一个图形沿某直线折叠,直线两旁的部分能够重合,这样的图形是轴对称图形.4.(2023江苏连云港)在美术字中,有些汉字可以看成是轴对称图形.下列汉字中,是轴对称图形的是()A. B. C. D.【答案】C【解析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】选项A、B、D均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项C能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6. 下列图形中,对称轴最多是( )A. 等边三角形 B. 矩形C. 正方形D. 圆【答案】D【解析】因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.7. (2023山东聊城)如图,在直角坐标系中,ABC V 各点坐标分别为()2,1A -,()1,3B -,()4,4C -.先作ABC V 关于x 轴成轴对称的111A B C △,再把111A B C △平移后得到222A B C △.若()22,1B ,则点2A 坐标为( )A. ()1,5B. ()1,3C. ()5,3D. ()5,5【答案】B【解析】三点()2,1A -,()1,3B -,()4,4C -的对称点坐标为()12,1A --,()11,3B --,()4,4C --,结合()22,1B ,得到平移规律为向右平移3个单位,向上平移4个单位,计算即可.【详解】∵三点()2,1A -,()1,3B -,()4,4C -的对称点坐标为()12,1A --,()11,3B --,()4,4C --,结合()22,1B ,∴得到平移规律为向右平移3个单位,向上平移4个单位,的故2A 坐标为()1,3.故选B .【点睛】本题考查了关于x 轴对称,平移规律,熟练掌握轴对称的特点和平移规律是解题的关键.8. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D.【答案】D【解析】利用轴对称图形的概念可得答案.A .不是轴对称图形,故此选项不合题意;B .不是轴对称图形,故此选项不合题意;C .不是轴对称图形,故此选项不合题意;D .是轴对称图形,故此选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.9.下列北京冬奥会运动标识图案是轴对称图形的是( )A. B. C. D.【答案】C【解析】根据轴对称图形的定义进行逐一判断即可.A.不是轴对称图形,故A 错误;B.不是轴对称图形,故B 错误;C.是轴对称图形,故C 正确;D.不是轴对称图形,故D 错误.故选:C .【点睛】本题主要考查了轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.10.如图,△ABC 关于直线l 的对称图形是△DEF ,下列判断错误的是( )A. AB=DEB.BC ∥EFC.直线l ⊥BED.∠ABC=∠DEF 【答案】B【解析】轴对称图形的相关性质。
一、选择题1.如图,在边长为9的等边△ABC 中,CD ⊥AB 于点D ,点E 、F 分别是边AB 、AC 上的两个点,且AE=CF=4cm ,在CD 上有一动点P ,则PE +PF 的最小值是( )A .4B .4.5C .5D .82.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( ) A . B .C .D .3.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .114.已知点A 是直线l 外的一个点,点B ,C ,D ,E 是直线l 上不重合的四个点,再添加①AB AC =;②AD AE =;③BD CE =中的两个作为题设,余下的一个作为结论组成一个命题,组成真命题的个数为( ).A .0B .1C .2D .3 5.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个7.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .1188.若a ,b 为等腰ABC 的两边,且满足350a b -+-=,则ABC 的周长为( )A .11B .13C .11或13D .9或15 9.如图,在ABC 中,AB AC =,108BAC ∠=︒,72ADB ∠=︒,DE 平分ADB ∠,图中等腰三角形的个数是( )A .3B .4C .5D .610.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个11.平面直角坐标系中,已知()1,1A ,()2,0B .若在x 轴上取点C ,使ABC 为等腰三角形,则满足条件的点C 的个数是( )A .2个B .3个C .4个D .5个12.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论:①BD =CD ;②AD +CF =BD ;③CE =12BF ;④AE =BG .其中正确的是( )A .①②B .①③C .①②③D .①②③④二、填空题13.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.14.如图,在ABC 中,90ACB ︒∠=,30B ,6AC =,P 为BC 边的垂直平分线DE 上一个动点,则ACP △周长的最小值为________.15.如图,点D 、E 是ABC 的边BC 上的点,且AED n ∠=︒,::1:3:2CAD DAE BAE ∠∠∠=,若点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,则n =________.16.若等腰三角形的顶角为30°,腰长为10,则此等腰三角形的面积为_________. 17.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.18.如图,30MON ∠=︒,点1234,,,A A A A ,…在射线ON 上,点123,,B B B ,…在射线OM 上,且112223334,,A B A A B A A B A △△△,…均为等边三角形,以此类推,若11OA =,则202120212022A B A △的边长为_______.19.给出如下三个图案,它们具有的公共特点是:________.(写出1个即可)20.如图,在正方形网格中,分别将①②③④四个网格涂上阴影,能与原阴影部分构成一个轴对称图形的有____________.(填网格序号)三、解答题21.小明遇到这样一个问题:如图①,在ABC 中,12AB =,8AC =,AD 是中线,求AD 的取值范围.她的做法是:过点B 作//BE AC 交AD 的延长线于点E ,证明BED CAD △≌△,经过推理和计算就可以使问题得到解决.按照上面的思路,请回答:(1)小红证明BED CAD △≌△的判定定理是:______;(2)AD 的取值范围是______;方法运用:(3)如图②,AD 是ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE EF =,求证:BF AC =.22.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC ∆关于y 轴对称的图形111A B C ∆,写出点111,,A B C 的坐标.23.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹);(2)求证:AE 是ABC 的一个外角角平分线.24.在平面直角坐标系中,点(0,)A a ,点(,0)B b ,点(3,0)C -,且a 、b 满足269||0a a a b -++-=.(1)点A 坐标为______,点B 坐标为______,ABC 是______三角形.(2)如图,过点A 作射线l (射线l 与边BC 有交点),过点B 作BD l ⊥于点D ,过点C 作CE l ⊥于点E ,过点E 作EF DC ⊥于点F 交y 轴于点G .①求证:BD AE =;②求点G 的坐标.(3)如图,点P 是x 轴正半轴上一动点,APO ∠的角平分线交y 轴于点Q ,点M 为线段OP 上一点,过点M 作//MN PQ 交y 轴于点N ;若45AMN ∠=︒,请探究线段AP 、AN 、PM 三者之间的数量关系,并证明你的结论.25.如图,在ABC ∆中,,AB AC =过点A 作//AD BC 交ABC ∠的平分线BD 于点D ,求证:AC AD =.26.在平面直角坐标系中,△ABC 的位置如图所示,已知点A 、B 的坐标为(-4,3)(3,0).(1)点C关于x对称的点的坐标(,);(2)在图中作出△ABC关于y轴的对称图形△A′B′C′;(3)△ABC的面积为.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】作点E关于AD的对称点G,所以连接FG,与CD的交点即为P点.此时PF+PE=FG最小,通过计算证明△AFG是等边三角形,从而得出结果.【详解】作点E关于AD的对称点G,连接FG与CD的交点即为P点,如图:∴PG=PE,此时PF+PE=PF+ PG有最小值,最小值为FG,∵△ABC是边长为9等边三角形,且CD⊥AB,AE=CF=4,∴AD=BD=1AB=4.5,AF=AC-CF=9-4=5,∠A=60 ,2∴ED=GD= AD- AE =4.5-4=0.5,∴AG=AE+ED+GD=5= AF ,∴△AFG 是等边三角形,∴FG= AF=5,∴PF+PE 的最小值是5,故选:C .【点睛】本题主要考查了轴对称-最短路径问题,等边三角形的判定和性质,掌握轴对称-最短路径的确定方法是解题的关键.2.D解析:D【分析】点D 到点A 、点B 的距离相等可知点D 在线段AB 的垂直平分线上,据此可得答案.【详解】解:∵点D 到点A 、点B 的距离AD=BD ,∴点D 在线段AB 的垂直平分线上,故选择:D .【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图. 3.B解析:B【分析】根据题意,设EF 与AC 的交点为点P ,连接BP ,由垂直平分线的性质,则BP=CP ,得到PA PB PA PC AC +=+=,即可得到PA PB +的最小值.【详解】解:根据题意,设EF 与AC 的交点为点P ,连接BP ,如图:∵EF 是BC 的垂直平分线,∴BP=CP ,∴8PA PB PA PC AC +=+==,∴PA PB +的最小值为8;故选:B .【点睛】本题考查了垂直平分线的性质,解题的关键是正确找出点P 的位置,使得PA PB +有最小值.4.D解析:D【分析】写出所组成的三个命题,然后根据等腰三角形的判断与性质对各命题进行判断.【详解】解:根据题意吧,如图:由等腰三角形的性质和全等三角形的判定定理,易证△ABD≌△ACE;命题1:若AB=AC,AD=AE,则BD=CE,此命题为真命题;命题2:若AB=AC,BD=CE,则AD=AE,此命题为真命题;命题3:若AD=AE,BD=CE,则AB=AC,此命题为真命题.故选:D.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,以及命题真假的判断,解题的关键是熟练掌握所学的知识,正确的判断命题的真假.5.A解析:A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A1与A2关于x轴对称,A2与A3关于y轴对称,A3与A4关于x轴对称,A4与A5关于y 轴对称,A1与A5是同一个点,四次一循环,100÷4=25,A100与A4重合,即第一象限,故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,即③正确;综上,①②③④都正确.故选:D.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.7.B解析:B【分析】由等边三角形的性质,得到AC=BC ,CE=CD ,∠ACB=∠ECD=60°,然后证明△ACE ≌△BCD ,则∠CAE=∠CBD ,由角的关系,求出∠ABE+∠BAE=58°,即可得到答案.【详解】解:如图:∵ABC ∆和CDE ∆都是等边三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=60°,∴∠ACE+∠BCE=∠BCD+∠BCE=60°,∴∠ACE=∠BCD ,∴△ACE ≌△BCD ,∴∠CAE=∠CBD ,即6062BAE EBC ︒-∠=︒-∠,∵60EBC ABE ∠=︒-∠,∴6062(60)BAE ABE ︒-∠=︒-︒-∠,∴58ABE BAE ∠+∠=︒,∴18058122AEB ∠=︒-︒=︒;故选:B .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形的内角和定理,以及角的和差关系,解题的关键是掌握所学的知识,正确求出58ABE BAE ∠+∠=︒. 8.C解析:C【分析】根据非负数的意义列出关于a 、b 的方程并求出a 、b 的值,再根据b 是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C .【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.9.C解析:C【分析】利用等腰三角形的性质“等边对等角”,求出角的度数,再根据“等角对等边”证明三角形是等腰三角形.【详解】解:∵AB AC =,∴ABC 是等腰三角形,∵108BAC ∠=︒, ∴180108362B C ︒-︒∠=∠==︒, ∵72ADB ∠=︒,∴18072BAD B ADB ∠=︒-∠-∠=︒,∴ADB BAD ∠=∠,∴AB BD =,∴ABD △是等腰三角形,∵1087236DAC BAC BAD ∠=∠-∠=︒-︒=︒,∴DAC C ∠=∠,∴AD CD =,∴ACD △是等腰三角形,∵DE 平分ADB ∠, ∴1362ADE BDE ADB ∠=∠=∠=︒, ∴18072AED ADE DAE ∠=︒-∠-∠=︒,∴AED DAE ∠=∠,∴DE DA =,∴ADE 是等腰三角形,∵BDE B ∠=∠, ∴BE DE =, ∴BED 是等腰三角形,一共有5个等腰三角形.故选:C .【点睛】本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定. 10.D解析:D【分析】由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④.【详解】解:∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确;∵Rt △ABE 是以AB 为底等腰直角三角形,∴AE=BE ,在△ADE 和△BCE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS ); 故②正确;△ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒,∴∠BDE=∠AFE ,在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE S S ∴==,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACES S =故④正确; 综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.11.C解析:C【分析】分三种情况:当AB=AC 时,当BA=BC 时,当AC=AB 时,根据等腰三角形两边相等的性质分别作图即可得解.【详解】当AB=AC 时,点C 与点O 重合;当BA=BC 时,以点B 为圆心,AB 长为半径画弧,与x 轴有两个交点;当AC=AB 时,作线段AB 的垂直平分线,与x 轴有一个交点,共有4个点C ,故选:C ..【点睛】此题考查等腰三角形的性质,直角坐标系中作等腰三角形的方法,熟记等腰三角形的性质并利用其作图是解题的关键.12.C解析:C【分析】根据∠ABC=45°,CD ⊥AB 可得出BD=CD ,利用ASA 判定Rt △DFB ≌Rt △DAC ,从而得出DF=AD ,BF=AC .