全版铁磁材料居里点的测定.ppt
- 格式:ppt
- 大小:2.80 MB
- 文档页数:17
铁磁材料的居里点的测定铁磁材料居里点的测定铁磁材料(又称铁氧体)是铁和其它一种或多种适当的金属元素的复合氧化物。
按磁滞回线的形状来分,有软磁材料,硬磁(又叫永久磁性)材料。
铁磁材料在工业上,尤其在电力工业上应用最为广泛,如制造发电机、电动机及电力输送变压器上的永久磁铁和硅钢片。
我们日常用的家电里有收音机中的天线棒,中周变压器,电视机中的回扫变压器,录象机中的磁头、磁鼓。
计算机中的记忆元件、逻辑元件、扬声器以及电话机中都有磁性材料。
铁磁材料在尖端技术和国防科技中应用也很多,如雷达、微波多路通讯、自动控制、射电天文望远镜、远程操纵等。
图1铁磁材料居里点(又称居里温度)是铁磁材料的一个重要的物理性质。
根据电磁学,我们知道:xm?M (1)HB (2)H????(1?xm)?0 (3)上面三式里的xm是磁化率,M为磁化强度,H为磁场强度,B为磁感应强度,μ为磁导率,μ0为真空中磁导率。
磁介质大体可以分为顺磁质、抗磁质和铁磁质三类。
但对于不同类型的磁介质,xm和μ的情况很不一样。
对于顺磁质,xm>0,μ>μ0;对于抗磁质,xm<0,μ<μ0。
这两类磁介质的磁性都很弱,它们的|xm|<<1,μ??μ0,而且都是与H无关的常数。
而铁磁质的情况要复杂一些,一般说来M与H不成比例,甚至没有单值关系,即M的值不能由H的值唯一确定,它还与磁化的历史有关,所以xm和μ不再为常数。
而是H的函数,即xm=xm(H),μ=μ(H)。
铁磁质的xm和μ一般都很大,所以铁磁质属于强磁性介质。
以铁为代表的一类磁性很强的物质叫铁磁质。
在纯化学元素中,除铁之外,还有过渡族中的其它元素,如钴、镍和某些稀土族元素如钆、镝、钬都具有铁磁性。
但常用的铁磁质多数是铁和其它金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体)。
当磁化场H=0的时候处于未磁化状态。
这相当于坐标原点。
在逐渐增加磁化场H的过程中,B随之增加。
开始B增加得较慢一些,然后经过一段急剧增加的过程,又慢下来,再继续增大磁化场时。
铁磁材料居里温度的测定铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,以T c 表示。
居里温度是磁性材料的本征参数之一,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
一、实验目的1. 初步了解铁磁性转变为顺磁性的微观机理;2. 学习高、低温居里温度测试仪测定居里温度的原理和方法;3. 测定铁磁样品的居里温度。
二、仪器用具低温居里点:JLD-Ⅱ型居里温度测试仪,GOS-620型电子射线示波器高温居里点:自制仪器三、实验原理1. 基本理论在铁磁物质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域,这个区域的体积约为10-8m 3,称之为磁畴。
在没有外磁场作用时,不同磁畴的取向各不相同,如图1所示。
因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。
当有外磁场作用时,不同磁畴的取向趋于外磁场的方向,任何宏观区域的平均磁矩不再为零,且随着外磁场的增大而增大。
当外磁场增大到一定值时,所有磁畴沿外磁场方向整齐排列,如图2所示,任何宏观区域的平均磁矩达到最大值,铁磁物质显示出很强的磁性,我们说铁磁物质被磁化了。
铁磁物质的磁导率μ远远大于顺磁物质的磁导率。
铁磁物质被磁化后具有很强的磁性,但这种强磁性是与温度有关的,随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁畴磁矩的有序排列,但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有磁性,只是平均磁矩随温度升高而减小。
