铁磁性材料的磁参数测定
- 格式:ppt
- 大小:983.50 KB
- 文档页数:25
实验报告一.实验名称:磁性材料性能测试实验二.实验原理简述如果一个小样品(可近似为一个磁偶极子)在原点沿Z 轴作微小振动,放在附近的一个小线圈(轴向与Z 轴平行)将产生感应电压:()km ft fCmA ==ππν2sin 2g ,其中,C 为耦合常数,取决于线圈的结构,m 为样品的磁矩,A 为振幅,f 为振动频率。
原则上,可以通过计算确定出v g 和m 之间的关系k ,从而由测量的电压得到样品的磁矩。
但这种计算很复杂,几乎是不可能进行的。
实际上是通过实验的方法确定比例系数k ,即通过测量已知磁矩为m 的样品的电压v g ,得到m v g=k ,这一过程称为定标。
定标过程中标样的具体参数(磁矩、体积、形状和位置等)越接近待测样品的情况,定标越准确。
VSM 测量采用开路方法,样品放置的位置对测量的灵敏度有影响。
假设线圈和样品按图1放置,沿x 方向离开中心位置,感应信号变大;沿y 和z 方向离开中心位置,感应信号变小。
中心位置是x 方向的极小值和y 、z 方向的极大值,是对位置最不敏感的区域,称为鞍点。
测量时,样品应放置在鞍点,这样可以使样品具有有限体积而引起的误差最小。
基本的VSM 由磁体及电源、振动头及驱动电源、探测线圈、锁相放大器和测量磁场用的霍耳磁强计等几部分组成,在此基础上还可以增加高温和低温系统,实现变温测量。
振动头用来使样品产生微小振动,振动频率应尽量避开50Hz 及其整数倍,以避免产生干扰。
为了使振动稳定,还要采取稳幅措施。
驱动方式有机械驱动、电磁驱动和静电驱动几种。
磁体有超导磁体、电磁铁和亥姆赫兹线圈等几种。
前两种能产生很强的磁场,用来测量高矫顽力的永磁材料。
亥姆赫兹线圈产生的磁场很小,但磁场的灵敏度很高,适于测量软磁材料。
磁矩m的测量由探测线圈和锁相放大器组成,锁相放大器有很高的放大倍数,保证了VSM有较高的灵敏度。
磁场的测量采用霍耳磁强计。
将m和H信号送给计算机,由计算机进行数据的处理,并对测量过程进行自动化控制。
铁磁材料磁化曲线的测量实验报告实验报告:铁磁材料磁化曲线的测量摘要:本实验旨在通过测量铁磁材料的磁化曲线,研究其磁性质并探究其在磁场作用下的磁化行为。
实验采用霍尔效应测量法,通过改变外加磁场大小来研究磁化曲线。
实验结果显示,磁化曲线呈S型,表明铁磁材料在磁场中具有明显的磁滞现象。
此外,实验还发现材料的饱和磁感应强度与外加磁场大小成正比。
1. 引言在研究磁性材料的物理特性时,磁化曲线是一个重要的参数。
磁化曲线能够反映材料在外加磁场作用下的磁化情况,是研究材料的磁性质的基础。
本实验将利用霍尔效应测量法测定铁磁材料的磁化曲线,并分析其磁性质。
2. 实验原理霍尔效应是指在磁场和电场的共同作用下,电导体中垂直于电流方向和磁场方向产生的电势差。
本实验中,我们将采用霍尔效应测量法来测量铁磁材料的磁化曲线。
3. 实验步骤3.1 准备工作将实验所需的铁磁样品,霍尔元件和电路连接好,并校准霍尔效应测量装置。
3.2 测量磁化曲线3.2.1 施加磁场在实验装置中施加外磁场,并记录每次施加的磁场大小。
3.2.2 测量霍尔电势差在每个施加磁场下,用霍尔效应测量装置测量铁磁样品产生的霍尔电势差,并记录数据。
3.2.3 绘制磁化曲线根据测得的数据,绘制铁磁材料的磁化曲线图。
4. 实验结果与分析在实验中,我们测量了铁磁材料的磁化曲线。
实验结果显示,磁化曲线呈S型,表明材料在磁场中有明显的磁滞现象。
此外,随着施加磁场的增加,磁化曲线逐渐接近饱和,即材料的磁化行为趋于稳定。
通过实验数据的分析,我们还发现材料的饱和磁感应强度与施加磁场大小成正比。
这表明在磁场强度较大时,材料的磁化效果将会更显著。
5. 结论通过本实验,我们成功测量了铁磁材料的磁化曲线,并从中得出了一些结论。