则CD=CF+AD ,即AD+CF=BD ;再利用ASA 判定Rt △BEA ≌Rt △BEC ,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.又由(2),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG 在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.∴正确的选项有①②③;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.二、填空题13.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成--解析:(2,2017)【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-解:完成1次图形变换,点P (2,3)1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.14.18【分析】因为BC的垂直平分线为DE所以点C和点B关于直线DE对称所以当点动点P 和E 重合时则△ACP 的周长最小值再结合题目的已知条件求出AB 的长即可【详解】解:如图∵P 为BC 边的垂直平分线DE 上一解析:18【分析】因为BC 的垂直平分线为DE ,所以点C 和点B 关于直线DE 对称,所以当点动点P 和E 重合时则△ACP 的周长最小值,再结合题目的已知条件求出AB 的长即可.【详解】解:如图,∵P 为BC 边的垂直平分线DE 上一个动点,∴点C 和点B 关于直线DE 对称,∴当点动点P 和E 重合时则△ACP 的周长最小值,∵∠ACB=90°,∠B=30°,AC=6,∴AB=2AC=12,∵AP+CP=AP+BP=AB=12,∴△ACP 的周长最小值=AC+AB=18,故答案为:18.【点睛】本题考查了轴对称-最短路线的问题以及垂直平分线的性质,正确确定P 点的位置是解题的关键,确定点P 的位置这类题在课本中有原题,因此加强课本题目的训练至关重要. 15.80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ∠BEA=∠B 再根据比例关系设根据三角形内角和定理可求得x 再根据三角形外角的性质可得∠AED 【详解】解:∵点D 在边AC 的垂直平分线上点 解析:80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ,∠BEA=∠B ,再根据比例关系设,3,2CAD x DAE x BAE x ∠=∠=∠=,根据三角形内角和定理可求得x ,再根据三角形外角的性质可得∠AED .【详解】解:∵点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,∴AD=CD ,AE=BE ,∴∠DAC=∠C ,∠BAE=∠B ,∵::1:3:2CAD DAE BAE ∠∠∠=,∴设,3,2CAD x DAE x BAE x ∠=∠=∠=,∴,2C x B x ∠=∠=,∵∠B+∠C+∠BAC=180°,∴322180x x x x x ++++=︒,解得20x =︒,∴22480AED BAE B x x x ∠=∠+∠=+==︒,即n=80,故答案为:80.【点睛】本题考查垂直平分线的性质,等边对等角,三角形内角和定理和三角形外角的性质.理解线段垂直平分线上的点到线段两端距离相等是解题关键.16.25【分析】依据含30°角的直角三角形的性质即可得到该等腰三角形腰上的高再根据三角形面积计算公式进行计算即可【详解】解:如图所示AB=AC=10∠A =30°过B 作BD ⊥AC 于D ∵∠A =30°AB =1解析:25【分析】依据含30°角的直角三角形的性质,即可得到该等腰三角形腰上的高,再根据三角形面积计算公式进行计算即可.【详解】解:如图所示,AB=AC=10,∠A =30°,过B 作BD ⊥AC 于D ,∵∠A =30°,AB =10,∴BD =12AB =5, ∴S △ABC =12AC ×BD =12×10×5=25, 故答案为:25.【点睛】本题主要考查了等腰三角形的性质以及含30°角的直角三角形的性质,作出腰上的高并根据30°角求出高是解题关键.17.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90°∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.18.【分析】根据是等边三角形得进而得可得以此类推即可求解【详解】解:∵是等边三角形∴∴∴∴同理:…均为等边三角形…则的边长为故答案是:【点睛】本题考查了规律型-图形的变化类解决本题的关键是观察图形的变化 解析:20202.【分析】根据30MON ∠=︒,11OA =,112A B A △是等边三角形,得11260∠=︒B A A ,进而得1130∠=︒OB A ,1111AO B A ,可得22OA =,以此类推即可求解.【详解】 解:∵30MON ∠=︒,11OA =,112A B A △是等边三角形,∴11260∠=︒B A A∴1130∠=︒OB A∴1111AO B A∴22OA =同理:223A B A △,334A B A △,…均为等边三角形,2222B A OA ==,233342B A OA…则202120212022A B A △的边长为20202.故答案是:20202.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律. 19.都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征【详解】解:答案不唯一例如:都是轴对称图形故答案为:都是轴对称图形【点睛】本题考查了轴对称图形解题的关键是正确把握轴对称图形的特征 解析:都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征.【详解】解:答案不唯一,例如:都是轴对称图形,故答案为:都是轴对称图形.【点睛】本题考查了轴对称图形,解题的关键是正确把握轴对称图形的特征.20.②③【分析】根据轴对称图形的概念求解【详解】解:有2个使之成为轴对称图形分别为:②③故答案是:②③【点睛】此题主要考查了轴对称图形的概念正确把握轴对称图形的概念是解题关键解析:②③.【分析】根据轴对称图形的概念求解.【详解】解:有2个使之成为轴对称图形,分别为:②,③.故答案是:②③.【点睛】此题主要考查了轴对称图形的概念,正确把握轴对称图形的概念是解题关键.三、解答题21.(1)角角边或者角边角(AAS 或ASA );(2)210AD <<;(3)见解析【分析】(1)由“ASA”或“AAS”可证△BED ≌△CAD ;(2)由全等三角形的性质可得AC=BE=8,由三角形的三边关系可求解;(3)延长AD 至H ,使AD=DH ,连接BH ,由“SAS”可证△BHD ≌△CAD ,可得AC=BH ,∠CAD=∠H ,由等腰三角形的性质可得∠H=∠BFH ,可得BF=BH=AC ;【详解】解:(1)∵AD 是中线,∴BD=CD ,又∵∠ADC=∠BDE ,∵//BE AC ,∴EBD C ∠=∠,E CAD ∠=∠,∴△BED ≌△CAD (ASA ),或△BED ≌△CAD (AAS ),故答案为:SAS 或AAS ;(2)∵△BED ≌△CAD ,∴AC=BE=8,在△ABE 中,AB-BE <AE <AB+BE ,∴4<2AD <20,∴2<AD <10,故答案为:2<AD <10;(3)过点B 作//BG AC 交AD 的延长线于点G ,则CAD BGD ∠=∠∵AD 是中线,∴BD CD =在ADC 和GDB △中∵CAD BGD ∠=∠,ADC GDB ∠=∠,BD CD =,∴ADC GDB ≌△△∴BG CA =∵AE EF =∴EAF AFE ∠=∠又∵CAD BGD ∠=∠,AFE BFG ∠=∠∴BGD BFG ∠=∠∴BG BF =,又∵BG CA =,∴BF AC =;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的三边关系,添加恰当辅助线构造全等三角形是本题的关键.22.图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y 轴对称点的坐标变化规律,解题关键是正确描点和画对称点.23.(1)见解析;(2)见解析.【分析】(1)作∠CAE=∠C 即可;(2)延长BA ,根据两直线平行,同位角相等,有∠EAF=∠B ,由(1)可知∠CAE=∠C ,再根据AB=AC ,可得∠B=∠C ,等量替换之后即可得证.【详解】(1)射线AE 为所求;(2)证明:如图所示,延长BA ,∵//AE BC ,∴∠EAF=∠B ,∠CAE=∠C ,∵AB=AC ,∴∠B=∠C ,∴∠EAF=∠CAE ,∴AE 是ABC 的一个外角角平分线.【点睛】本题考查了平行线的性质和判定,等腰三角形的性质和角平分线的判定等知识,掌握相关知识是解题的关键.24.(1)(0,3)A ,(3,0)B ,等腰直角;(2)①见解析;②点 (0,3)G -;(3)AP AN PM =+,证明见解析.【分析】(1)根据偶次方与绝对值的非负性,解得a b 、的值,即可解得点A 、B 的坐标,继而根据等腰直角三角形的判定方法解题;(2)①由等角的余角相等,解得BAD ACE =∠∠,结合(1)中结论,进而证明AEC BDA ≌△△(AAS),即可解题;②由AEC BDA ≌△△可证CAE ABD ∠=∠,继而得到GAE CBD ∠=∠,设CF 交y 轴于点H ,根据等角的余角相等,得到HGE OCH ∠=∠,继而证明AGE BCD ≌△△(AAS)解得AG 、OG 的长即可解题;(3)在AP 上截取AH AN =,连接MH ,设NMO α∠=,分别解得45AMO α∠=︒+,=45NAM α∠︒-,由角平分线的性质解得2APO α∠=,45HAM α∠=︒-,进而得到NAM HAM ∠=∠,即可证明AMN AMH ≌(SAS),继而证明PMH PHM ∠=∠,PH PM =即可解题.【详解】(1)269||0a a a b -++-=2(3)||0a a b ∴-+-=3,3a b a ∴===(0,3)A ∴,(3,0)B ,(3,0)C -,AO OB CO AO ∴==90AOB AOC ∠=∠=︒45ACO ABO ∴∠=∠=︒90CAB ∴∠=︒()AOC AOB SAS ∴≅AC AB ∴=ABC ∴为等腰直角三角形,故答案为:(0,3)A ,(3,0)B ,等腰直角;(2)①BD l ⊥,CE l ⊥90BDA AEC ∴∠=∠=︒90,90BAD CAE CAE ACE ∠+∠=︒∠+∠=︒BAD ACE ∴∠=∠AC AB =AEC BDA ∴≌(AAS),∴BD AE =.②AEC BDA ≌ CAE ABD ∴∠=∠45CAO ABO ∠=∠=︒GAE CBD ∴∠=∠,设CF 交y 轴于点HEF DC ⊥90CFG ∴∠=︒90FGH FHG ∴∠+∠=︒90COH ∠=︒90OCH CHO ∴∠+∠=︒∴CHO FHG ∠=∠HGE OCH ∴∠=∠又∵AE BD =∴AGE BCD ≌△△(AAS)∴6AG BC ==又∵3AO =,∴3OG =∴点(0,3)G -.(3)AP AN PM =+.证明过程如下:在AP 上截取AH AN =,连接MH ,设NMO α∠=,45AMN ∠=︒45AMO α∴∠=︒+,∴()904545NAM αα∠=︒-︒+=︒-,又∵//MN PQ∴QPO NMO α∠=∠=,∵PQ 平分APO ∠∴2APO α∠=∴45245HAM ααα∠=︒+-=︒-∴NAM HAM ∠=∠又∵AN AH =,AM AM =∴AMN AMH ≌(SAS)∴45AMH AMN ∠=∠=︒∴90PMH α∠=︒-, 又∵()454590PHM αα∠=︒+︒-=︒-∴PMH PHM ∠=∠∴PH PM ==+=+.∴AP AH PH AN PM【点睛】本题考查全等三角形的判定与性质、等腰直角三角形、角平分线的性质、平行线的性质、绝对值的非负性、偶次方的非负性等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.见解析【分析】由已知可得∠ABD=∠D,从而得到AB=AD,进而得到AC=AD.【详解】证明:∵BD是∠ABC 的平分线,∴∠ABD=∠CBD,又AD//BC,∴∠CBD=∠D,∴∠ABD=∠D,∴AB=AD,∵AB=AC,∴AC=AD.【点睛】本题考查等腰三角形的性质与判定,熟练掌握平行线的性质、角平分线的定义、等腰三角形的判定与性质是解题关键.26.(1)-2,-5;(2)见解析;(3)10【分析】(1)根据轴对称的性质解答;(2)根据轴对称的性质作图;(3)利用割补法求解.【详解】(1)根据坐标系知点C坐标为(-2,5),∴点C关于x对称的点的坐标(-2,-5),故答案为:-2,-5;(2)如图,△A′B′C′即为所求;(3)1117537225510222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:10.【点睛】此题考查关于坐标轴对称的性质:关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等.。
一、选择题1.若a ,b 是等腰ABC 的两边长,且满足()2370a b -+-=,此三角形的周长是( )A .13B .13或17C .17D .202.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( ) A . B .C .D .3.如图,已知ABC ∆中,,AB AC =点,D E 是射线AB 上的两个动点(点D 在点E 的右侧).且,CE DE =连结CD ,若ACE x ∠=,BCD y ∠=.则y 关于x 的函数关系式是( )A .()900180y x x =-<<︒B .()101802y x x =<<︒C .()39001802y x x =-<<︒D .()201803y x x =<<︒ 4.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .55.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 6.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③7.如图,在△ABC 纸片中,AB=9cm ,BC=5cm ,AC=7cm ,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为是( )A .9cmB .11cmC .12cmD .14cm 8.下列推理中,不能判断ABC 是等边三角形的是( ) A .A B C ∠=∠=∠ B .,60AB AC B =∠=︒C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠ 9.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个10.如图,是一个 3×4 的网格(由 12 个小正方形组成,虚线交点称之格点)图中有一个三角形,三个顶点都在格点上,在网格中可以画出( )个与此三角形关于某直线对称的格点三角形.A .6B .7C .8D .911.如图,AC AD =,BC BD =,则有( )A .AB 与CD 互相垂直平分B .CD 垂直平分ABC .CD 平分ACB ∠ D .AB 垂直平分CD12.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒二、填空题13.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上, PM PN =,若3,MN =则OM 的长是__________.14.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.15.如图,ABC 中,AB BC =,点D 在线段BC 上(不与点,B C 重合). 