高一数学(人教版必修一)教案:《函数的最大(小)值》
- 格式:doc
- 大小:1018.50 KB
- 文档页数:6
第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
第2课时 基本不等式的应用学习目标 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点 用基本不等式求最值 用基本不等式x +y2≥xy 求最值应注意:(1)x ,y 是正数;(2)①如果xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; ②如果x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(3)讨论等号成立的条件是否满足. 预习小测 自我检验1.已知0<x <12,则y =x (1-2x )的最大值为________.答案 18解析 y =x (1-2x )=12·2x ·(1-2x )≤12⎝ ⎛⎭⎪⎫2x +1-2x 22=18,当且仅当2x =1-2x ,即x =14时取“=”.2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________. 答案 20解析 总运费与总存储费用之和y =4x +400x ×4=4x +1 600x≥24x ·1 600x=160,当且仅当4x =1 600x,即x =20时取等号.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司每台机器年平均利润的最大值是________万元. 答案 8解析 年平均利润y x=-x +18-25x=-⎝⎛⎭⎪⎫x +25x +18≤-225x·x +18=-10+18=8,当且仅当x=5时取“=”. 4.已知x >2,则x +4x -2的最小值为________. 答案 6 解析 x +4x -2=x -2+4x -2+2, ∵x -2>0,∴x -2+4x -2+2≥24+2=4+2=6. 当且仅当x -2=4x -2,即x =4时取“=”.一、利用基本不等式变形求最值例1 已知x >0,y >0,且1x +9y=1,求x +y 的最小值.解 方法一 ∵x >0,y >0,1x +9y=1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x +9x y+10≥6+10=16,当且仅当y x=9xy,又1x +9y=1,即x =4,y =12时,上式取等号.故当x =4,y =12时,(x +y )min =16.方法二 由1x +9y=1,得(x -1)(y -9)=9(定值).由1x +9y=1可知x >1,y >9,∴x +y =(x -1)+(y -9)+10 ≥2x -1y -9+10=16,当且仅当x -1=y -9=3, 即x =4,y =12时上式取等号, 故当x =4,y =12时,(x +y )min =16.延伸探究 若将条件换为:x >0,y >0且2x +8y =xy ,求x +y 的最小值. 解 方法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2x x -8=x +2x -16+16x -8=(x -8)+16x -8+10≥2x -8×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立. ∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0, 得8x +2y=1.∴x +y =(x +y )⎝⎛⎭⎪⎫8x +2y=8y x +2xy+10≥28y x ·2xy+10=18.当且仅当8y x =2xy,即x =2y =12时等号成立.∴x +y 的最小值是18.反思感悟 应根据已知条件适当进行“拆”“拼”“凑”“合”“变形”,创造应用基本不等式及使等号成立的条件.当连续应用基本不等式时,要注意各不等式取等号时的条件要一致,否则也不能求出最值;特别注意“1”的代换.跟踪训练1 已知正数x ,y 满足x +y =1,则1x +4y的最小值是________.答案 9解析 ∵x +y =1, ∴1x +4y=(x +y )⎝ ⎛⎭⎪⎫1x +4y=1+4+y x+4x y.∵x >0,y >0,∴y x>0,4xy>0,∴y x+4x y≥2y x ·4xy=4, ∴5+y x+4xy≥9.当且仅当⎩⎪⎨⎪⎧x +y =1,y x =4xy,即x =13,y =23时等号成立.∴⎝ ⎛⎭⎪⎫1x +4y min =9. 二、基本不等式在实际问题中的应用例 2 “足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品二次加工后进行推广促销,预计该批产品销售量Q 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为Q =x +12(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本2⎝⎛⎭⎪⎫Q +1Q 万元(不包含推广促销费用),若加工后的每件成品的销售价格定为⎝ ⎛⎭⎪⎫2+20Q 元/件. 那么当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?