RLC串联电路的稳态特性
- 格式:docx
- 大小:36.98 KB
- 文档页数:8
RLC电路的稳态特性RLC电路是由电阻、电感和电容构成的串联或并联电路,这种电路具有稳态特性,即在一定的时间内,电路参数不发生变化,电路的电量和电势保持稳定。
在了解RLC电路的稳态特性前,需要先了解一些基本知识。
一、RLC电路基本原理在RLC电路中,电阻、电感和电容是电路的三个基本元件,它们的组合形式可以有不同的连接方式,串联和并联是两种最基本的形式。
在串联形式下,电阻、电感和电容依次排列,电路中的电流大小相等;在并联形式下,电阻、电感和电容并联在一起,电路中的电压大小相等。
在RLC电路中,电阻是电路的负载部分,电感对电路电磁性能的影响较大,电容则对电路频率的变化十分敏感。
电阻、电感和电容的参数对电路的稳态特性也产生着重要的影响。
1、电阻电阻是RLC电路的负载部分,它的大小对整个电路的总电阻产生影响。
当电阻增大时,电路总电阻也会随之增大,电路中的电流会减小,同时电压也会下降。
因此,电阻的增大会导致RLC电路中稳态电量的减少。
2、电感电感对电路电磁性能的影响较大。
如果电感的大小增大,那么电路中自感的作用就会增强,自感会抵消电路中的电流变化,使电路的电流保持稳定。
换句话说,电感的增加可以增加电路的稳定性,使电路中的电流保持稳定,从而保证稳态电量不发生变化。
3、电容电容对电路频率的变化十分敏感。
当电路中的频率变化时,电容的极板间的电势差也会发生变化,从而影响电路中的电流变化。
因此,电容的大小会影响电路频率响应的稳定性。
如果电容的大小较小,那么电容对电路的性能影响较小,而当电容的大小较大时,电容的作用则会增大,电路的响应性能就会更加稳定。
下面是一个以串联RLC电路为例的稳态特性实例。
该电路由电阻R、电感L和电容C组成,接在电源V的两端。
在稳态下,电路中的电流大小将保持不变,同时电路中的电势差也保持不变。
当电路达到稳态后,电压和电流的波形如下图所示。
从图中可以看出,电路中稳态电量的大小和相位角都保持不变。
127 实验22 RC 、RL 串联电路的稳态特性一.目的要求1.了解RC 及RL 串联电路的稳态特性。
2.观察RC 低通电路的滤波作用。
3.学习使用相位计测量相位差。
二.引言在电工电路特别是在电子电路中,时常用RC 或RL 串联的分压电路来传输交流电压信号。
如果给该串联的电路加上正弦交流电压,则经历一段暂态过程,电路中的电流和每个元件上的电压便稳定下来,称为稳定状态。
在稳定状态下,以总电压为输入电压,以一个元件上的电压为输出电压,则输出电压与输入电压之比称为该电路的传输系数,它是复数。
当输入电压频率改变时,传输系数的模和幅角也将随着改变。
本实验将研究这种变化规律——电路的幅频特性和相频特性。
三.原理1.RC 电路:高通与低通见图1:若输出电压U1是从电阻R 上取的,称该电路为高通电路。
若输出电压U2是从电容上取的,该电路为低通电路。
信号发生器图12.RC 全通电路如右图2所示,当满足R 1C 1=R 2C 2 (3.1)条件时,可以证明传输系数的模和幅角分别如下所示: 212R R R )2(+=U K (3.2) 0=ϕ (3.3)它们均与频率无关,故该电路为全通电路,亦称脉冲分压电路。
3.RL 串联电路:RL 串联电路用得较少,这里不再讨论。
四.仪器用具标准电阻(1K Ω),标准电容(0.1μF ),标准电感(0.1H ),双踪示波器,信号发生器,相位计。
五.实验内容1.研究RC 高通、低通电路的传输特性将图1电压U1、U2分别送至示波器1,2通道。
信号发生器输出电压调为3伏左右。
调出U1、U2波形。
在信号发生器的输出为159.2Hz 、1592Hz 和15.92KHz 等频率下,分别测出荧光屏上U1和U2R 波形高度,再分别算出传输系数K 值。
在上述每一个频率上,用相位计测出输出电压与输入电压之间的幅角ϕ。
信号发生器3.研究全通电路的传输特性参照图2,方法同上,将图22.5中u、u2分别送到示波器Y1、Y2输入端。
RLC串联电路的稳态特性RLC串联电路的稳态特性实验3-10 RLC串联电路的稳态特性前⾔在交流电或电⼦电路的研究中,常需要通过电阻、电感、电容元件不同组合的电路,⽤来改变输⼊正弦信号和输出正弦信号之间的相位差,或构成放⼤电路、振荡电路、选频电路、滤波电路等,因此,研究RLC 电路及其过程,在物理学、⼯程技术上都很有意义。
本实验着重研究RC、RL和RLC 电路的稳态特性。