作法如下:①连接AD ,作AD 的垂直平分线分别交直线,AB AC 于点,P Q ,连接,DP DQ ,则APQ DPQ △≌△;②过点D 作AC 的平行线交AB 于点P ,在线段AC 上截取AQ ,使AQ DP =,连接,PQ DQ ,则APQ DQP △≌△;③过点D 作AC 的平行线交AB 于点P ,过点D 作AB 的平行线交AC 于点Q ,连接PQ ,则APQ DQP △≌△;④过点D 作AB 的平行线交AC 于点Q ,在直线AB 上取一点P ,连接DP ,使DP AQ =,连接PQ ,则APQ DPQ △≌△.以上说法一定成立的是__________.(填写正确的序号)16.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.17.如图在钝角△ABC 中,已知∠BAC=135°,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,连接AD 、AE ,则∠DAE=_____18.如图,在锐角△ABC 中,AB =62 ,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是_____________.19.如图,∠AOB =45°,OC 平分∠AOB ,点M 为OB 上一定点,P 为OC 上的一动点,N 为OB 上一动点,当PM +PN 最小时,则∠PMO 的度数为___________.20.如图,在等边三角形ABC 中,CM 平分ACB ∠交AB 于点M .(1)ACM ∠的大小=__________(度);(2)AMC ∠的大小=__________(度);(3)已知4AB =,点D 为射线CM 上一点,作∠DCE=60︒,()CE CD CD AB =≠,连接DE 交射线CB 于点F ,连接BD ,BE 当以B ,D ,M 为顶点的三角形与BEF 全等时,线段CF 的长为__________.三、解答题21.如图,,A B AE BE ∠=∠=,点D 在AC 边上,12,AE ∠=∠和BD 相交于点O . (1)求证:AEC BED ∆≅∆(2)若70BDE ︒∠=,求1∠的度数.22.如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:(1)Rt △ABF ≌Rt △DCE ;(2)OE =OF .23.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹);(2)求证:AE 是ABC 的一个外角角平分线.24.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.25.已知:90,A D AB DC ︒∠=∠==,点,E F 在直线BC 上,位置如图所示,且BE CF =.(1)求证:AF DE =;(2)若PO 平分EPF ∠,求证:PO 垂直平分线段BC .26.(1)如图①,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC a ∠=∠=∠=,其中a 为任意锐角或钝角.请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF 和ACF 均为等边三角形,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状.(不需要说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据绝对值非负性的性质以及平方的非负性可知a和b的值,然后根据等腰三角形的性质分情况计算即可;【详解】∵()2-+-=,a b370∴ a=3,b=7,若腰为3时,3+3<7,三角形不成立;若腰为7时,则周长为7+7+3=17,故选:C.【点睛】本题考查了非负性的性质以及等腰三角形的性质,熟练掌握知识点是解题的关键;.2.D解析:D【分析】点D到点A、点B的距离相等可知点D在线段AB的垂直平分线上,据此可得答案.【详解】解:∵点D到点A、点B的距离AD=BD,∴点D在线段AB的垂直平分线上,故选择:D.【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.3.B解析:B【分析】根据等腰三角形的性质得出∠ACB=∠ABC=x+∠BCE和∠D=∠DCE=y+∠BCE,由三角形的外角性质得出∠ABC=∠D+∠BCD ,即x+∠BCE= y+∠BCE+ y ,即x=2y ,得出y 关于x 的函数关系式.【详解】解:∵AB AC =,ACE x ∠=,∴ ∠ACB=∠ABC=x+∠BCE ,∵CE DE =,BCD y ∠=∴∠D=∠DCE=y+∠BCE ,∵ ∠ABC 是△BCD 的一个外角,∴∠ABC=∠D+∠BCD ,即 x+∠BCE= y+∠BCE+ y ,即x=2y , ∴()101802y x x =<<︒, 故选:B .【点睛】 本题主要考查了等腰三角形的性质,三角形的外角性质,三角形的外角等于它不相邻的两个内角和.熟练掌握并运用各性质是解题的关键.4.B解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD 平分∠BAC ,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD ,∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确;在直角△ACD 中,∠CAD=30°,∴CD=12AD , ∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅.∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.5.D解析:D【分析】先求出点C 坐标,第一次变换,根据轴对称判断出点C 变换后在x 轴下方然后求出点C 纵坐标,再根据平移的距离求出点C 变换后的横坐标,最后写出第一次变换后点C 坐标,同理可以求出第二次变换后点C 坐标,以此类推可求出第n 次变化后点C 坐标.【详解】∵△ABC 是等边三角形AB=3-1=2∴点C 到x 轴的距离为1+21=+2 ∴C(2,1+由题意可得:第1次变换后点C 的坐标变为(2-1,1),即(1,1-,第2次变换后点C 的坐标变为(2-21),即(0,1+第3次变换后点C 的坐标变为(2-3,1),即(-1,1--第n 次变换后点C 的坐标变为(2-n ,1)(n 为奇数)或(2-n ,1+为偶数), ∴连续经过2021次变换后,等边ABC 的顶点C 的坐标为(-2019,1-, 故选:D .【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键. 6.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC =∠CAD ,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG =∠ACD ,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE 是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.7.B解析:B【分析】根据折叠的性质得到:DE=CD,BE=BC=5cm,求出AE=4cm,根据△ADE的周长为AD+DE+AE=AC+AE代入数值计算即可得解.【详解】由折叠得:DE=CD,BE=BC=5cm,∵AB=9cm,∴AE=AB-BE=9cm-5cm=4cm,∴△ADE的周长为AD+DE+AE=AC+AE=7cm+4cm=11cm,故选:B.【点睛】此题考查折叠的性质:折叠前后对应边相等,正确理解折叠的性质是解题的关键.8.D解析:D【分析】根据等边三角形的定义、判定定理以及三角形内角和定理进行判断.【详解】A 、由“三个角都相等的三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;B 、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;C 、由“∠A =60°,∠B =60°”可以得到“∠A =∠B =∠C =60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;D 、由“AB =AC ,且∠B =∠C”只能判定△ABC 是等腰三角形,故本选项符合题意. 故选:D .【点睛】本题主要考查了等边三角形的判定和三角形内角和定理,属于基础题.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.9.C解析:C【分析】易证△ACE ≌△DCB ,可得①正确;即可求得∠AOB =120°,可得③错误;再证明△ACM ≌△DCN ,可得②④正确和CM =CN ,即可证明⑤正确;即可解题.【详解】解:∵ACD △和BCE 都是等边三角形∵∠ACD =∠BCE =60°,∴∠DCE =60°,在△ACE 和△DCB 中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠BDC =∠EAC ,DB =AE ,①正确;∠CBD =∠AEC ,∵∠AOB =180°−∠OAB−∠DBC ,∴∠AOB =180°−∠AEC−∠OAB =120°,③错误;在△ACM 和△DCN 中,60BDC EAC DC ACACD DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ACM ≌△DCN (ASA ),∴AM =DN ,④正确;∠AMC =∠DNC ,②正确;CM =CN ,∵∠ACD =∠BCE =60°,∴∠MCN =180°-∠ACD-∠BCE =60°,∴△CMN 是等边三角形,⑤正确;故有①②④⑤正确.故选:C .【点睛】本题考查了全等三角形的判定和全等三角形对应边、对应角相等的性质,本题中求证△ACE ≌△DCB 和△ACM ≌△DCN 是解题的关键.10.B解析:B【分析】先确定对称轴,再找到对称点进而可以找到符合题意的对称三角形即可.【详解】解:如图,左右对称的有4个,如图,上下对称的有1个,如图,关于正方形的对角线对称的有2个,∴一共有7个与原三角形关于某直线对称的格点三角形,故选:B .【点睛】本题考查了轴对称图形的性质,找到正确的对称轴,画出相应的对称三角形是解决本题的关键.11.D解析:D【分析】根据线段垂直平分线的判定定理解答.【详解】∵AC AD =,BC BD =,∴AB 垂直平分CD ,故D 正确,A 、B 错误,OC 不平分∠ACB ,故C 错误,故选:D .【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.12.C解析:C【分析】根据等腰ABC ,118ABC ︒∠=,得到AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=,由DE 垂直平分AB ,求得∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,根据∠EBQ=∠ABC-∠ABE-∠QBC 计算得出答案.【详解】在等腰ABC 中,118ABC ︒∠=,∴AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=, ∵DE 垂直平分AB ,∴AE=BE ,∴∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,∴∠EBQ=∠ABC-∠ABE-∠QBC=56︒,故选:C.【点睛】此题考查等腰三角形的性质,线段垂直平分线的性质,三角形的内角和定理,熟记线段垂直平分线的性质是解题的关键.二、填空题13.5【分析】作PH⊥MN于H如图根据等腰三角形的性质得MH=NH=MN=15在Rt△POH中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH⊥MN于H,如图,根据等腰三角形的性质得MH=NH=12MN=1.5,在Rt△POH中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=12OP=5,然后计算OH-MH即可.【详解】作PH⊥MN于H,如图,∵PM=PN,∴MH=NH=12MN=1.5,在Rt△POH中,∵∠POH=60°,∴∠OPH=30°,∴OH=12OP=12×10=5,∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.14.5【分析】过A1作A1A⊥OB1于A过A2作A2B⊥A1B2于B过A3作A3C⊥A2B3于C根据等边三角形的性质以及含30°角的直角三角形的性质分别求得A1的横坐标为A2的横坐标为A3的横坐标为进而解析:5【分析】过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为1212-,,A2的横坐标为2212-,A3的横坐标为3212-,进而得到A n的横坐标为212n-,据此可得点A6的横坐标.【详解】解:如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A1的横坐标为12=1212-,∵160ODB∠=°,∴∠OB1D=30°,∵A1B2//x轴,∴∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=12A1B2=1,即A2的横坐标为12+1=2212-,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=12A2B3=2,即A3的横坐标为12+1+2=3212-,同理可得,A4的横坐标为12+1+2+4=4212-,由此可得,A n的横坐标为212n-,∴点A6的横坐标是62163==31.522-,故答案为31.5.【点睛】本题是一道找规律问题,涉及到等边三角形的性质、含30度角的直角三角形,解题的关键要利用等边三角形的性质总结出关于点A的系列点的规律.15.①②③【分析】根据题意画出图形再根据垂直平分线的性质平行线的性质和三角形全等的判定可以得证【详解】解:①如图∵PQ为AD的垂直平分线∴PA=PDQA=QD∴在△APQ和△DPQ中∴△APQ≌△DPQ解析:①②③【分析】根据题意画出图形,再根据垂直平分线的性质,平行线的性质和三角形全等的判定可以得证.【详解】解:①如图,∵PQ为AD的垂直平分线,∴PA=PD,QA=QD,∴在△APQ和△DPQ中,PA PDPQ PQQA QD=⎧⎪=⎨⎪=⎩,∴△APQ≌△DPQ(SSS),①正确;②如图,∵PD ∥AC ,∴∠DPQ=∠AQP ,∴在△APQ 和△DQP 中,AQ DP AQP DPQ QP PQ =⎧⎪∠=∠⎨⎪=⎩,∴△APQ ≌△DQP (SAS ),②正确 ;③如图,∵PD ∥AC ,∴∠DPQ=∠AQP ,同理∠DQP=∠APQ ,∴在△APQ 和△DQP 中,DPQ AQP PQ PQDQP APQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△APQ ≌△DQP (ASA ),③正确 ;④如图,△APQ ≌△DPQ 不成立,④错误;故答案为①②③.【点睛】本题考查三角形与平行线的综合应用,熟练掌握垂直平分线的性质,平行线的性质和三角形全等的判定是解题关键.16.25【分析】设∠ADC =α然后根据AC =AD =DB ∠BAC =105°表示出∠B 和∠BAD 的度数最后根据三角形的内角和定理求出∠ADC 的度数进而求得∠B 的度数即可【详解】解:∵AC =AD =DB ∴∠B =解析:25【分析】设∠ADC =α,然后根据AC =AD =DB ,∠BAC =105°,表示出∠B 和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC 的度数,进而求得∠B 的度数即可.【详解】解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C ,设∠ADC =α,∴∠B =∠BAD =2α , ∵∠BAC =105°,∴∠DAC =105°﹣2α, 在△ADC 中, ∵∠ADC +∠C +∠DAC =180°,∴2α+105°﹣2α=180°, 解得:α=50°,∴∠B =∠BAD =2α=25°, 故答案为:25.