(利润=销售额-成本-推广促销费)解 设该批产品的利润为y ,由题意知y =⎝⎛⎭⎪⎫2+20Q ·Q -2⎝ ⎛⎭⎪⎫Q +1Q -x=2Q +20-2Q -2Q -x =20-2Q-x=20-4x +1-x =21-⎣⎢⎡⎦⎥⎤4x +1+x +1,0≤x ≤3.∵21-⎣⎢⎡⎦⎥⎤4x +1+x +1≤21-24=17,当且仅当x =1时,上式取“=”, ∴当x =1时,y max =17.答 当推广促销费投入1万元时,利润最大为17万元.反思感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求最值,要注意验证等号是否成立. 跟踪训练2 2016年11月3日20点43分我国长征五号运载火箭在海南文昌发射中心成功发射,它被公认为是我国从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用了很多新技术新产品,甲工厂承担了某种产品的生产,并以x 千克/时的速度匀速生产时(为保证质量要求1≤x ≤10),每小时可消耗A 材料kx 2+9千克,已知每小时生产1千克该产品时,消耗A 材料10千克.消耗A 材料总重量为y 千克,那么要使生产1 000千克该产品消耗A 材料最少,工厂应选取何种生产速度?并求消耗的A 材料最少为多少. 解 由题意,得k +9=10,即k =1, 生产1 000千克该产品需要的时间是1 000x,所以生产1 000千克该产品消耗的A 材料为y =1 000x(x 2+9)=1 000⎝ ⎛⎭⎪⎫x +9x ≥1 000×29=6 000,当且仅当x =9x,即x =3时,等号成立,且1<3<10.故工厂应选取3千克/时的生产速度,消耗的A 材料最少,最少为6 000千克.基本不等式在实际问题中的应用典例 围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图.已知旧墙的维修费用为45 元/m ,新墙的造价为180 元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解 设矩形的另一边长为a m ,则y =45x +180(x -2)+180×2a =225x +360a -360. 由已知xa =360,得a =360x,∴y =225x +3602x-360.∵x >0,∴225x +3602x≥2225×3602=10 800.∴y =225x +3602x-360≥10 440.当且仅当225x =3602x时,等号成立.即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440元.[素养提升] 数学建模是对现实问题进行数学抽象,建立和求解模型的过程耗时费力,所以建立的模型要有广泛的应用才有价值.本例中所涉及的y =x +a x(a >0)就是一个应用广泛的函数模型.1.设x >0,则3-3x -1x的最大值是( )A .3B .3-2 2C .-1D .3-2 3答案 D解析 ∵x >0,∴3x +1x≥23x ·1x =23,当且仅当x =33时取等号,∴-⎝⎛⎭⎪⎫3x +1x ≤-23,则3-3x -1x≤3-23,故选D.2.已知x 2-x +1x -1(x >1)在x =t 时取得最小值,则t 等于( )A .1+ 2B .2C .3D .4答案 B解析 x 2-x +1x -1=x x -1+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. 3.将一根铁丝切割成三段做一个面积为2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m 答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C. 4.已知正数a ,b 满足a +2b =2,则2a +1b的最小值为________.答案 4解析 2a +1b =⎝ ⎛⎭⎪⎫2a +1b ×12(a +2b )=12⎝⎛⎭⎪⎫4+a b +4b a≥12(4+24)=4. 当且仅当a b =4b a ,即a =1,b =12时等号成立,∴2a +1b的最小值为4.5.设计用32 m 2的材料制造某种长方体车厢(无盖),按交通法规定厢宽为2 m ,则车厢的最大容积是________ m 3. 答案 16解析 设车厢的长为b m ,高为a m. 由已知得2b +2ab +4a =32,即b =16-2aa +1,∴V =a ·16-2a a +1·2=2·16a -2a2a +1.设a +1=t ,则V =2⎝ ⎛⎭⎪⎫20-2t -18t≤2⎝⎛⎭⎪⎫20-22t ·18t =16,当且仅当t =3,即a =2,b =4时等号成立.1.知识清单:(1)已知x ,y 是正数.①若x +y =S (和为定值),则当x =y 时,积xy 取得最大值. ②若x ·y =P (积为定值),则当x =y 时,和x +y 取得最小值. 即:“和定积最大,积定和最小”. (2)求解应用题的方法与步骤.①审题,②建模(列式),③解模,④作答.2.方法归纳:注意条件的变换,常用“1”的代换方法求最值. 3.常见误区:缺少等号成立的条件.1.已知正数x ,y 满足8x +1y=1,则x +2y 的最小值是( )A .18B .16C .8D .10 答案 A解析 x +2y =(x +2y )⎝ ⎛⎭⎪⎫8x +1y =10+16y x +x y ≥10+216=18,当且仅当16y x =x y,即x =4y =12时,等号成立.2.