【实验⽬的】1、通过观测、分析RLC 串联电路中的相频和幅频特性,以便理解和具体应⽤此特性。
2、进⼀步学习使⽤双踪⽰波器进⾏相位差的测量【仪器⽤具】正弦信号发⽣器、毫伏表、双踪⽰波器、⾃感器、电容器、交流电阻箱【实验原理】⼀、RLC串联电路的幅频特性和相频特性由于电容和电感在交流电路中的容抗和感抗与频率有关,所以,在交流电路中有电感和电容存在时,各元件上的电压和电路中的电流都会随频率的变化⽽发⽣变化,且回路中的总电流和总电压的相位差也和频率有关。
电流、电压的幅度与频率间的关系称为幅频特性;电流和电源电压间、各元件上的电压和电源电压间的相位差与电源的频率关系称为相频特性。
我们研究的是RLC串联电路的稳态特性。
所谓电路的稳态就是该电路在接通正弦交流电源⼀段时间(⼀般为电路的时间常数的5~10倍)以后,电路中的电流和元件上的电压iu、u、u()其波形已经发展到保持与电源电压波形相同且幅值稳定这样的的⼀种稳定RCL状态。
1. RC串联电路的幅频特性和相频特性1~ZRj我们知道,在图3-10-1的电路中,RC总阻抗为: ,,,C21~~,,2Z其中的模为:Z,|Z|,R,, ,,,C,,1,,,,,1~,C,,,Z的辐⾓为:,arctan,,arctan (3-10-1) R,CR,,,,,,,,,,,为U和I之间的相位差,即 ,UI根据交流欧姆定律,电阻上的电压为:U,IR (3-10-2) RIU电容上的电压为: (3-10-3) ,C,C21,,2总电压为: (3-10-4) U,IR,,,,C,,图3-10-2为上述电压、电流(有效值)的⽮量图。
实验十R 、L 、C 串联电路的稳态特性 1153605程锋林本实验着重研究RC 和RL 串联电路中的幅-频特性(电压值随频率变化的规律),以及输入信号的相-频特性(相位差随信号频率的变化规律)以及RLC 串联电路的相频特性。
这些特性称为RLC 电路的稳态特性。
【实验目的】1、观测RC 、RL 和RLC 串联电路的幅频特性和相频特性;2、学习用双踪示波器测量两个同频率信号的相位差实验方法。
【实验原理】和直流电路一样,交流串、并联电路中电流和电压遵循同样的规律:串联电路中任何时刻通过各元件电流i 是一样的,而电路两端的总电压等于串联电路中各元件分电压之和;并联电路中各元件两端电压相等,而干路总电流等于各个支路电流之和。
但是因为交流电路中各元件上的电学量之间存在相位差,所以用电表测出的有效值所呈现的并非如同直流电路一样的简单关系。
下面采用矢量图解法来研究: 1、RC 串联电路的幅频特性和相频特性:如下图所示:在RC 回路中,以电流矢量为参考矢量,因为电容元件的特性所致,电容元件上的电压的比i C U 位相总落后2,所以有总电压: RU RU c C(图a)2C 2R U U U +=(1)我们知道,R 、C 元件的阻抗分别为:R Z R = ,C1Z C ω=(2)上式中ω代表交流正弦信号的频率。
所以电路总阻抗为:22C 1R Z ⎪⎭⎫⎝⎛+=ω(3)总电压与矢量电流之间的位相差ψ为:RCU U R C ωψ1arctan-arctan=-= (4) 本次实验将利用所得结果和(1)式及(4)式比较,并计算百分差。
2、RL 串联电路的幅频特性和相频特性:如下图所示:在RL 回路中,因为电感上的电流不能突变,电感元件上的电压i 比L U 的位相总超前2π,做出矢量图为图e,总电压:2L 2R U U U +=(5)总阻抗:()22L R Z ω+=(6)总电压与矢量电流之间的位相差ψ为:RLU U R L ωψarctan arctan== (7)本次实验将利用所得结果和(5)式及(7)式比较,并计算百分差。
实验9 RLC 电路的稳态特性(补充资料) 【实验内容】——(补充内容)1.RLC 串联电路幅频特性的测定测量幅频特性的电路如图1所示,元件取R=10Ω,C ≈0.010μF 、L ≈10mH ,在九孔万能板上连接测量电路(画出测量电路图)。
示波器CH1通道测量信号源“A ”(或“50Ω”)接口输出的正弦信号电压U S ,用示波器的CH2通道测出频率f 从10KH Z 到20KH Z 变化约11~15个值时电阻R 两端的峰峰电压值U R P-P ;注意:每次调好f 后,要调信号源的“幅度”调节旋钮,使示波器的显示“信号源输出波形”通道的波形峰峰电压为U S P-P =1.00V (保持不变),然后才能测量U R P-P 。
列表记录各f 点对应的测量数据U R P-P 和计算数据I P-P 。
根据谐振频率f 0的实验值f 0实和计算值f 0理,求出谐振频率的相对误差E f 0 。