【点睛】 本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.17.90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论【详解】解:连接DAEA 如图∵∠BAC=135°∴∠B+∠C=180°-135°=45°∵DF 是AB 的垂直平分线EG 是AC 的垂直平解析:90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:连接DA、EA,如图,∵∠BAC=135°,∴∠B+∠C=180°-135°=45°,∵DF是AB的垂直平分线,EG是AC的垂直平分线,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EAC,∴∠DAB +∠EAC =∠B+∠C=45°,∴∠DAE=∠BAC –(∠DAB +∠EAC)=135°-45°=90°.故答案为:90°.【点睛】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握线段的垂直平分线的性质.18.6【分析】作BH⊥AC垂足为H交AD于M′点过M′点作M′N′⊥AB垂足为N′则BM′+M′N′为所求的最小值再根据AD是∠BAC的平分线可知M′H=M′N′再由锐角三角函数的定义即可得出结论【详解解析:6【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=2∠BAC=45°,∴BH=AH∴222+=AH BH AB∴BH=6.∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=6.故答案为6.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.19.45°【分析】找到点M关于OC对称点M′过点M′作M′N⊥OB于点N交OC 于点P则此时PM+PN的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M关于OC对称点M′过点M解析:45°【分析】找到点M关于OC对称点M′,过点M′作M′N⊥OB于点N,交OC于点P,则此时PM+PN 的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M关于OC对称点M′,过点M′作M′N⊥OB于点N,交OC于点P,则此时PM+PN 的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M与点M′关于OC对称,OC平分∠AOB,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P及点N的位置是关键.20.2或6或【分析】(1)根据等边三角形的性质及角平分线的性质求解;(2)根据等边三角形的三线合一的性质解答;(3)根据题意分两种情况:当点D在线段CM上时当点D在线段CM的延长线上时分别画出图形利用全解析:3090 2或6或23【分析】(1)根据等边三角形的性质及角平分线的性质求解;(2)根据等边三角形的三线合一的性质解答;(3)根据题意分两种情况:当点D在线段CM上时,当点D在线段CM的延长线上时,分别画出图形,利用全等三角形的性质解答.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60︒,∵CM平分ACB∠,∠ACB=30,∴∠ACM=12故答案为:30;∠,(2)∵△ABC是等边三角形,CM平分ACB∴CM⊥AB,∴∠AMC=90︒,故答案为:90︒;(3)∵∠DCE=60︒,CD=CE,∴△CDE是等边三角形,∴DE=CE=CD,∵∠BCM=∠ACM=30,∴∠BCE=30,∴CF平分∠DCE,∵CD=CE,∴CB垂直平分DE,①当点D在线段CM上时,当△BDM≌△BEF时,如图1,∴BF=BM=2,∴CF=CB-BF=4-2=2;当△BDM≌△EBF时,如图1,则EF=BM=2,∴CD=DE=4,,∵AB=4,CD<CM<4,∴此种情况不成立,舍去;②当点D在线段CM的延长线上时,当△BDM≌△BEF时,如图2,∴BF=BM=2,∴CF=BC+BF=4+2=6,;当△BDM≌△EBF时,如图3,则EF=BM=2,∴CE=2EF=4,∴2223CF CE EF =-=,故答案为: 2或6或23..【点睛】此题考查等边三角形的性质,利用三线合一的性质进行证明,全等三角形的性质,熟记等边三角形的性质是解题的关键.三、解答题21.(1)见解析;(2)40°【分析】(1)由12∠=∠得到BED AEC ∠=∠,然后根据ASA 即可证明AEC BED ∆≅∆; (2)由(1)得DE=CE ,70C BDE ∠=∠=︒,由三角形内角和即可求出1∠的度数.【详解】解:()11=2∠∠,BED AEC ∠=∠∴又,A B AE BE ∠=∠=()AEC BED ASA ∴∆≅∆;()2AEC BED ∆≅∆70,BDE C DE CE ∴∠=∠=︒=70C EDC ︒∴∠=∠=118027040︒︒︒∴∠=-⨯=;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的内角和定理,解题的关键是掌握全等三角形的判定和性质进行解题.22.(1)见解析;(2)见解析【分析】(1)由于△ABF 与△DCE 是直角三角形,根据直角三角形全等的判定的方法即可证明; (2)先根据三角形全等的性质得出∠AFB =∠DEC ,再根据等腰三角形的性质得出结论.【详解】证明:(1)∵BE =CF ,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中∵BF CE AB CD=⎧⎨=⎩,∴Rt△ABF≌Rt△DCE(HL);(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF.【点睛】本题主要考查全等三角形的判定和性质以及等腰三角形的判定定理,掌握HL判断两个直角三角形全等,是解题的关键.23.(1)见解析;(2)见解析.【分析】(1)作∠CAE=∠C即可;(2)延长BA,根据两直线平行,同位角相等,有∠EAF=∠B,由(1)可知∠CAE=∠C,再根据AB=AC,可得∠B=∠C,等量替换之后即可得证.【详解】(1)射线AE为所求;(2)证明:如图所示,延长BA,∵//AE BC,∴∠EAF=∠B,∠CAE=∠C,∵AB=AC,∴∠B=∠C,∴∠EAF=∠CAE,∴AE是ABC的一个外角角平分线.【点睛】本题考查了平行线的性质和判定,等腰三角形的性质和角平分线的判定等知识,掌握相关知识是解题的关键.24.(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠,∴30DBC ∠=︒. ∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,∴ED CD 4==.∵120QDP EDC ∠=∠=︒,,QDE EDP EDP PDC ∴∠+∠=∠+∠∴QDE PDC ∠=∠.∵,60ED CD AED C =∠=∠=︒,∴QDE PDC ≌,∴EQ PC =,∴4AQ PC AQ QE AE +=+==.【点睛】本题考查的是等腰三角形的判定,等边三角形的性质与判定,三角形的全等的判定与性质,掌握以上知识是解题的关键.25.(1)证明见解析;(2)证明见解析.【分析】(1)根据已知条件证明Rt △ABF ≌Rt △DCE(HL)即可得出结论;(2)根据Rt △ABF ≌Rt △DCE 可得出∠E=∠F ,即△PEF 为等腰三角形,又因为PO 平分∠EPF ,根据三线合一可知PO 垂直平分EF ,从而得出PO 垂直平分BC .【详解】(1)证明:∵BE=CF ,BC=CB∴BF=CE ,在Rt △ABF 与Rt △DCE 中,BF CE AB DC =⎧⎨=⎩∴Rt △ABF ≌Rt △DCE(HL),∴AF=DE ;(2)∵Rt △ABF ≌Rt △DCE ,∴∠E=∠F∴△PEF 为等腰三角形,又∵PO 平分∠EPF∴PO ⊥BC(三线合一),EO=FO(三线合一)又∵EB=FC∴BO=CO ,∴PO 垂直平分线段BC.【点睛】本题考查的知识点是全等三角形的判定及性质、垂直平分线的判定、等腰三角形的性质,角平分线的性质,难度不大,但综合性较强,考验了学生综合分析问题的能力. 26.(1)见解析;(2)成立,证明见解析;(3)DEF 为等边三角形【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD ,然后根据“AAS”可判断△ADB ≌△CEA ,则AE=BD ,AD=CE ,于是DE=AE+AD=BD+CE ;(2)由∠BDA=∠AEC=∠BAC ,就可以求出∠BAD=∠ACE ,进而由AAS 就可以得出△BAD ≌△ACE ,就可以得出BD=AE ,DA=CE ,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC=120°,就可以得出△BAD ≌△ACE ,就有BD=AE ,进而得出△BDF ≌△AEF ,得出DF=EF ,∠BFD=∠AFE ,而得出∠DFE=60°,即可推出△DEF 为等边三角形.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴90BDA CEA ∠=∠=︒∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.在ADB △和CEA 中:CAE ABD BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB CEA AAS ≌()△△. ∴AE BD =,AD CE =.∴DE AE AD BD CE =+=+.(2)成立.证明如下:∵∠BDA=∠BAC=α,又∵DBA ADB BAC CAE ∠+∠=∠+∠∴∠DBA=∠CAE ,在ADB △和CEA 中:DBA CAE BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ADB CEA AAS ≌△△. ∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+.(3)DEF 为等边三角形.证明:∵△ABF 和△ACF 均为等边三角形,∴AB=AF=AC ,∠ABF=∠CAF=60°,BF=AF,∴由(2)可知,△ADB ≌△CEA ,∴BD=AE ,∠DBA=∠CAE ,∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE ,∵在△DBF 和△EAF 中,BD AE DBF FAE BF AF ⎧⎪∠∠⎨⎪⎩=== ∴△DBF ≌△EAF (SAS ),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题属于三角形综合题,主要考查了全等三角形与等边三角形的综合应用,解题的关键是熟练掌握全等三角形的判定与性质以及等边三角形的判定与性质并灵活运用,属于中考常考题型.。
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。
一、选择题1.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③2.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个3.如图,在平面直角坐标系xOy 中,点A 的坐标为()4,3-,点P 在x 轴上,且使AOP 为等腰三角形,符合题意的点P 的个数为( ).A .2B .3C .4D .54.如图,ABC 中,45ABC ︒∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,DH BC ⊥于H ,交BE 于G ,下列结论:①BD CD =;②AE BG =;③2CE BF =;④AD CF BD +=.其中正确的有( )A .4个B .3个C .2个D .1个5.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA , OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D ,E 可在槽中滑动,若72BDE ︒∠=,则CDE ∠的度数是( )A .84︒B .82︒C .81︒D .78︒6.如图,已知ABC ∆中,,AB AC =点,D E 是射线AB 上的两个动点(点D 在点E 的右侧).且,CE DE =连结CD ,若ACE x ∠=,BCD y ∠=.则y 关于x 的函数关系式是( )A .()900180y x x =-<<︒B .()101802y x x =<<︒C .()39001802y x x =-<<︒ D .()201803y x x =<<︒ 7.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A.30°B.60°C.50°D.55°8.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2019=()A.22017B.22018C.22019D.220209.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有()A.1个B.2个C.3个D.4个10.如图,AC AD=,BC BD=,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.CD平分ACB∠D.AB垂直平分CD11.如图,在Rt ABC中,∠BAC=90°,以点A为圆心,以AB长为半径作弧交BC于点D,再分别以点B,D为圆心,以大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,如果AB=3,AC=4,那么线段AE的长度是()A .125B .95C .85D .7512.如图,在ABC 中,∠ACB =90°,边BC 的垂直平分线EF 交AB 于点D ,连接CD ,如果CD =6,那么AB 的长为( )A .6B .3C .12D .4.5二、填空题13.如图,点CD 在线段AB 的同侧,CA =6,AB =14,BD =12,M 为AB 中点,∠CMD =120°.则CD 的最大值为____.14.如图,点D 、E 是ABC 的边BC 上的点,且AED n ∠=︒,::1:3:2CAD DAE BAE ∠∠∠=,若点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,则n =________.15.如图,在Rt ABC △中.AC BC ⊥,若5AC =,12BC =,13AB =,将Rt ABC △折叠,使得点C 恰好落在AB 边上的点E 处,折痕为AD ,点P 为AD 上一动点,则PEB △的周长最小值为___.16.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________17.如图,在ABC 中,AB AC =,36ABC ∠=︒,DE 是线段AC 的垂直平分线,连接AE ,若BE a =,EC b =,则用含有a ,b 的代数式表示ABC 的周长是______.18.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,……按此规律作下去,若11A B O α∠=,则1010A B O ∠=___________.19.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 平分ABC ∠,如果9cm AC =,那么AD = ___________cm .20.如图,一棵大树在一次强台风中于距地面5米处倒下,则这棵树在折断前的高度为________米.三、解答题21.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (−4,5),B (﹣3,1),C (−2,3).