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5 答案 C解析 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ×(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a ≥6×(5+4)=54, 当且仅当2a b =2ba时,即a =b =18等号成立,∴9m ≤54,即m ≤6,故选C.3.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <ab B .v =ab C.ab <v <a +b2D .v =a +b2答案 A解析 设小王从甲地到乙地行驶的路程为s , ∵b >a >0,则v =2s s a +s b=2ab a +b <2ab2ab=ab , 又2ab a +b >2ab2b=a ,故选A. 4.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( ) A.23 B.223 C.33 D.233答案 B解析 由x 2+3xy -1=0,可得y =13⎝ ⎛⎭⎪⎫1x -x .又x >0,所以x +y =2x 3+13x≥229=223⎝ ⎛⎭⎪⎫当且仅当x =22时等号成立. 5.已知m >0,n >0,m +n =1且x =m +1m ,y =n +1n,则x +y 的最小值是( )A .4B .5C .8D .10 答案 B解析 依题意有x +y =m +n +1m +1n =1+m +n m +m +n n =3+n m +m n ≥3+2=5,当且仅当m =n =12时取等号.故选B.6.为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C (单位:mg ·L -1) 随时间t (单位:h)的变化关系为C =20tt 2+4,则经过_______ h 后池水中该药品的浓度达到最大. 答案 2解析 C =20t t 2+4=20t +4t. 因为t >0,所以t +4t≥2t ·4t=4 ⎝ ⎛⎭⎪⎫当且仅当t =4t ,即t =2时等号成立. 所以C =20t +4t≤204=5,当且仅当t =4t , 即t =2时,C 取得最大值.7.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.答案 20解析 设矩形花园的宽为y ,则x 40=40-y 40,即y =40-x ,矩形花园的面积S =x (40-x )≤⎝ ⎛⎭⎪⎫x +40-x 22=400,当且仅当x =20时,取等号,即当x =20 m 时,面积最大.8.某汽车运输公司购买一批豪华大客车投入营运,据市场分析每辆车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)满足关系y =-x 2+12x -25,则每辆客车营运________年时,年平均利润最大. 答案 5解析 ∵y =-x 2+12x -25,∴年平均利润为y x =-x 2+12x -25x=-⎝⎛⎭⎪⎫x +25x +12≤-2x ·25x+12=2,当且仅当x =25x,即x =5时,等号成立.9.已知x >0,y >0且2x +5y =20.(1)求xy 的最大值; (2)求1x +1y的最小值.解 (1)∵2x +5y =20,x >0,y >0, ∴2x +5y ≥210xy , ∴210xy ≤20,即xy ≤10, 当且仅当x =5,y =2时,等号成立, ∴xy 的最大值为10.(2)1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·120(2x +5y ) =120⎝ ⎛⎭⎪⎫2+5+5y x +2x y =120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120(7+210), 当且仅当2x =5y 时,等号成立. ∴1x +1y 的最小值为120(7+210). 10.某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为100 km ,按交通法规定:这段公路车速限制在40~100(单位:km/h)之间.假设目前油价为7.2元/L ,汽车的耗油率为⎝ ⎛⎭⎪⎫3+x 2360L/h ,其中x (单位:km/h)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为76.4元,不考虑其他费用,这次租车的总费用最少是多少?此时的车速x 是多少?(注:租车总费用=耗油费+司机的工资) 解 设总费用为y 元. 由题意,得y =76.4×100x +7.2×100x ×⎝ ⎛⎭⎪⎫3+x 2360=9 800x+2x (40≤x ≤100).因为y =9 800x+2x ≥219 600=280.当且仅当9 800x=2x ,即x =70时取等号.所以这次租车的总费用最少是280元,此时的车速为70 km/h.11.设0<x <1,则4x +11-x 的最小值为( )A .10B .9C .8 D.272答案 B解析 ∵0<x <1,∴1-x >0, 4x+11-x =[x +(1-x )]·⎝ ⎛⎭⎪⎫4x +11-x =4+41-x x +x 1-x +1≥5+241-xx·x1-x=5+2×2=9. 