而当与k T (k 是玻尔兹曼常数,T 绝对温度)成正比的热运动能足以破坏磁畴磁矩的整齐排列时,磁畴被瓦解,平均磁矩降为零,铁磁物质的磁性消失而转变为顺磁物质,与磁畴相联系的一系列铁磁性质(如高磁导率、磁滞回线、磁致伸缩等)全部消失,相应的铁磁物质的磁导率转化为顺磁物质的磁导率。
SUES大学物理选择性实验讲义磁学铁磁材料居里温度的测定∗磁性材料在电力,通讯,电子仪器,汽车,计算机和信息存储等领域有着十分广泛的应用,已成为促进高新技术发展不可或缺的材料,因此有必要通过实验了解磁性材料的基本特性.磁性材料可分为反铁磁性,顺磁性和铁磁性材料三种.铁磁性物质的磁性随温度的变化而变化,当温度上升到某一值时,铁磁材料就由铁磁状态转变为顺磁状态,这一特征温度称为居里温度.居里温度是表征铁磁性材料基本特征的物理量,它仅与材料的化学成分和晶体结构有关,几乎与晶粒大小,取向以及应力分布等因素无关.测定铁磁材料的居里温度不仅对磁性材料,磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义.本实验根据铁磁物质磁矩随温度变化的特性,采用交流电桥法测量铁磁物质自发磁化消失时的温度,即居里温度.一实验目的1.了解铁磁物质由铁磁性转变为顺磁性的微观机理;2.利用交流电桥法测定铁磁材料样品的居里温度;3.分析交流电桥输入信号频率对居里温度测量结果的影响.二实验设备铁磁材料居里温度测定仪:实验主机2台,实验箱∗修订于2010年8月28日三实验原理1铁磁质的磁化规律由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性.物质的磁性可分为反铁磁性(抗磁性),顺磁性和铁磁性三种.在铁磁质中由于相邻电子之间存在着很强的“交换耦合”作用,因此在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发的”整齐排列起来而形成自发磁化小区域,称为磁畴.在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,呈现出磁性,但大量磁畴的磁化方向各不相同而整个铁磁质不显磁性,如图1(a)所示.当铁磁质处于外磁场中时,那些自发磁化方向和外磁场方向成小角度的磁畴,其体积随着外磁场的增大而扩大,并使磁畴的磁化方向进一步转向外磁场方向.另一些自发磁化方向和外磁场成大角度的磁畴,其体积则逐渐缩小.这时铁磁质对外呈现宏观磁性,如图1(b)所示.当外磁场继续增大时,上述效应相应增大,直到所有磁图1.(a)未加磁场时磁畴的结构,(b)加磁场时磁畴的结构.畴都沿外磁场排列好,介质的磁化达到饱和.由于在每个磁畴中元磁矩已完全排列整齐,因此具有很强的磁性,这就是为什么铁磁质的磁性比顺磁质强得多的原因.铁磁性是与磁畴结构分不开的,当铁磁质受到强烈的震动或处在高温下时,磁畴便会瓦解,铁磁性就会消失,对于任何铁磁质都有这样一个临界温度,高过这个温度铁磁性就会消失,变为顺磁性,这个临界温度称为铁磁质的居里温度.在各种磁介质中最重要的是以铁为代表的一类磁性很强的物质,常用的铁磁质多数是铁和其他金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体).铁氧体具有适于在更高频率下工作,电阻率高,涡流损耗更低的特性.磁介质的磁化规律可用磁感应强度⃗B,磁化强度⃗M和磁场强度⃗H来描述,它们满足以下关系⃗B=µ(⃗H+⃗M)=(χm+1)µ0⃗H=µrµ0⃗H=µ⃗H(1) (1)式中,µ0=4π×10−7H/m为真空磁导率,χm为磁化率,µr为相对磁导率,µ为绝对磁导率.对于顺磁质,χm>0,µr略大于1,对于抗磁质,χm<0,其绝对值在10−4∼10−5之间,µr略小于1,而铁磁质χm≫1,所以µr≫1.