铁磁材料在磁场作用下表现出明显的磁滞现象。
同时,磁化曲线显示出随着外磁场的增加,材料的磁化行为逐渐趋于饱和。
此外,磁化曲线的形状表明了铁磁材料的特殊磁性质。
这些实验结果对于理解铁磁材料的性质以及实际应用具有重要意义。
dt4纯铁材料磁参数纯铁(也被称为α铁)是一种纯度非常高的金属材料,具有优异的磁性能。
在常温下,纯铁是铁磁性材料,具有强大的磁性。
纯铁的磁参数主要包括以下几个方面:饱和磁化强度、剩余磁感应强度、矫顽力、磁导率等。
首先,纯铁的饱和磁化强度可以达到2.15-2.22T,这意味着在外加磁场的作用下,纯铁可以达到一个饱和磁化状态,磁感应强度不再增加。
其次,纯铁的剩余磁感应强度可以达到1.6-1.9T,这意味着即使在磁场作用消失后,纯铁仍然保留一定的磁感应强度。
这种剩余磁化是铁磁性材料的典型特征。
再次,纯铁的矫顽力非常低,通常为0.3-0.4A/m。
矫顽力是指在磁化或反磁化过程中需要施加的外加磁场的强度。
纯铁的低矫顽力意味着它可以很容易地在外加磁场作用下磁化或反磁化。
此外,纯铁的磁导率也是其重要的磁参数之一、磁导率是磁感应强度与磁场强度之间的比值,它描述了材料对磁场的响应能力。
纯铁的磁导率在不同的磁场强度下会有所变化,在高磁场强度下磁导率较低,但仍然比较高。
磁导率的数值大小与纯铁的磁化状态、晶体结构和缺陷有关。
纯铁作为磁性材料,在许多应用中具有广泛的用途。
例如,在电力行业中,纯铁常用于制造电机和变压器的磁芯,因为它具有高的饱和磁化强度和低的矫顽力,可以有效地导引磁场。
此外,纯铁还可以用于制造磁头、磁振动器和磁传感器等磁性元件。
总结起来,纯铁作为一种磁性材料,具有优异的磁参数。
其饱和磁化强度高、剩余磁感应强度大、矫顽力低和磁导率适中,使其成为许多应用领域中不可或缺的材料之一。
磁参数的测量磁参数的测量是磁学基础研究和磁性材料及元器件工业的重要组成部分,电工测量技术中不可缺少的分支。
它主要包括磁场测量和磁性材料测量两方面的内容。
这部分的内容接触到高中物理的一些知识,同学们也都没有测量过磁类的参数,属于比较生疏的部分,所以先对基本知识做查询了解。
磁性元件:如收音机的磁棒,电视机中的磁芯、磁帽、偏转线圈磁环等。
磁性材料:通常认为,磁性材料是指由过度元素铁、钴、镍及其合金等能够直接或间接产生磁性的物质。
主要分为软磁材料和硬磁材料,还有一些特种磁性材料。
金属的磁性材料主要有电工钢、镍基合金和稀土合金,非金属的主要是铁氧体材料。
磁性材料是生产、生活、国防科学技术中广泛使用的材料。
如制造电力技术中的各种电机、变压器,电子技术中的各种磁性元件和微波电子管,通信技术中的滤波器和增感器,国防技术中的磁性水雷、电磁炮,各种家用电器等。
此外,它在地矿探测、海洋探测以及信息、能源、生物、空间新技术中也获得了广泛的应用。
1. 磁场测量在生厂上要求一些磁性元件的部位能够产生一定强度的磁场,或者限制元件周围的磁场强度。
测量方法很多,主要有三类:(1) 利用电磁感应原理,将磁场强弱转换成测试线圈的感生电动势;(2) 利用载流导体在磁场中受电磁力作用的原理,转换为力测量;(3) 利用物体在磁场中表现特性的不同,转变成电参量测量。
以下列举了一些课本上的测量磁场的方法做初步了解。
1.1用冲击检流计测磁通测量的原理图见书图2-5-2。
电磁感应原理:闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流。
由图中可见,移动测量线圈,必将产生一个感应电动势e ,线圈回路中得到一个脉冲电流,检流计也接在这个回路之中,脉冲电流使可动线圈产生偏移,记偏最大移角为m α。
根据电路图中的电压平衡和初始值、以及偏转量与脉冲电荷q 的关系式q k q m 1=α,最后可得m α与磁通△φ的正比关系式:φα∆-=Rk w q B m 现常用的有上海电表厂的AC4/3冲击式直流检流计、及改善了的AC171.2用磁通计测量磁通磁通计是由测量线圈和一个无反作用力矩的磁电系测量机构成。