当且仅当41-xx=x1-x, 即x =23时,等号成立.∴4x +11-x的最小值为9. 12.设自变量x 对应的因变量为y ,在满足对任意的x ,不等式y ≤M 都成立的所有常数M 中,将M 的最小值叫做y 的上确界.若a ,b 为正实数,且a +b =1,则-12a -2b 的上确界为( )A .-92 B.92 C.14D .-4答案 A解析 因为a ,b 为正实数,且a +b =1, 所以12a +2b =⎝ ⎛⎭⎪⎫12a +2b ×(a +b )=52+⎝ ⎛⎭⎪⎫b 2a +2a b ≥52+2b 2a ×2a b =92,当且仅当b =2a ,即a =13,b =23时等号成立,因此有-12a -2b ≤-92,即-12a -2b 的上确界为-92.13.一个矩形的周长为l ,面积为S ,则如下四组数对中,可作为数对(S ,l )的序号是( )①(1,4);②(6,8);③(7,12);④⎝ ⎛⎭⎪⎫3,12.A .①③B .①③④C .②④D .②③④答案 A解析 设矩形的长和宽分别为x ,y ,则x +y =12l ,S =xy .对于①(1,4),则x +y =2,xy =1, 根据基本不等式满足xy ≤⎝⎛⎭⎪⎫x +y 22,符合题意;对于②(6,8),则x +y =4,xy =6, 根据基本不等式不满足xy ≤⎝⎛⎭⎪⎫x +y 22,不符合题意;对于③(7,12),则x +y =6,xy =7,根据基本不等式满足xy ≤⎝ ⎛⎭⎪⎫x +y 22,符合题意;对于④⎝ ⎛⎭⎪⎫3,12,则x +y =14,xy =3, 根据基本不等式不满足xy ≤⎝⎛⎭⎪⎫x +y 22,不符合题意.综合,可作为数对(S ,l )的序号是①③. 14.已知不等式2x +m +8x -1>0对任意的x >1恒成立,则实数m 的取值范围为________. 答案 {m |m >-10}解析 ∵2x +m +8x -1>0在x >1时恒成立, ∴m >-2x -8x -1=-2⎝ ⎛⎭⎪⎫x +4x -1=-2⎝⎛⎭⎪⎫x -1+4x -1+1, 又x >1时,x -1>0,x -1+4x -1+1≥2x -1·4x -1+1=5,当且仅当x -1=4x -1,即x =3时,等号成立, ∴-2⎝⎛⎭⎪⎫x -1+4x -1+1≤-2×5=-10. ∴m >-10,∴实数m 的取值范围为{m |m >-10}.15.若不等式ax 2+1x 2+1≥2-3a3(a >0)恒成立,则实数a 的取值范围是________. 答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥19 解析 原不等式可转化为a (x 2+1)+1x 2+1≥23, 又a >0, 则a (x 2+1)+1x 2+1≥2a x 2+1·1x 2+1=2a ,当且仅当a (x 2+1)=1x 2+1, 即a =1x 2+12时等号成立,则根据恒成立的意义可知2a ≥23,解得a ≥19.16.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).那么该厂家2020年的促销费用为多少万元时,厂家的利润最大?最大利润为多少? 解 设2020年该产品利润为y , 由题意,可知当m =0时,x =1, ∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16xx元,∴y =x ⎝⎛⎭⎪⎫1.5×8+16x x-(8+16x +m )=4+8x -m =4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m +1+29, ∵m ≥0,16m +1+(m +1)≥216=8, 当且仅当16m +1=m +1,即m =3时等号成立, ∴y ≤-8+29=21,∴y max =21.故该厂家2020年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.。
高一数学必修一中的函数极值与最值应用在高一数学必修一的学习中,函数极值与最值是非常重要的概念,它们在解决实际问题和数学理论中都有着广泛的应用。
首先,我们来明确一下函数极值和最值的定义。
函数的极值是指在函数定义域内的某个局部范围内,函数取得的最大值或最小值。
而函数的最值则是指在整个定义域内,函数所取得的最大值或最小值。
那么,如何求函数的极值和最值呢?这就需要用到导数这个工具。
对于一个可导函数,如果在某一点处导数为零,且在该点两侧导数的符号发生变化,那么这个点就是函数的极值点。
当导数从负变为正时,这个极值点是极小值点;当导数从正变为负时,这个极值点是极大值点。
在实际应用中,函数极值和最值有着诸多方面的体现。
比如在经济领域,企业常常需要考虑成本和利润的问题。
假设一家企业生产某种产品,其成本函数为 C(x),收入函数为 R(x),那么利润函数 P(x) = R(x) C(x)。
通过求利润函数的极值和最值,企业可以确定最优的生产数量,以实现利润的最大化。
再比如在物理问题中,常常会涉及到能量的变化。
例如一个物体在重力作用下自由下落,其高度与时间的关系可以用一个函数来表示。
通过求这个函数的极值和最值,可以确定物体下落的最大速度、最大高度等关键物理量。
在几何问题中,也经常会用到函数的极值和最值。