对非铁磁性磁介质,⃗H和⃗B之间满足线性关系:⃗B=µ⃗H,而铁磁质的µ,⃗B和⃗H之间有着复杂的非线性关系,图2(a)是典型的铁磁质磁化曲线,可以看到µ是H的函数,从图2(b)中可以看到µ还是温度T的函数,当温度升高到某个值时,铁磁质由铁磁状态转变为顺磁状态,曲线突变点所对应的温度就是居里温度T C.图2.(a)铁磁体磁化曲线,(b)铁磁体µ∼T曲线.2用交流电桥测量居里温度铁磁质的居里温度可用任何一种交流电桥测量.大多数交流电桥可归结为如图3(a)所示的四臂阻抗电桥,电桥的四个臂可以是电阻,电容,电感的串联或并联的组合,调节电桥的桥臂参数,使得C,D两点间的电位差为零,电桥达到平衡,则有Z1 Z3=Z2Z4(2)若要(2)式成立,必须使该复数等式的模量和辐角分别相等,于是有|Z1||Z4|=|Z2||Z3|(3)ϕ1+ϕ4=ϕ2+ϕ3(4)由此可见,交流电桥平衡时,除了阻抗大小满足(3)式外,阻抗的相角还要满足(4)式,这是它和直流电桥的主要区别.本实验采用如图3(b)所示的RL交流电桥,在电桥中输入电源由信号发生器提供,在实验中应适当选择较高的输出频率,图3.(a)交流电桥基本电路,(b)RL交流电桥.ω为信号发生器的角频率,其中Z1和Z2为纯电阻,Z3和Z4为电感(包括电感的线性电阻r1和r2,测定仪中还接入了一个可调电阻R3),其复阻抗为Z1=R1,Z2=R2,Z3=r1+jωL1,Z4=r2+jωL2(5)当电桥平衡时有R1(r2+jωL2)=R2(r1+jωL1)(6)实部与虚部分别相等,有r2=R2R1r1,L2=R2R1L1(7)实验时选择合适的电气元件相匹配,在未放入铁氧体时,通过调节使电桥平衡.当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡.随着温度上升到某一值时,铁氧体的铁磁性转变为顺磁性,C,D两点间的电位差发生突变并趋于零,电桥又趋于平衡.这个突变点对应的温度就是居里温度,可通过电桥电压与温度的关系曲线,求其曲线突变处的温度.四实验内容1.将实验主机1(信号发生器和频率计)的“信号输出”通过Q9连线接到实验箱上的“接信号源”,“接交流电压表”通过Q9线连接到实验主机2(交流电压表和信号采集系统)的“电桥输出”,实验箱上的交流电桥按照“接线示意图”连接.2.打开实验主机,信号源频率取1500Hz,调节R2,R3的阻值使电桥平衡.3.移动电感线圈,在样品槽中放入铁氧体样品,并涂上导热硅脂,重新将电感线圈移动至原位置,使铁氧体样品处于线圈中心,记录电压表读数.4.打开加热器开关,调节加热速率电位器至合适位置,加热过程中,温度每升高5◦C,记录电压读数.当电压读数在5◦C温度间隔中变化较大时,再每隔1◦C记录电压读数,直到加热器温度升高到100◦C左右为止,关闭加热器开关.5.根据记录的数据作电压温度V∼T图,计算样品的居里温度.五注意事项1.样品架加热时温度较高,实验时勿用手触碰,以免烫伤.2.铁氧体样品上涂导热硅脂,使受热均匀.3.加热温度不允许超过120◦C,以免损坏仪器.4.实验过程中,不允许改变信号源的频率及幅度,不允许改变电感线圈的位置.5.加温速率不能过快,防止传感器测到的温度与铁氧体样品实际温度不同.六思考与讨论1.物体的磁性可分为几类,各有什么特征?2.为什么可以用RL交流电桥测量铁氧体样品的居里温度?3.测得的V∼T曲线,为什么与横坐标没有交点?七参考资料1.赵凯华陈熙谋《电磁学》第二版·下册高等教育出版社(1985)2.林木欣《近代物理实验教程》科学出版社(1992)。