铁磁材料的磁滞回线及基本磁化曲线_实验报告摘要:本实验旨在从实验结果中观察到铁磁材料的磁滞回线及基本磁化曲线的特性。
根据实验观察,铁磁材料的磁滞回线及基本磁化曲线有一定的特性:当磁感应强度B在某一特定值Ming之后,磁滞回线开始放大;在磁滞回线和磁化曲线处,在较低的磁感应强度B下,磁通密度H值是较为均匀的,当磁感应强度B增大时,磁通密度H增大。
从实验结果看,随着磁感应强度的改变,磁通密度也随之变化。
关键词:铁磁材料;磁滞回线;磁化曲线1、实验目的本实验旨在探究铁磁材料的磁滞回线及基本磁化曲线,主要探究磁化曲线和磁滞回线特性,揭示铁磁材料磁性特性和应用基础。
2、实验原理铁磁性材料在一定范围内,随着外加磁场的强弱,由于内在磁介质的存在,响应磁场的强弱而产生的磁效应,可用磁化曲线来描述,磁化曲线横坐标为外加磁场B,纵坐标为磁通密度H,绘制磁化曲线时,可得到磁滞回线区和磁化曲线区,按假设,若满足磁滞回线的条件,虚部磁化曲线低于实部磁化曲线,磁通密度H随外加磁场B的增强而减弱。
3、实验材料(1)各类铁磁材料;(2)阳极小电流表;(3)变压器;(4)钳形线圈;(5)可调晶闸管及其他电路控制元件;(6)电子计算表等。
4、实验流程(1)实验电路图设计:根据实验要求,绘制实验电路图,电路中包括可调晶闸管、比较示波器和磁电路。
(2)测量磁滞回线:将晶闸管设置为半导体导通阶段,阳极小电流表与变压器连接,在钳形线圈中绕入样品,并加入磁电路及相关电路控制元件,应用变压设备,根据电路控制调节磁感应强度,测量磁滞回线的特性,进而得到磁滞回线参数。
(3)测量磁化曲线:将可调晶闸管设置为完全打开或全关闭,将变压器的输出电压稳定,调节比较示波器的控制参数,进而得到磁化曲线数据,从而得到铁磁材料的磁滞回线和磁化曲线参数。
5、实验结果分析通过上述实验,本实验求出了铁磁材料的磁滞回线及基本磁化曲线参数。
实验研究发现,当磁感应强度B增大时,磁通密度H增大,且随着磁感应强度的改变,磁通密度也随之变化。
铁磁材料居里点的测定铁磁材料是一类在外加磁场作用下会产生明显磁化的材料,居里点是描述铁磁材料磁性的重要参数。
居里点是指在一定温度下,铁磁材料由铁磁态向顺磁态转变的临界温度。
测定铁磁材料的居里点对于材料的研究和应用具有重要意义。
本文将介绍几种测定铁磁材料居里点的方法。
首先,最常见的测定方法是使用磁化率-温度曲线来确定居里点。
在外加磁场下,铁磁材料的磁化率随着温度的变化呈现出特定的曲线。
当温度达到一定数值时,磁化率会突然发生变化,这个临界温度就是居里点。
通过在不同温度下测量磁化率,可以得到磁化率-温度曲线,从而确定居里点的数值。
其次,还可以利用磁滞回线来确定居里点。
磁滞回线是描述铁磁材料在外磁场作用下磁化过程的曲线。
在测定居里点时,可以通过在一定温度下改变外磁场的大小,然后测量材料的磁滞回线,当温度达到居里点时,磁滞回线的形状会发生明显变化,通过分析这种变化可以确定居里点的数值。
另外,还可以利用磁化强度随温度变化的方法来确定居里点。
在外加磁场下,铁磁材料的磁化强度随着温度的变化呈现出特定的规律。
当温度达到居里点时,磁化强度会突然发生变化,通过测量磁化强度随温度的变化曲线,可以确定居里点的数值。
最后,还可以利用磁导率随温度变化的方法来确定居里点。
磁导率是描述铁磁材料在外磁场下磁化程度的参数,随着温度的变化,磁导率也会发生变化。
在测定居里点时,可以通过测量磁导率随温度的变化曲线,来确定居里点的数值。
综上所述,测定铁磁材料的居里点是一项重要的工作,可以通过多种方法来实现。
不同的方法各有优劣,需要根据具体情况选择合适的方法进行测定。
对于铁磁材料的研究和应用来说,准确测定居里点是非常重要的,可以为相关领域的发展提供重要参考。