比如要在一个给定的矩形材料上剪出一个最大的圆形,就需要建立矩形边长与圆的半径之间的函数关系,然后求出这个函数的最值,从而确定圆的最大半径。
让我们通过一些具体的例子来更深入地理解函数极值与最值的应用。
例 1:某工厂生产一种产品,其成本 C 与产量 x 之间的函数关系为C(x) = 2x^2 10x + 50。
求当产量为多少时,平均成本最低?首先,平均成本函数为 C(x)/x = 2x 10 + 50/x 。
对其求导,得到导数为 2 50/x^2 。
令导数等于 0 ,解得 x = 5 。
当 x < 5 时,导数小于 0 ,函数单调递减;当 x > 5 时,导数大于 0 ,函数单调递增。
给定区间上二次函数的最大(小)值课件:/view/c8ff6921ccbff121dd36835a.html?st=1教案背景:二次函数是高中数学中的基本知识和重点知识,许多问题都是通过转化为给定区间上二次函数的问题得以解决。
正因如此,二次函数知识的考查理所当然的成为高考重点考查的座上客,探究给定区间上二次函数的最大(小)值很有必要。
教学课题:给定区间上二次函数的最大(小)值教材分析:本节课是高一数学必修一第二章函数中的《二次函数的性质》一课的继续,《二次函数性质》研究了定义域是R上二次函数的基本性质,然而高考更多的是考查二次函数(或可化归为二次函数)在给定区间上的最值问题。
处理函数最值问题通常有两种方法:一是借助导数工具研究函数在给定区间上的单调性和极值,求出各极值点和两端点(在区间内时)处的函数值,比较后得出函数的最值;二是将函数化归为给定区间上的基本函数(多为二次函数),然后借助基本函数的单调性求解。
我根据教材的内容,结合课后习题的设计,策划了这节探究课。
教学目标:1.会用配方法求给定区间上二次函数的最大值和最小值。
2.通过学习和探究,培养学生的观察概括能力及分析解决问题的能力。
3.通过学习探究活动,进一步渗透分类思想,培养学生思维的严谨性,激发学习数学的热情。
教学重点:给定区间上二次函数最大(小)值的求法教学难点:确定分类依据教学方法:引导探究教学用具:电脑课件教学过程:板书设计给定区间上二次函数的最大(小)值1、不含参数2、含有参数(定轴动区间,动轴定区间)教学反思:这节课的重点是认识定义域不是R时,二次函数的图像特征。
我以求二次函数的最值为载体,引导学生进行探究体验。
本节课的难点是确定分类讨论的依据。
为了解决这一问题,我引导学生从四个层面逐步进行突破:一是不含参数的具体情形,为突破难点做准备;二是引入参数后,通过课件动态演示,帮助学生解决“分几类,为什么”问题;三是通过观察概括发现分类依据,用描述性语句进行叙述;四是引导学生将描述性的语句转化为符号语言(数学式子)。
高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。
本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。
更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。
因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。
二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。
根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。
理解力的合成本质上是从等效的角度进行力的替代。
.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。
二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
.通过实验探究方案的设计与实施,体验科学探究的过程。
三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。
.培养认真细致、实事求是的实验态度。
根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。
.实验探究力的合成所遵循的法则。
二、难点平行四边形定则的理解和运用。
三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。
因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。
体现学生主体性。
实验归纳法的步骤如下。
课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
高中数学《单调性与最大(小)值》说课稿高中数学《单调性与最大(小)值》说课稿以下是小编整理的高中数学《单调性与最大(小)值》(数学必修一)》说课稿,希望对大家有帮助!一、教材分析1.教学内容本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性,。
2. 教材的地位和作用函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
3.教材的重点﹑难点﹑关键教学重点:函数单调性的概念和判断某些函数单调性的方法。
明确单调性是一个局部概念.教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。