(1)画出△ABC 及关于y 轴对称的△A 1B 1C 1,其中点B 1的坐标是________;(2)若点M 是x 轴上的动点,在图中画出使△B 1CM 周长最小时的点M .22.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DH FB FH =+.23.如图,在ABC 中,60A ∠=︒,ABC ∠、ACB ∠的平分线分别交AC 、AB 于点D 、E ,CE 、BD 相交于点F ,连接DE .(1)若7AC BC ==,求DE 的长;(2)求证:BE CD BC +=.24.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点,A C 的坐标分别为()()3,5,0,3.A C -(1)请在如图所示的网格内作出平面直角坐标系并作出ABC ∆关于y 轴对称的111A B C ∆ (2)写出点1B 的坐标并求出111A B C ∆的面积.25.已知:(0,1),(2,0),(4,4)A B C -.(1)在图中所示的坐标系中描出各点,画出ABC ,并求ABC 的面积.(2)若ABC 各顶点的横坐标不变,纵坐标都乘以1-,在同一坐标系中描出对应的点A ',B ',C ',并依次连结这三个点得A B C ''',并写出ABC 与A B C '''有怎样的位置关系?26.如图,在8×8的网格中,每个小正方形的边长为1,每个小正方形的顶点称为格点,Rt △ABC 的每个顶点都在格点上,利用网格点,只用无刻度的直尺,在给定的网格中按要求画图.(1)画△ABC 的角平分线CD 交AB 于点D ;(2)画AB 边的垂直平分线l 交直线CD 于点P .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.2.C解析:C【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.【详解】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,①正确;∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,②正确;∴BD=2CD,③正确;根据已知不能推出CD=DE,故④错误;故选:C.【点睛】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.3.C解析:C【分析】以O为圆心,AO长为半径画圆可得与x轴有2个交点,再以A为圆心,AO长为半径画圆可得与x轴有1个交点,然后再作AO的垂直平分线可得与x轴有1个交点.【详解】解:如图所示:点P在x轴上,且使△AOP为等腰三角形,符合题意的点P的个数共4个,故选:C.【点睛】此题主要考查了等腰三角形的判定,关键是考虑全面,作图不重不漏.4.B解析:B【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用ASA判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故②错误.在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,∴CE =12AC =12BF , ∴2CE =BF ;故③正确;由③可得△DFB ≌△DAC .∴BF =AC ;DF =AD .∵CD =CF +DF ,∴AD +CF =BD ;故④正确;故选:B .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA 、HL .在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.5.A解析:A【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC ,进一步根据三角形的外角性质可知∠BDE=3∠ODC=72°,即可求出∠ODC 的度数,进而求出∠CDE 的度数.【详解】解:∵OC=CD=DE ,∴∠O=∠ODC ,∠DCE=∠DEC ,∴∠DCE=∠O+∠ODC=2∠ODC ,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°-∠BDE=108°,∴∠CDE=108°-∠ODC=84°.故选:A .【点睛】本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.6.B解析:B【分析】根据等腰三角形的性质得出∠ACB=∠ABC=x+∠BCE 和∠D=∠DCE=y+∠BCE ,由三角形的外角性质得出∠ABC=∠D+∠BCD ,即x+∠BCE= y+∠BCE+ y ,即x=2y ,得出y 关于x 的函数关系式.【详解】解:∵AB AC =,ACE x ∠=,∴ ∠ACB=∠ABC=x+∠BCE ,∵CE DE =,BCD y ∠=∴∠D=∠DCE=y+∠BCE ,∵ ∠ABC 是△BCD 的一个外角,∴∠ABC=∠D+∠BCD ,即 x+∠BCE= y+∠BCE+ y ,即x=2y , ∴()101802y x x =<<︒, 故选:B .【点睛】 本题主要考查了等腰三角形的性质,三角形的外角性质,三角形的外角等于它不相邻的两个内角和.熟练掌握并运用各性质是解题的关键.7.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.8.B解析:B【分析】根据等边三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及a 2=2a 1,得出a 3=4a 1=4,a 4=8a 1=8,a 5=16a 1=16,进而得出答案.【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=2,a3=4a1=22,a4=8a1=32,a5=16a1=42,,以此类推:a2019=22018.故选:B.【点睛】此题主要考查了等边三角形的性质以及含30度角的直角三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.9.B解析:B【分析】根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B.【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.10.D解析:D【分析】根据线段垂直平分线的判定定理解答.【详解】∵AC AD=,BC BD=,∴AB垂直平分CD,故D正确,A、B错误,OC不平分∠ACB,故C错误,故选:D.【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.11.A解析:A【分析】根据作图过程可得AP是BD的垂直平分线,根据勾股定理可得BC的长,再根据等面积法求出AE的长即可.【详解】解:∵∠BAC=90°,AB=3,AC=4,∴BC5=,根据作图过程可知:AP是BD的垂直平分线,∴BE=DE,AE⊥BD,∴△ABC的面积:12AB•AC=12BC•AE,∴5AE=12,∴AE=125.故选:A.【点睛】本题考查垂直平分线和勾股定理,需要有一定的数形结合能力,熟练掌握垂直平分线的定义,结合题意进行解题是解决本题的关键.12.C解析:C【分析】根据线段的垂直平分线的性质得到DC=DB=6,则∠DCB=∠B,由∠ACB=∠ACD+∠DCB=90°,得∠A+∠B=90°,从而∠A=∠ACD,DA=DC=6,则AB=AD+DB便可求出.【详解】∵EF是线段BC的垂直平分线,DC =6,∴DC=DB=6,∴∠DCB=∠B,又∵∠ACB=∠ACD+∠DCB=90°,∴∠A+∠B=90°,∴∠A=∠ACD,∴DA=DC=6,∴AB=AD+DB=6+6=12.故选:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.二、填空题13.25【分析】作点A关于CM的对称点A作点B关于DM的对称点B证明△AMB为等边三角形在根据两点之间线段最短即可解决问题【详解】解:作点A关于CM的对称点A作点B关于DM的对称点B如下图所示:∴∠1=解析:25【分析】作点A关于CM的对称点A’,作点B关于DM的对称点B’,证明△A’MB’为等边三角形,在根据两点之间线段最短即可解决问题.【详解】解:作点A关于CM的对称点A’,作点B关于DM的对称点B’,如下图所示:∴∠1=∠2,∠3=∠4,∵∠CMD=120°,∴∠2+∠3=60°,即∠A’MB’=120°-60°=60°,又M为AB的中点,∴AM=MA’=MB’=MB ,∴△A’MB’为等边三角形,∴A’B’=AM=7,由两点之间线段最短可知:CD≤CA’+A’B’+B’D=CA+AM+BD=6+7+12=25,故答案为:25.【点睛】本题主要考查了几何变换之折叠,等边三角形的判定和性质,两点之间线段最短等知识点,解题的关键是作点A 关于CM 的对称点A’,作点B 关于DM 的对称点B’,学会利用两点之间线段最短解决最值问题.14.80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ∠BEA=∠B 再根据比例关系设根据三角形内角和定理可求得x 再根据三角形外角的性质可得∠AED 【详解】解:∵点D 在边AC 的垂直平分线上点 解析:80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ,∠BEA=∠B ,再根据比例关系设,3,2CAD x DAE x BAE x ∠=∠=∠=,根据三角形内角和定理可求得x ,再根据三角形外角的性质可得∠AED .【详解】解:∵点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,∴AD=CD ,AE=BE ,∴∠DAC=∠C ,∠BAE=∠B ,∵::1:3:2CAD DAE BAE ∠∠∠=,∴设,3,2CAD x DAE x BAE x ∠=∠=∠=,∴,2C x B x ∠=∠=,∵∠B+∠C+∠BAC=180°,∴322180x x x x x ++++=︒,解得20x =︒,∴22480AED BAE B x x x ∠=∠+∠=+==︒,即n=80,故答案为:80.【点睛】本题考查垂直平分线的性质,等边对等角,三角形内角和定理和三角形外角的性质.理解线段垂直平分线上的点到线段两端距离相等是解题关键.15.【分析】根据由沿AD 对称得到进而表示出最后求周长即可【详解】由沿AD 对称得到则E 与C 关于直线AD 对称∴如图连接由题意得∴当P 在BC 边上即D 点时取得最小值12∴周长为最小值为故答案为:20【点睛】本题 解析:【分析】根据ADE ∆由ACD ∆沿AD 对称,得到AE AC =,进而表示出PB PE PB PC BC ,最后求PEB ∆周长即可.【详解】ADE ∆由ACD ∆沿AD 对称得到,则E 与C 关于直线AD 对称,5AE AC ==,∴1358BE AB AE =-=-=,如图,连接PC ,由题意得PC PE =,∴12PB PE PB PC BC ,当P 在BC 边上,即D 点时取得最小值12,∴PEB ∆周长为PE PB BE ,最小值为12820+=.故答案为:20.【点睛】本题考查了三角形折叠问题,正确读懂题意是解本题的关键.16.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.17.【分析】根据等腰三角形的性质∠BAC=108°由线段垂直平分线的性质可得AE=CE∠EAD=∠ECD=36°进而根据角的和差可得∠BAE=∠BEA进而可得BA=BE =AC然后问题可求解【详解】∵AB+解析:3a b【分析】根据等腰三角形的性质∠BAC=108°,由线段垂直平分线的性质可得AE=CE,∠EAD=∠ECD=36°,进而根据角的和差可得∠BAE=∠BEA,进而可得BA=BE=AC然后问题可求解.【详解】∵AB=AC,∠ABC=36°,∴∠C=∠ABC=36°,∠BAC=108°,∵DE是AC的垂直平分线,∴AE=CE,∴∠EAD=∠ECD=36°,∴∠AEC=108°=∠BAC,∴∠BAE=∠BAC-∠CAE=108°-36°=72°∵∠BEA=180°-∠AEC=180°-108°=72°即∠BAE=∠BEA∴BA=BE∵BE a=,EC b=,∴BA=BE=AC=a∴△ABC的周长=AB+BE+EC+AC=3a+b故答案为:3a+b.【点睛】本题主要考查垂直平分线的性质定理及等腰三角形的性质与判定,熟练掌握垂直平分线的性质定理及等腰三角形的性质与判定是解题的关键.18.【分析】根据等腰三角形两底角相等用α表示出∠A2B2O依此类推即可得到结论【详解】解:∵B1A2=B1B2∠A1B1O=α∴∠A2B2Oα同理∠A3B3O∠A2B2Oα∠A4B4Oα∴∠AnBnOα解析:512α. 【分析】 根据等腰三角形两底角相等用α表示出∠A 2B 2O ,依此类推即可得到结论.【详解】解:∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O 12=α, 同理∠A 3B 3O 12=∠A 2B 2O 212=α, ∠A 4B 4O 312=α, ∴∠A n B n O 112n -=α, ∴∠A 10B 10O 95221αα==. 故答案为:512α. 【点睛】 本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.19.6【分析】先求得∠ABD=∠CBD=30°进而得AD=BD 设AD=BD=x(cm)列出关于x 的方程即可求解【详解】∵在中∴∠ABC=60°∵BD 平分∴∠ABD=∠CBD=30°∴∠ABD=∠A ∴AD解析:6【分析】先求得∠ABD=∠CBD=30°,进而得AD=BD ,设AD=BD=x(cm),列出关于x 的方程,即可求解.【详解】∵在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,∴∠ABC=60°,∵BD 平分ABC ∠,∴∠ABD=∠CBD=30°,∴∠ABD=∠A ,∴AD=BD ,设AD=BD=x(cm),∵AC=9cm ,∴CD=(9-x)cm ,∴912x x -=,即:x=6, ∴AD =6.故答案是:6【点睛】 本题主要考查等腰三角形的判定定理以及含30°角的直角三角形的性质,熟练掌握“直角三角形中,30°角所对的直角边是斜边的一半”是解题的关键.20.15【分析】如图在Rt △ABC 中∠ABC =30°由此即可得到AB =2AC 而根据题意找到CA =5米由此即可求出AB 也就可以求出大树在折断前的高度【详解】如图在Rt △ABC 中∵∠ABC =30°∴AB =2解析:15【分析】如图,在Rt △ABC 中,∠ABC =30°,由此即可得到AB =2AC ,而根据题意找到CA =5米,由此即可求出AB ,也就可以求出大树在折断前的高度.【详解】如图,在Rt △ABC 中,∵∠ABC =30°,∴AB =2AC ,∵CA =5米,∴AB =10米,∴AB +AC =15米.所以这棵大树在折断前的高度为15米.故答案为:15.【点睛】本题主要利用定理−−在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.三、解答题21.(1)图形见解析;B 1(3,2);(2)见解析【分析】(1)分别找到A 、B 、C 点关于y 轴的对称点,然后连接即可;(2)找C 关于x 轴的对称点C′,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【详解】解:(1)111A B C △如图所示;根据图形可知B 1(3,2),故答案为:(3,2);(2)如图所示:找C 关于x 轴的对称点C′,则C′(-2,-3),CM C M '=,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【点睛】本题考查作图-轴对称、最短路径问题,解题的关键是熟练掌握基础知识.22.(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型. 23.(1) 3.5DE =;(2)见解析.【分析】(1)证明△ADE 为等边三角形,即可得结论;(2)在BC 上截取BH=BE ,证明两对三角形全等:△EBF ≌△HBF ,△CDF ≌△CHF ,可得结论.