铁磁材料居里温度的测试1.实验数据表格表9-1磁滞回线消失时所对应的温度值:表9-2感应电动势积分值ε'及其对应的温度T值:样品编号1(室温)初始(输出)感应电压328mV,磁滞回线消失时所对应的温度值63.2℃样品编号2 (室温)初始(输出)感应电压425mV,磁滞回线消失时所对应的温度值91.7℃2.各样品的U~T曲线图1 样品1的U—T曲线I n d u c e d v o l t a g e (m v )示波器法测得Tc=图2 样品2的U —T I n d u c e d v o l t a g e (m V )示波器法测得Tc=91.7℃(室温25℃);U~T 曲线用切线法测得Tc=92.8℃3.实验结果分析:从数据处理的结果可以看出,用示波器观察样品磁滞回线消失温度来确定的居里点Tc 和通过感应电动势随温度变化的曲线来推断居里点温度略有出入,但基本上相等。
4.思考题:(1)、样品的磁化强度在温度达到居里点时发生的微观机理是什么?答:由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的“交换耦合”作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。
在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。
当铁磁体受到强烈的震动,或在高温下由于剧烈运动的影响,磁畴便会瓦解,这时与磁畴联系的一系列铁磁性质(如高磁导率、磁滞等)全部消失。
对于任何铁磁物质都有这样一个临界温度,高过这个温度铁磁性就消失,变为顺磁性,这个临界温度叫做铁磁质的居里点。
(2)、通过测定感应电动势随温度变化的曲线来推断居里点温度时,为什么要由曲线上斜率最大处的切线与温度轴的交点来确定T C,而不是由曲线与温度轴的交点来确定T C?答:因为温度升高到居里点时,铁磁性材料的磁性才发生突变,所以要在斜率最大处作切线;又因为在居里点附近时,铁磁性已基本转化为顺磁性,故曲线不可能与横坐标相交。
实验5-8 铁磁材料居里点的测定铁磁材料的居里温度特性在工程技术、家用电器上的应用比较广泛。
测量铁磁材料居里温度的方法很多,例如磁称法、感应法、电桥法和差值补偿法等。
它们都是利用铁磁物质磁矩随温度变化的特性,测量自发磁化消失时的温度。
本实验采用感应法,来测量感应电动势值随温度变化的规律,从而得到居里点T C 。
【实验目的】l .通过对磁性材料感应电动势随温度升高而下降的现象的观察,初步熟悉铁磁性材料在居里点时由铁磁性变为顺磁性的过程,从而了解磁性材料参数变化的微观机理。
2.用感应法测定磁性材料的εeff(B)~T 曲线,并求出其居里点。
【实验原理】l .基本物理原理根据磁化的效果,磁介质可划分为三类(1)顺磁质,这类磁介质磁化后,在介质内的磁场稍有增强,表明磁化后具有微弱的附加磁场,并与外磁场同方向。
(2)抗磁质,这类磁介质磁化后,在介质内磁场稍有削弱,表明磁化后具有微弱的附加磁场但与外磁场方向相反。
(3)铁磁质,这类磁介质磁化后,在介质内的磁场显著增强,即磁化后具有很强的与外磁场同方向的附加磁场。
铁、镍、钴、钆、镝及其合金和一些非金属的铁氧体都属于这一类。
铁磁质有广泛的用途,所以它是最重要的一类磁介质。
本实验将对铁磁质的磁化规律及其微观机制进行研究。
在弱磁化场及室温的条件下,顺磁质显示弱磁性。
然而,铁磁质在相同条件下却表现强磁性。
铁磁质的特性不能用一般顺磁质的磁化理论来解释。
因为铁磁性元素的单个原子并不具有任何特殊的磁性。
例如铁原子与铬原子的结构大致相同,但铁是典型的铁磁质,而铬是普通的顺磁质,甚至还可用非铁磁性物质来制成铁磁性的合金。
另一方面,还应注意到铁磁质总是固相的。
这些事实说明了铁磁性与固体的结构状态有关。
铁磁质特殊磁性的现代理论是:在铁磁质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域。
自发磁化只发生在微小的区域(体积约为10 -8 m 3,其中含有1017~1021个原子)内,这些区域叫做磁畴。