教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程.4.学情分析高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强.二、目标分析(一)知识目标:1.知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。
2.能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。
3.情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。
人教版高一数学教案人教版高一数学教案1一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。
教学重点是函数的概念,难点是对函数概念的本质的理解。
学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。
二、教学三维目标分析1、知识与技能(重点和难点)(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。
并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。
(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。
(3)、掌握定义域的表示法,如区间形式等。
(4)、了解映射的概念。
2、过程与方法函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题: (1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。
高一数学必修一中的函数单调性与最值问题在高一数学必修一的学习中,函数的单调性与最值问题是非常重要的一部分内容。
它不仅是后续数学学习的基础,也在实际生活和其他学科中有着广泛的应用。
首先,我们来理解一下什么是函数的单调性。
简单来说,单调性就是函数值随着自变量的增大或减小而呈现出的一种变化规律。
如果函数值随着自变量的增大而增大,我们就说这个函数在某个区间上是单调递增的;反之,如果函数值随着自变量的增大而减小,那么这个函数在这个区间上就是单调递减的。
为了判断函数的单调性,我们通常会采用定义法。
假设给定函数$f(x)$,定义域为$I$,对于定义域$I$内某个区间$D$上的任意两个自变量的值$x_1$,$x_2$,当$x_1<x_2$时,如果都有$f(x_1)<f(x_2)$,那么就称函数$f(x)$在区间$D$上是单调递增的;如果都有$f(x_1)>f(x_2)$,则称函数$f(x)$在区间$D$上是单调递减的。
比如说,对于一次函数$y = 2x + 1$,我们可以任取两个自变量的值$x_1$和$x_2$,且$x_1 < x_2$。
那么$f(x_1) = 2x_1 + 1$,$f(x_2) = 2x_2 + 1$。
因为$x_1 < x_2$,所以$2x_1 < 2x_2$,从而$f(x_1)< f(x_2)$,所以这个一次函数在其定义域内是单调递增的。
再比如,二次函数$y = x^2$。
当$x < 0$时,随着$x$的增大,$y$的值逐渐减小,函数是单调递减的;当$x > 0$时,随着$x$的增大,$y$的值逐渐增大,函数是单调递增的。
除了定义法,我们还可以通过函数的导数来判断单调性。
这对于一些复杂的函数会更加方便和高效,但这是后续学习的内容,在高一阶段,我们主要还是掌握定义法。
接下来,我们谈谈函数的最值问题。
函数的最大值和最小值,简单理解就是函数在定义域内所能取到的最大和最小的函数值。
如果函数在某个区间上是单调递增的,那么在区间的左端点处取得最小值,在右端点处取得最大值;如果函数在某个区间上是单调递减的,那么在区间的右端点处取得最小值,在左端点处取得最大值。
§1.3.1函数的最大(小)值
一.教学目标
1.知识与技能:
理解函数的最大(小)值及其几何意义.
学会运用函数图象理解和研究函数的性质.
2.过程与方法:
通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵
坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识.
3.情态与价值
利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学
生学习的积极性.
二.教学重点和难点
教学重点:函数的最大(小)值及其几何意义
教学难点:利用函数的单调性求函数的最大(小)值.
三.学法与教学用具
1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法
和步骤.
2.教学用具:多媒体手段
四.教学思路
(一)创设情景,揭示课题.
画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征?
①()3fxx ②()3[1,2]fxxx
③2()21fxxx ④2()21[2,2]fxxxx
(二)研探新知
1.函数最大(小)值定义
最大值:一般地,设函数()yfx的定义域为I,如果存在实数M满足:
(1)对于任意的xI,都有()fxM;
(2)存在0xI,使得0()fxM.
那么,称M是函数()yfx的最大值.
思考:依照函数最大值的定义,结出函数()yfx的最小值的定义.