【详解】(1)∵AC=BC=7,∠A=60°,∴△ABC 为等边三角形,∴AC=AB=7,又∵BD 、CE 分别是∠ABC 、∠ACB 的平分线,∴D 、E 分别是AC 、AB 的中点, ∴11=3.5,=3.522==AD AC AE AB , ∴AD=AE ,∵∠A=60°,∴△ADE 为等边三角形,∴DE=AE=3.5;(2)证明:在BC 上截取BH=BE ,∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵BF=BF∴△EBF ≌△HBF (SAS ),∴∠EFB=∠HFB=60°.∵∠A=60°,∴∠ABC+∠ACB=120°,∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD=∠CBD ,∠ACE=∠BCE ,∴∠CBD+∠BCE=60°,∴∠BFE=60°,∴∠CFB=120°,∴∠CFH=60°,∵∠BFE=∠CFD=60°,∴∠CFH=∠CFD=60°,∵CF=CF ,∴△CDF ≌△CHF (ASA ).∴CD=CH ,∵CH+BH=BC ,∴BE+CD=BC .【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质.解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.24.(1)见解析;(2)()11,1B ;面积4【分析】(1)根据A ,C 两点的坐标确定坐标系,分别作出A ,B ,C 关于y 轴对称的对应点A 1,B 1,C 1′即可;(2)由平面直角坐标系可得B 1的坐标,运用分割法可得111A B C ∆的面积.【详解】解:(1)如图所示,(2)点1B 的坐标为(1,1)111A B C ∆的面积=11134122324222⨯-⨯⨯-⨯⨯-⨯⨯ =12-1-3-4=4【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.25.(1)图见解析,3;(2)ABC与A B C'''关于x轴对称【分析】(1)根据点坐标确定其在坐标系中的位置,顺次连线即可得到ABC,利用割补法求面积;(2)根据点A、B、C纵坐标都乘以1-,得到对应的点A',B',C'的坐标,再确定各点位置,即可得到两个三角形的关系.【详解】(1)如图,ABC即为所求,111451245(15)23222ABCS=⨯-⨯⨯-⨯⨯-⨯+⨯=;(2)∵(0,1),(2,0),(4,4)A B C-,∴A'(0,-1),B'(2,0),C'(4,4),∴ABC与A B C'''关于x轴对称..【点睛】此题考查点坐标的确定,坐标与图形,图形的变换关系,正确根据点的坐标确定其在直角坐标系中的位置是解题的关键.26.(1)见解析;(2)见解析【分析】(1)取格点T,连接CT交AB于点D,线段CD即为所求.(2)取格点G,R,作直线GR交直线CT于点P,点P即为所求.【详解】解:(1)如图,线段CD即为所求.(2)如图,直线l即为所求.【点睛】本题考查作图的应用与设计,线段的垂直平分线,角平分线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
第十三章轴对称13. 2画轴对称图形一、选择题目:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在3×3方格图中,在其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,方法有A.1种B.2种C.3种D.4种【答案】C【解析】共有3种,如图.故选C.学科&网2.点(4,3)与点(4,-3)的关系是A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系【答案】B【解析】根据平面直角坐标系的特点,可知点(4,3)与点(4,-3)的关系是关于x轴对称.故选B.3.已知点P关于y轴的对称点1P的坐标是(2,3),则点P坐标是A.(-3,-2)B.(-2,3)C.(2,-3)D.(3,-2)【答案】B4.在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A的坐标是A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4)【答案】A【解析】∵点B的坐标是(4,-1),点A与点B关于x轴对称,∴点A的坐标是:(4,1),故选A.5.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是A.-5 B.-3 C.3 D.1【答案】D【解析】∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,解得:m=2,n=-1,所以m+n=2-1=1,故选D.学科&网6.如图,△ABC与△DEF关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为A.(-4,6)B.(4,6)C.(-2,1)D.(6,2)【答案】B【解析】∵△ABC与△DEF关于y轴对称,A(-4,6),∴D(4,6),故选B.二、填空题目:请将答案填在题中横线上.7.点A(-5,-6)与点B(5,-6)关于__________对称.【答案】y轴8.如图,在方格纸上建立的平面直角坐标系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A的对应点D的坐标是__________.【答案】(2,1)【解析】∵点A的坐标为(-2,1),∴点A关于y轴对称的点D的横坐标为2,纵坐标为1,∴点A关于x轴对称的点D的坐标是(2,1),故答案为:(2,1).学科&网9.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有__________个.【答案】5三、解答题:解答应写出文字说明、证明过程或演算步骤.10.在5×7的方格纸上,任意选出5个小方块涂上颜色,使整个图形(包括着色的“对称”)有:①1条对称轴;②2条对称轴;③4条对称轴.【解析】①如图1所示:②如图2所示:③如图3所示:11.如图,已知四边形ABCD的顶点坐标分别为A(1,1),B(5,1),C(5,4),D(2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标.祝福语祝你考试成功!。
专题10推理能力课之轴对称综合重难点专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图为5×5的方格,其中有A 、B 、C 三点,现有一点P 在其它格点上,且A 、B 、C 、P 为轴对称图形,问共有几个这样的点P ( )A .5B .4C .3D .2【答案】B【分析】利用轴对称图形的性质得出符合题意的点即可.【详解】解:如图所示:A 、B 、C 、P 为轴对称图形,共有4个这样的点P .答案:B .【点睛】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的定义是解题关键.2.ABC V 是网格中的格点三角形(三角形的各顶点都在网格的交叉点上),如图建立直角坐标系,将该三角形先向下平移2个单位,然后再将平移后的图形沿y 轴翻折180°,得到A B C ¢¢¢V ,则点B 对应点B ¢的坐标为( )A .(4,3)-B .(3,2)--C .(2,5)-D .(4,3)--【答案】A【分析】根据网格求出点B 坐标,向下平移2个单位,点 B 的横坐标不变,纵坐标减2得对应点B 1的坐标,再沿y 轴翻折180°,横坐标变为相反数,纵坐标不变即可得出点B ′(-4,3).【详解】解:∵点B 坐标为(4,5)向下平移2个单位,得点B 对应点的坐标B 1(4,5-2),即B 1(4,3),再沿y 轴翻折180°,点B ′(-4,3),故选择A .【点睛】本题考查根据平面直角坐标系写出点的坐标,平移的性质,轴对称性质,掌握平面直角坐标系点的坐标构成,平移的性质,轴对称性质是解题关键.3.如图,直线l ,m 相交于点O .P 为这两直线外一点,且 2.8OP =.若点P 关于直线l ,m 的对称点分别是点1P ,2P ,则1P ,2P 之间的距离可能是( )A .0B .5C .6D .7【答案】B【分析】连接112221,,,,OP P OP PP PP P 根据轴对称的性质和三角形三边关系可得结论.【详解】解:连接112221,,,,OP P OP PP PP P ,如图,∵1P 是P 关于直线l 的对称点,∴直线l 是1PP 的垂直平分线,∴1 2.8OP OP ==∵2P 是P 关于直线m 的对称点,∴直线m 是2PP 的垂直平分线,∴2 2.8OP OP ==当12,,P O P 不在同一条直线上时,121212OP OP PP OP OP <<-+即120 5.6PP <<当12,,P O P 在同一条直线上时,1212 5.6PP OP OP =+=故选:B【点睛】此题主要考查了轴对称变换,熟练掌握轴对称变换的性质是解答此题的关键4.如图,BAC Ð的角平分线与BC 的垂直平分线DG 交于点,,D DE AB DF AC ^^,垂足分别为E F 、,若9,10AF BC ==,则ABC V 的周长为( )A .19B .28C .29D .38【答案】B【分析】连接BD 、DC ,证△BDE ≌△CDF ,可得CF=BE ,根据角平分线性质可知AE=AF ,即可求周长.【详解】解:连接BD 、DC ,∵AD 平分∠ BAC ,,DE AB DF AC ^^,∴DE=DF ,∵AD=AD ,∴Rt △ADE ≌Rt △ADF ,∴AE=AF=9,∵DG 垂直平分BC ,∴BD=DC ,∴Rt △BDE ≌Rt △CDF ,∴BE=CF ,ABC V 的周长=AB+AC+BC=AF-CF+AE+BE+BC=2AF+BC=28,故选:B .【点睛】本题考查了角平分线的性质、垂直平分线的性质、全等三角形的判定与性质,解题关键是依据已知条件,恰当作辅助线,构造全等三角形.5.如图,在Rt ABC V 中,90ACB Ð=°,根据尺规作图的痕迹,判断以下结论错误的是( )A .BDE BACÐ=ÐB .BAD B =∠∠C .DE DC=D .AE AC=【答案】B【分析】先通过作图过程可得AD 平分∠BAC ,DE ⊥AB ,然后证明△ACD ≌△AED 说明C 、D 正确,再根据直角三角形的性质说明选项A 正确,最后发现只有AE =EB 时才符合题意.【详解】解:由题意可得:AD 平分∠BAC ,DE ⊥AB ,在△ACD 和△AED 中∠AED =∠C ,∠EAD =∠CAD ,AD =AD∴△ACD ≌△AED (AAS )∴DE =DC ,AE =AC ,即C 、D 正确;在Rt △BED 中,∠BDE =90°-∠B在Rt △BED 中,∠BAC =90°-∠B∴∠BDE =∠BAC ,即选项A 正确;选项B ,只有AE =EB 时,才符合题意.故选B .【点睛】本题主要考查了尺规作图、全等三角形的性质与判定、直角三角形的性质,正确理解尺规作图成为解答本题的关键.6.在 Rt ABC V 中,90C =o ∠, 30A Ð=o ,点P 是边 AC 上一定点,此时分别在边 AB ,BC 上存在点 M ,N 使得PMN V 周长最小且为等腰三角形,则此时AP PC的值为( )A .1B .2C .3D .32【答案】B【分析】如图,先作ABC V 分别关于AB ,BC 对称的三角形,以及P 的对称点1P ,2P ,找到PMN V 周长最小的条件即1P 、M 、N 、2P 共线时,进而设1BC =,CP x =,AP x =,BF y =,通过各边关系列出方程,解出x ,即可求得AP PC的值.【详解】如图作ABC V 分别关于AB ,BC 对称,得1ABC V ,1CBA V ,以及P 的对称点1P ,2P ,则2PM P M =,1P N PN =,所以1P 、M 、N 、2P 共线时,PMN V 周长最小。
一、选择题1.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形2.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA , OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D ,E 可在槽中滑动,若72BDE ︒∠=,则CDE ∠的度数是( )A .84︒B .82︒C .81︒D .78︒3.下列命题中,是假命题的是( )A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等C .三个角都相等的三角形是等边三角形D .等腰三角形的两底角相等4.已知点A 是直线l 外的一个点,点B ,C ,D ,E 是直线l 上不重合的四个点,再添加①AB AC =;②AD AE =;③BD CE =中的两个作为题设,余下的一个作为结论组成一个命题,组成真命题的个数为( ).A .0B .1C .2D .35.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大 6.如图,点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,若ODE 的周长为9cm ,那么BC 的长为( )A .8cmB .9cmC .10cmD .11cm 7.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .38.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 9.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,DE 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒10.如图,在ABC 与A B C ''△中,,90AB AC A B A C B B ==''='∠+∠'=︒,ABC ,A B C '''的面积分别为1S 、2S ,则( )A .12S S >B .12S SC .12S S <D .无法比较1S 、2S 的大小关系 11.如图,是一个 3×4 的网格(由 12 个小正方形组成,虚线交点称之格点)图中有一个三角形,三个顶点都在格点上,在网格中可以画出( )个与此三角形关于某直线对称的格点三角形.A .6B .7C .8D .912.如图,AC AD =,BC BD =,则有( )A .AB 与CD 互相垂直平分B .CD 垂直平分ABC .CD 平分ACB ∠ D .AB 垂直平分CD二、填空题13.如图,在ABC 中,AB 的垂直平分线DE 分别与,AB BC 交于点,D E ,AC 的垂直平分线FG 分别与,BC AC 交于点,F G ,10,3BC EF ==,则AEF 的周长是________.14.如图,在Rt ABC △中.AC BC ⊥,若5AC =,12BC =,13AB =,将Rt ABC △折叠,使得点C 恰好落在AB 边上的点E 处,折痕为AD ,点P 为AD 上一动点,则PEB △的周长最小值为___.15.如图,在锐角△ABC 中,AB =62,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是_____________.16.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.17.若等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数为______________ 18.如图,已知 O 为△ABC 三边垂直平分线的交点,且∠A =50°,则∠BOC 的度数为_____度.19.如图,在△ABC 中,AB =AC ,D 为BC 的中点,∠BAD =20°,且AE =AD ,则∠CDE 的度数是______.20.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC △周长的最小值为________.三、解答题21.如图,已知:射线AM 是△ABC 的外角∠NAC 的平分线.(1)作BC 的垂直平分线PF ,交射线AM 于点P ,交边BC 于点F ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)过点P 作PD ⊥BA ,PE ⊥AC ,垂足分别为点D ,E ,请补全图形并证明BD =CE .22.如图,以△ABC 的两边AB 和AC 为腰在△ABC 外部作等腰Rt △ABD 和等腰Rt △ACE ,AB =AD ,AC =AE ,∠BAD =∠CAE =90°.(1)连接BE 、CD 交于点F ,如图①,求证:BE =CD ,BE ⊥CD ;(2)连接DE ,AM ⊥BC 于点M ,直线AM 交DE 于点N ,如图②,求证:DN =EN .23.如图,,A B AE BE ∠=∠=,点D 在AC 边上,12,AE ∠=∠和BD 相交于点O . (1)求证:AEC BED ∆≅∆(2)若70BDE ︒∠=,求1∠的度数.24.已知AOB ∠及一点P ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法)(1)过点P 作OA 、OB 的垂线,垂足分别为点M 、N ;(2)猜想MPN ∠与AOB ∠之间的数量关系,并说明理由.25.在如图所示的方格纸中,(1)作出ABC 关于MN 对称的111A B C △;(2)222A B C △是由111A B C △经过怎样的平移得到的?并求出111A B C △在平移过程中所扫过的面积.26.如图,90BAD CAE ∠=∠=︒,AB AD =,AE AC =,AF CB ⊥,垂足为F .(1)求证:ABC ADE △≌△;AC=,求四边形ABCD的面积;(2)若10∠的度数.(3)求FAE【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用全等三角形的判定和等腰三角形的性质判断A、B,根据对顶角的定义判断C,根据等边三角形的判定判断D.【详解】解:A.两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是真命题;B.已知等腰三角形的两腰相等,且顶角的平分线即为底边上的高,则可根据为HL可以得出两个三角形全等,故本选项是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、有一个角为60°的等腰三角形是等边三角形,正确,是真命题;故选C.【点睛】本题考查了命题和定理,解题的关键是明确题意,可以判断题目中的命题的真假,对于假命题能举出反例或者说明理由.2.A解析:A【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC,进一步根据三角形的外角性质可知∠BDE=3∠ODC=72°,即可求出∠ODC的度数,进而求出∠CDE的度数.【详解】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°-∠BDE=108°,∴∠CDE=108°-∠ODC=84°.故选:A.本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.3.B解析:B【分析】根据全等三角形的定义去判断A,全等三角形性质去判断B,等边三角形和等腰三角形性质判断C、D,依次分析解答即可.【详解】解:A.由全等三角形的定义得到:能够完全重合的两个图形全等,此命题是真命题;B.两边和一角对应相等且该角是两边的夹角的两个三角形全等,此命题是假命题;C. 三个角都相等的三角形是等边三角形,此命题是真命题;D. 等腰三角形的两底角相等,此命题是真命题;故选B.【点睛】此题主要考查了命题的真假,关键是掌握相关定义和性质.注意SAS时,一角必须是两边的夹角.4.D解析:D【分析】写出所组成的三个命题,然后根据等腰三角形的判断与性质对各命题进行判断.【详解】解:根据题意吧,如图:由等腰三角形的性质和全等三角形的判定定理,易证△ABD≌△ACE;命题1:若AB=AC,AD=AE,则BD=CE,此命题为真命题;命题2:若AB=AC,BD=CE,则AD=AE,此命题为真命题;命题3:若AD=AE,BD=CE,则AB=AC,此命题为真命题.故选:D.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,以及命题真假的判断,解题的关键是熟练掌握所学的知识,正确的判断命题的真假.5.D【分析】先根据等边三角形的性质可得60ABC ACB BAC ∠=∠=∠=︒,从而可得120EBD DCF ∠=∠=︒,再根据等腰三角形的性质、角的和差可得BAD E CDF ∠=∠=∠,然后根据三角形全等的判定定理与性质可得BE CD =,从而可得BED 周长为BE BD DE BC AD ++=+,最后根据点到直线的距离即可得出答案.【详解】 ABC 是等边三角形,60ABC ACB BAC ∴∠=∠=∠=︒,120EBD DCF ∴∠=∠=︒,DF AD =,CAD F ∴∠=∠,又6060BAD CAD BAC CDF F ACB ∠+∠=∠=︒⎧⎨∠+∠=∠=︒⎩, BAD CDF ∴∠=∠,DE AD =,BAD E ∴∠=∠,E CDF ∴∠=∠,在BDE 和CFD △中,EBD DCF E CDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CFD AAS ∴≅,BE CD ∴=,则BED 周长为BE BD DE CD BD AD BC AD ++=++=+,在点D 从B 运动到C 的过程中,BC 长不变,AD 长先变小后变大,其中当点D 运动到BC 的中点位置时,AD 最小,∴在点D 从B 运动到C 的过程中,BED 周长的变化规律是先变小后变大,故选:D .【点睛】本题考查了等腰三角形的性质、等边三角形的性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.6.B解析:B【分析】由OB ,OC 分别是△ABC 的∠ABC 和∠ACB 的平分线和OD ∥AB 、OE ∥AC 可推出BD=OD ,OE=EC ,从而得出BC 的长等于△ODE 的周长即可.【详解】解:∵OD ∥AB ,OE ∥AC ,∴∠ABO=∠BOD ,∠ACO=∠EOC ,∵点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,∴∠ABO=∠OBD ,∠ACO=∠OCE ;∴∠OBD =∠BOD ,∠EOC=∠OCE ;∴BD=OD ,CE=OE ;∴△ODE 的周长=OD+DE+OE=BD+DE+EC= BC∵ODE 的周长为9cm ,∴BC=9cm .故选:B .【点睛】 此题考查了平行线性质,角平分线定义以及等腰三角形的判定定理,熟练掌握相关知识是解题的关键,难度中等.7.B解析:B【分析】由已知可以写出∠B 和∠C ,再根据三角形内角和定理可以得解.【详解】解:由已知可得:∠B=∠C=k ∠A=(36k )°,由三角形内角和定理可得:2×36k+36=180,∴k=2,故选B .【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键 .8.C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.9.C解析:C【分析】根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.B解析:B【分析】分别做出两三角形的高AD ,A′E ,利用题干的条件证明△ABD ≅△A′B′E 即可得到两三角形的面积相等;【详解】分别做出两三角形的高AD ,A′E ,如图:90B B '+=∵∠∠,90B A E B '''+=∠∠,90BAD B ∠+∠=,∴∠B=∠B′A′E ,∠B′=∠BAD ,又AB=A′B′,∴△ABD ≅△A′B′E ,同理△ACD ≅△A ′C′E ;∴ABD A B E SS ''=,ACD A C E S S ''=, 故ABD ACD A B E A C E S S S S ''''+=+,又ABC ,A B C '''的面积分别为1S 、2S ,∴12S S故选:B .【点睛】此题考查了等腰三角形的性质及三角形全等的判定及性质:两三角形全等,则对应边对应角相等,面积也相等.11.B解析:B【分析】先确定对称轴,再找到对称点进而可以找到符合题意的对称三角形即可.【详解】解:如图,左右对称的有4个,如图,上下对称的有1个,如图,关于正方形的对角线对称的有2个,∴一共有7个与原三角形关于某直线对称的格点三角形,故选:B.【点睛】本题考查了轴对称图形的性质,找到正确的对称轴,画出相应的对称三角形是解决本题的关键.12.D解析:D【分析】根据线段垂直平分线的判定定理解答.【详解】∵AC AD =,BC BD =,∴AB 垂直平分CD ,故D 正确,A 、B 错误,OC 不平分∠ACB ,故C 错误,故选:D .【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.二、填空题13.16【分析】根据线段的垂直平分线的性质得到EB =EAAF =FC 根据三角形的周长公式计算得到答案【详解】解:∵DE 是AB 边的垂直平分线∴EB =EA ∵FG 是AC 边的垂直平分线∴AF =FC ∴△AEF 的周长解析:16【分析】根据线段的垂直平分线的性质得到EB =EA 、AF =FC ,根据三角形的周长公式计算,得到答案.【详解】解:∵DE 是AB 边的垂直平分线,∴EB =EA ,∵FG 是AC 边的垂直平分线,∴AF =FC ,∴△AEF 的周长=AF+AE+EF=FC+BE+EF=EC+EF+BE+EF=BC+2EF=10+6=16,故答案为:16.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.【分析】根据由沿AD 对称得到进而表示出最后求周长即可【详解】由沿AD 对称得到则E 与C 关于直线AD 对称∴如图连接由题意得∴当P 在BC 边上即D 点时取得最小值12∴周长为最小值为故答案为:20【点睛】本题解析:【分析】根据ADE ∆由ACD ∆沿AD 对称,得到AE AC =,进而表示出PB PE PB PC BC ,最后求PEB ∆周长即可.【详解】ADE ∆由ACD ∆沿AD 对称得到,则E 与C 关于直线AD 对称,5AE AC ==,∴1358BE AB AE =-=-=,如图,连接PC ,由题意得PC PE =,∴12PB PE PB PC BC ,当P 在BC 边上,即D 点时取得最小值12,∴PEB ∆周长为PE PB BE ,最小值为12820+=.故答案为:20.【点睛】本题考查了三角形折叠问题,正确读懂题意是解本题的关键.15.6【分析】作BH ⊥AC 垂足为H 交AD 于M′点过M′点作M′N′⊥AB 垂足为N′则BM′+M′N′为所求的最小值再根据AD 是∠BAC 的平分线可知M′H=M′N′再由锐角三角函数的定义即可得出结论【详解解析:6【分析】作BH ⊥AC ,垂足为H ,交AD 于M′点,过M′点作M′N′⊥AB ,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD 是∠BAC 的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.【详解】解:如图,作BH ⊥AC ,垂足为H ,交AD 于M′点,过M′点作M′N′⊥AB ,垂足为N′,则BM′+M′N′为所求的最小值.∵AD 是∠BAC 的平分线,∴M′H=M′N′,∴BH 是点B 到直线AC 的最短距离(垂线段最短),∵AB=∠BAC=45°,∴BH=AH∴222AH BH AB +=∴BH=6.∵BM+MN 的最小值是BM′+M′N′=BM′+M′H=BH=6.故答案为6.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.16.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.17.70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况【详解】解:①当等腰三角形的顶角是钝角时腰上的高在外部如图1根据三角形的一个外角等于与它不相邻的两个内解析:70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当等腰三角形的顶角是钝角时,腰上的高在外部,如图1,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;②当等腰三角形的顶角是锐角时,腰上的高在其内部,如图2,根据直角三角形两锐角互余可求顶角是90°-20°=70°.故答案为70°或110°.【点睛】本题考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.18.100【分析】连接AO延长交BC于D根据线段垂直平分线的性质可得OB=OA=OC再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A即可求解【详解】解:连接AO延长交BC于D∵O为△A解析:100【分析】连接AO延长交BC于D,根据线段垂直平分线的性质可得OB=OA=OC,再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A,即可求解.【详解】解:连接AO延长交BC于D,∵O 为△ABC 三边垂直平分线的交点,∴OB=OA=OC,∴∠OBA=∠OAB,∠OCA=∠OAC,∵∠BOD=∠OBA+∠OAB=2∠OAB,∠COD=∠OCA+∠OAC=2∠OAC,∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2∠BAC,∵∠BAC=50°,∴∠BOC=100°.故答案为:100.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键.19.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE=∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B=∠C=x,∠CDE=y,分别表示出∠DAE,构建方程解方程即可求解.【详解】解:设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 °−2(x+y)=180 °−20 °−2x,∴2y=20 °,∴y=10 °,∴∠CDE=10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.20.【分析】根据勾股定理可得AC的长度作点C关于x轴的对称点C′连接AC′与x轴交于点P利用勾股定理求出AP+PC的最小值从而得出答案【详解】AC=如图作点C关于x轴的对称点C′连接AC′与x轴交于点P解析:21022【分析】根据勾股定理可得AC的长度,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,利用勾股定理求出AP+PC的最小值,从而得出答案.【详解】AC=22+=,2222如图,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,则AP+PC=AP+PC′=AC′,此时AP+PC取得最小值,最小值为22+=,26210+,所以△PAC周长的最小值为21022+.故答案为:21022【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质.三、解答题21.(1)见解析;(2)见解析【分析】(1)利用基本作图作BC的垂直平分线即可;(2)先根据几何语言画出对应几何图形,再连接PB、PC,根据线段垂直平分线的性质得到PB=PC,根据角平分线的性质得PD=PE,则可判断Rt△BDP≌Rt△CEP,从而得到BD=CE.【详解】解:(1)如图,PF为所作;(2)证明:如图,连接PB 、PC ,如图,∵PF 垂直平分BC ,∴PB =PC ,∵AM 是△ABC 的外角∠NAC 的平分线,PD ⊥BA ,PE ⊥AC ,∴PD =PE ,在Rt △BDP 和Rt △CEP 中,PB PC PD PE =⎧⎨=⎩, ∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE .【点睛】本题考查了线段垂直平分线和角平分线的性质以及全等三角形的判定和性质,掌握相关性质定理正确推理论证是解题关键.22.(1)见详解;(2)见详解.【分析】(1)只要证明△ABE ≌△ADC 即可解决问题;(2)延长AN 到G ,使AG=BC ,连接GE ,先证AEG CAB △≌△,再证GE ADN N △≌△即可解决问题.【详解】(1)证明:∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,又∵∠BAD=∠CAE=90°,∴∠BAD+∠DAE=∠CAE+∠DAE ,即∠BAE=∠DAC ,∴△ABE ≌△ADC ,∴BE=DC ,∠ABE=∠ADC ,又∵∠DOF=∠AOB ,∠BOA+∠ABE=90°,∴∠ABE+∠DOF=90°∴∠ADC+∠DOF=90,即BE ⊥DC .(2)延长AN 到G 使AG=BC ,连接GE ,AM BC ⊥,AC 90MAC M ∴∠+∠=︒,90NAE MAC ∠+∠=︒,ACM=NAE ∴∠∠,同理可证:ABC DAN ∠=∠ AC=AE ,∴()AEG CAB SAS △≌△,GE AB AD ∴==,ABC G ∠=∠,DAN G ∴∠=∠,又NA=GNE D ∠∠,∴GE ADN N △≌△,DN=EN ∴.【点睛】此题考查了全等三角形的判定与性质,等腰三角形的性质,直角三角形的性质,辅助线是解此题的关键.23.(1)见解析;(2)40°【分析】(1)由12∠=∠得到BED AEC ∠=∠,然后根据ASA 即可证明AEC BED ∆≅∆; (2)由(1)得DE=CE ,70C BDE ∠=∠=︒,由三角形内角和即可求出1∠的度数.【详解】解:()11=2∠∠,BED AEC ∠=∠∴又,A B AE BE ∠=∠=()AEC BED ASA ∴∆≅∆;()2AEC BED ∆≅∆70,BDE C DE CE ∴∠=∠=︒=70C EDC ︒∴∠=∠=118027040︒︒︒∴∠=-⨯=;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的内角和定理,解题的关键是掌握全等三角形的判定和性质进行解题.24.(1)见解析;(2)∠MPN+∠AOB=180°或∠MPN=∠AOB ,理由见解析【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【详解】(1)过点P 作OA 、OB 的垂线PM 、PN 如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB .理由:左图中,在四边形PMON 中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN ,∠PMJ=∠JNO=90°,∴∠MPN=∠AOB .【点睛】本题考查了作图-基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型. 25.(1)图见解析;(2)先向右平移6个单位,再向下平移2个单位,面积是16【分析】(1)作点A 、B 、C 关于MN 的对称点1A 、1B 、1C ,即可得到111A B C △;(2)先向右平移6个单位,再向下平移2个单位可以得到222A B C △,画出平移的图象,求出扫过的面积.【详解】解:(1)如图所示,(2)如图所示,111A B C △先向右平移6个单位,再向下平移2个单位,得到222A B C △,111A B C △在平移过程中所扫过的面积是图中阴影部分,16242124162S =⨯+⨯⨯=+=. 【点睛】本题考查轴对称和平移,解题的关键是掌握轴对称图形的画法和图形平移的方法. 26.(1)见解析;(2)50;(3)135°【分析】(1)由题意先求出∠BAC=∠EAD ,然后根据SAS 推出△ABC ≌△ADE ;(2)根据题意即可推出四边形ABCD 的面积=△ACE 的面积,进而分析计算即可得出答案;(3)根据题意可推出∠CAF=45°,再根据∠EAF =∠FAC +∠CAE 即可求出∠FAE 的度数.【详解】(1)证明:90BAD CAE ∠=∠=︒,90BAC CAD ∴∠+∠=︒,90CAD DAE ∠+∠=︒,BAC DAE ∴∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABC ADE ∴△≌△.解:(2)ABC ADE △≌△,ABC ADE S S ∴=△△,ABC ACD ADE ACD ACE ABCD S SS S S S ∴=+=+=四边形,10AC =, 1010250ACE ABCD S S∴==⨯÷=四边形. (3)90CAE ∠=︒,AC AE =,45E ∴∠=︒,BAC DAE △≌△,45BCA E ∴∠=∠=︒,AF BC ⊥,45CAF ∴∠=︒,4590135FAE FAC CAE ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形的性质,直角三角形的性质,解题的关键是学会利用等腰直角三角形的性质解决问题,属于中考常考题型.。
人教版八年级数学上册 轴对称填空选择章末训练(Word版 含解析)
一、八年级数学全等三角形填空题(难) 1.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=11,AC=5,则BE=______________.
【答案】3 【解析】如图,连接CD,BD,已知AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可得DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,即可得AE=AF,又因DG是BC的垂直平分线,所以CD=BD,在Rt△CDF和Rt△BDE中,CD=BD,DF=DE,利用HL定理可判定Rt△CDF≌Rt△BDE,由全等三角形的性质可得BE=CF,所以AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,又因AB=11,AC=5,所以BE=3.
点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.
2.如图,在ABC中,点A的坐标为0,1,点B的坐标为0,4,点C的坐标为4,3,点D在第二象限,且ABD与ABC全等,点D的坐标是______.
【答案】(-4,2)或(-4,3) 【解析】 【分析】 【详解】 把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC全等. 故答案为(-4,2)或(-4,3). 3.在Rt△ABC中,∠C=90°,∠A的平分线AD分对边BD,DC的长度比为3:2,且BC=20cm,则点D到AB的距离是_____cm.
【答案】8 【解析】 【分析】 根据题意画出图形,过点D作DE⊥AB于点E,由角平分线的性质可知DE=CD,根据角平分线AD分对边BC为BD:DC=3:2,且BC=10cm即可得出结论. 【详解】 解:如图所示,过点D作DE⊥AB于点E, ∵AD是∠BAC的平分线,∠C=90°, ∴DE=CD. ∵BD:DC=3:2,且BC=10cm,
人教版数学八年级上册 轴对称填空选择专题练习(解析版) 一、八年级数学全等三角形填空题(难) 1.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.
【答案】1或7 【解析】 【分析】 分点P在线段BC上和点P在线段AD上两种情况解答即可. 【详解】 设点P的运动时间为t秒,则BP=2t, 当点P在线段BC上时, ∵四边形ABCD为长方形, ∴AB=CD,∠B=∠DCE=90°,
此时有△ABP≌△DCE, ∴BP=CE,即2t=2,解得t=1;
当点P在线段AD上时, ∵AB=4,AD=6, ∴BC=6,CD=4, ∴AP=BC+CD+DA=6+4+6=16, ∴AP=16-2t, 此时有△ABP≌△CDE, ∴AP=CE,即16-2t=2,解得t=7;
综上可知当t为1秒或7秒时,△ABP和△CDE全等. 故答案为1或7. 【点睛】 本题考查了全等三角形的判定,判定三角形全等方法有:ASA、SAS、AAS、SSS、HL.解决本题时注意分情况讨论,不要漏解.
2.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____. 【答案】12.5 【解析】 【分析】 过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角
形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=12×5×5=12.5,即可得出结论. 【详解】 如图,过A作AE⊥AC,交CB的延长线于E,
∵∠DAB=∠DCB=90°, ∴∠D+∠ABC=180°=∠ABE+∠ABC, ∴∠D=∠ABE, 又∵∠DAB=∠CAE=90°, ∴∠CAD=∠EAB, 又∵AD=AB, ∴△ACD≌△AEB(ASA), ∴AC=AE,即△ACE是等腰直角三角形, ∴四边形ABCD的面积与△ACE的面积相等,
∵S△ACE=12×5×5=12.5, ∴四边形ABCD的面积为12.5, 故答案为12.5. 【点睛】 本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题
3.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CDE=55°.如图,则∠EAB的度数为_________ 【答案】35° 【解析】 【分析】 过点E作EF⊥AD于F,根据角平分线上的点到角的两边的距离相等可得CE=EF,再根据到角的两边距离相等的点在角的平分线上可得AE是∠BAD的平分线,然后求出∠AEB,再根据直角三角形两锐角互余求解即可. 【详解】 过点E作EF⊥AD于F. ∵DE平分∠ADC,∴CE=EF. ∵E是BC的中点,∴CE=BE,∴BE=EF,∴AE是∠BAD的平分线,∴∠EAB=∠FAE. ∵∠B=∠C=90°,∴∠CDA+∠DAB=180°,∴2∠CDE+2∠EAB=180°,∴∠CDE+∠EAB=90°,∴∠EAB=90°-∠CDE=90°-55°=35°. 故答案为:35°.
【点睛】 本题考查了角平分线上的点到角的两边的距离相等的性质,角平分线的判定,熟记性质并作辅助线是解题的关键.
4.AD、BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,则∠ABC=______. 【答案】45°或135° 【解析】 【分析】 分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据等腰直角三角形的性质即可得答案. 【详解】 ①如图,当△ABC为锐角三角形时, ∵AD、BE为△ABC的两条高, ∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°, ∵∠BOD=∠AOE, ∴∠CAD=∠OBD, 又∵∠ODB=∠ADC=90°,OB=AC, ∴△BOD≌△ACD, ∴AD=BD, ∵AD⊥BC, ∴∠ABC=45°,
②如图,当∠B为钝角时, ∵∠C+∠CAD=90°,∠O+∠CAD=90°, ∴∠C=∠O, 又∵∠ADC=∠ODB=90°,OB=AC, ∴△BOD≌△ACD, ∴BD=AD, ∵AD⊥BC, ∴∠ABD=45°, ∴∠ABC=180°-45°=135°.
③如图,当∠A为钝角时, 同理可证:△BOD≌△ACD, ∴AD=BD. ∴∠ABC=45°, ④如图,当∠C为钝角时, 同理可证:△BOD≌△ACD, ∴AD=BD. ∴∠ABC=45°.
⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意, 当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意, 如图,当∠A为直角时,点A、E、O重合, ∵OB=AC,∠CAB=90°, ∴△ABC是等腰直角三角形, ∴∠ABC=45°.
综上所述:∠ABC的度数为45°或135°. 故答案为:45°或135° 【点睛】 本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS、AAS、ASA、SAS、HL等,注意:SAS时,角必须是两边的夹角,SSA和AAA不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键. 5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在_____.
【答案】∠BAC的平分线上,与A相距1cm的地方. 【解析】 【分析】 由已知条件及要求满足的条件,根据角平分线的性质作答,注意距A1cm处. 【详解】 工厂的位置应在∠BAC的平分线上,与A相距1cm的地方; 理由:角平分线上的点到角两边的距离相等. 【点睛】 此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.作图题一定要找到相关的知识为依托,同时满足多个要求时,要逐个满足.
6.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PC=4,点D是射线OA上的一个动点,则PD的最小值为_____.
【答案】2 【解析】 【分析】 作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD. 【详解】 当PD⊥OA时,PD有最小值,作PE⊥OA于E, ∵∠AOP=∠BOP,PD⊥OB,PE⊥OA, ∴PE=PD(角平分线上的点到角两边的距离相等), ∵∠BOP=∠AOP=15°, ∴∠AOB=30°, ∵PC∥OB, ∴∠ACP=∠AOB=30°, ∴在Rt△PCE中,PE=12PC=12×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半), ∴PD=PE=2, 故答案是:2.
【点睛】 此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.
7.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE与AC交于点E,连接DE,则∠DEB=_____.
【答案】40° 【解析】 【分析】 做辅助线,构建角平分线的距离,根据角平分线的性质和逆定理可得:EF=EG=EH,设∠DEG=y,∠GEB=x,根据三角形内角和定理可得:∠GEA=∠FEA=40°,∠FEB=∠HEB,列方程为2y+x=80-x,y+x=40,可得结论:∠DEB=40°. 【详解】 如图,
过E作EFAB于F,EGAD于G,EHBC于H, ∵BE平分∠ABD ∴EH=EF ∵∠BAC=130°,∠BAD=80° ∴∠FAE=∠CAD=50° ∴EF=EG ∴EG=EH ∴ED平分∠CDG ∴∠HED=∠DEG 设∠DEG=y,∠GEB=x, ∵∠EFA=∠EGA=90°
∴∠GEA=∠FEA=40° ∵∠EFB=∠EHB=90°,∠EBH=∠EBF ∴∠FEB=∠HEB ∴2y+x=80-x, 2y+2x=80 y+x=40 即∠DEB=40°. 故答案为:40°. 【点睛】 本题考查三角形内角和定理和角平分线的性质,正确作辅助线是解题的关键.
8.如图,已知AC平分∠DAB,CE⊥AB于点E,AB=AD+2BE,则下列结论:①AB+AD= 2AE;②∠DAB+∠DCB=180°;③CD=CB;④SACE﹣SBCE=SACD.其中正确的是______.
【答案】①②③④. 【解析】 【分析】 【详解】
①在AE取点F,使EF=BE,连接CF. ∵AB=AD+2BE=AF+EF+BE,EF=BE, ∴AB=AD+2BE=AF+2BE, ∴AD=AF, ∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE, ∴AB+AD= 2AE,故①正确; ②在AB上取点F,使EF=BE,连接CF.