注意:
①函数最大(小)首先应该是某一个函数值,即存在0xI,使得0()fxM;
②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的xI,都有
()(())fxMfxm
.
2.利用函数单调性来判断函数最大(小)值的方法.
①配方法 ②换元法 ③数形结合法
(三)质疑答辩,排难解惑.
例1.(教材P30例3)利用二次函数的性质确定函数的最大(小)值.
解(略)
例2.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,
其销售量减少10个,为了赚到最大利润,售价应定为多少?
解:设利润为y元,每个售价为x元,则每个涨(x-50)元,从而销售量减少
10(50),x个共售出500-10(x-50)=100-10x(个)
∴y=(x-40)(1000-10x)
9000(50x2=-10(x-70)
<100)
∴max709000xy时
答:为了赚取最大利润,售价应定为70元.
例3.求函数21yx在区间 上的最大值和最小值.
解:(略)
例4.求函数1yxx的最大值.
解:令2101txxt有则
22151()024yttttQ
21()02t
2155()244t
.5原函数的最大值为4
(四)巩固深化,反馈矫正.
(1)求函数|3||1|yxx的最大值和最小值.
(2)如图,把截面半径为25cm的图形木头锯成矩形木料,如果矩形一边长为x,面积
为y,试将y表示成x的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最
大?
(五)归纳小结
求函数最值的常用方法有:
(1)配方法:即将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取
值范围确定函数的最值.
(2)换元法:通过变量式代换转化为求二次函数在某区间上的最值.
(3)数形结合法:利用函数图象或几何方法求出最值.
(六)设置问题,留下悬念.
1.课本P39(A组) 5.
2.求函数21yxx的最小值.
3.求函数223yxxx当自变量在下列范围内取值时的最值.
①10x ② 03x ③(,)x
A组
一、选择题:
1.若一次函数),()0(在kbkxy上是单调减函数,则点),(bk在直角坐标平面的( )
A.上半平面 B.下半平面 C.左半平面 D.右半平面
2.函数y=x2+x+2单调减区间是( )
A . B.(-1,+∞) C.(-∞,-21) D.(-∞,+∞)
3.下列函数在(0,3)上是增函数的是( )
A.xy1 B.2xy C.2xy D.122xxy
25
1yx234
1
2
3
4
5
-1-2-3-4-5
-1
-2
o
4.已知函数2)1(2)(2xaxxf在区间(-∞,4)上是减函数,则实数a的取值范围是
( )
A.a≥3 B.a≤-3 C.a≥-3 D.a≤5
5.设A=(b>1),)(1)1(21)(2Axxxf,若f(x)的值域也是A,则b值是( )
A.23 B.2 C.3 D.27
6.定义在R上的f(x)满足f(-x)=f(x),且在(-∞,0)上是增函数,若)1()1(2faf,
则a的取值范围是( )
A.2||a B.|a|>2 C.1|1|2a D.2||a
二、填空题:
7.若函数f(x)=(-k2+3k+4)x+2是增函数,则k 的范围是
8.定义在区间上的增函数f(x),最大值是________,最小值是________。
定义在区间上的减函数g(x),最大值是________,最小值是________。
9.一般地,家庭用电量y(千瓦)与气温x(℃)有函数关系)(xfy。图(1)表示某年
12个月中每月的平均气温,图(2)表示某家庭在12个月中每月的用电量. 试在数集
xxxA,305|{
是2.5的整数倍}中确定一个最小值1x和最大值2x,使
],[)(21xxxfy是上的增函数,则区间[1x
,x2]= .
10.读图分析:设定义在4,4的函数()yfx的图象
如图所示(图中坐标点都是实心点),请填写以下几个空格:
(1)若()yfx,2,3x,则y___________。
(2)若()yfx的定义域为4,4,则函数(1)yfx
的定义域为____________。
(3)该函数的单调增区间为__________、
__________、_________。
(4)方程()3fx(4,4x)的解个数为____(个)。
11.函数122xxy在区间上是增函数,则a的取值范围是________。
12.函数21fxx的单调递增区间是_______。
三、解答题:
13.画出函数|6|2xxy的图象,并求出此函数的单调区间。
14.利用函数单调性定义,证明函数21xxy在(-1,1)上是增函数。