(必做内容) 在坐标纸上,绘制RLC 回路的幅频特性曲线I —f 图。
在图线上,分别标出谐振频率的实验值f 0实和通频带宽f 1、f'2频率;计算RLC 回路的通频带∆f 0.7 = f'2- f 1 和品质因数Q =f 0实/ ∆f 0.7。
(必做内容)(选做内容)将电阻元件改为R= 51Ω,测量各f 对应的U R P-P 、I P-P 的测量数据。
在上面内容的同一张坐标纸上,另绘制R= 51Ω时的RLC 回路的幅频特性曲线。
2.RLC 串联电路相频特性的测定 (必做内容)取R =10Ω,f 从13KH Z 到19KH Z 变化约11个值,用双踪示波器同时测量U S 与U R 两波形之间的相位差∆t 。
列表记录f 、∆t 的测量数据,求出各测量点的ϕ 。
绘制RLC 回路的相频特性曲线ϕ — f 图。
3.品质因数Q 的测定 (选做加分内容)品质因数Q 的测量电路如图2所示,按图连接电路(画出测量电路图),调节信号源的正弦信号频率为RLC 回路的谐振频率f 0,取信号源输出峰峰电压U S =1.00V ,R =10Ω,测出谐振时电容两端电压U C0,求出RLC 回路的品质因数Q (= U C0/ U S )。
R 、L 、C 串联电路的稳态特性本实验着重研究RC 和RL 串联电路中的幅-频特性(电压值随频率变化的规律),以及输入信号的相-频特性(相位差随信号频率的变化规律)以及RLC 串联电路的相频特性。
这些特性称为RLC 电路的稳态特性。
【实验目的】1、观测RC 、RL 和RLC 串联电路的幅频特性和相频特性;2、学习用双踪示波器测量两个同频率信号的相位差实验方法。
【实验原理】和直流电路一样,交流串、并联电路中电流和电压遵循同样的规律:串联电路中任何时刻通过各元件电流i 是一样的,而电路两端的总电压等于串联电路中各元件分电压之和;并联电路中各元件两端电压相等,而干路总电流等于各个支路电流之和。
但是因为交流电路中各元件上的电学量之间存在相位差,所以用电表测出的有效值所呈现的并非如同直流电路一样的简单关系。
下面采用矢量图解法来研究:1、RC 串联电路的幅频特性和相频特性:如下图所示:在RC 回路中,以电流矢量为参考矢量,因为电容元件的特性所致,电容元件上的电压的比i C U 位相总落后2π,所以有总电压: 2C 2R U U U +=(1) 我们知道,R 、C 元件的阻抗分别为:R Z R = ,C1Z C ω= (2) 上式中ω代表交流正弦信号的频率。
所以电路总阻抗为:22C 1R Z ⎪⎭⎫ ⎝⎛+=ω (3)总电压与矢量电流之间的位相差ψ为:RCU U R C ωψ1arctan -arctan =-= (4) 本次实验将利用所得结果和(1)式及(4)式比较,并计算百分差。
2、RL 串联电路的幅频特性和相频特性:如下图所示:R U R U c C (图a)在RL 回路中,因为电感上的电流不能突变,电感元件上的电压i 比L U 的位相总超前2π, 做出矢量图为图e,总电压: 2L 2R U U U +=(5) 总阻抗:()22L R Z ω+= (6)总电压与矢量电流之间的位相差ψ为:R L U U R L ωψarctan arctan == (7)本次实验将利用所得结果和(5)式及(7)式比较,并计算百分差。
实验34 RLC 电路的稳态特性教学目标重点与难点实验内容教学方法教学过程设计 一.讨论1.在交流电路中,RLC 串联电路具有什么特性和作用?在交流电路中,电阻值和频率无关,RLC 串联电路的电流与电阻电压是同相位;电容具有“通高频、阻低频”的特性;电感具有“通低频,阻高频”的特性。
RLC 串联电路具有特殊的幅频特性和相频特性,有选频和滤波作用。
2.交流电路中,如何表示电压和电流的大小和相位的变化? 交流电路的电压..和电流..有大小和相位的变化,通常用复数法及其矢量图解法来研究。
RLC 串联电路如图1所示,交流电源电压为S U,则 C L R S U U U U++= RLC 电路的复阻抗⎪⎭⎫ ⎝⎛-+=C L j R Z ωω1 回路电流 )1(+==CωL ωj R U Z U I S S - ,图1 LRC 串联电路•研究交流信号在RLC 串联电路中的幅频特性和相频特性;•巩固交流电路中矢量图解法和复数表示法。
•重点:测量RLC 串联电路的幅频特性。
•难点:测量RLC 串联电路的相频特性。
•测量RLC 串联电路的幅频特性; •测量RLC 串联电路的相频特性;•根据上述测量内容绘制数据表;作I - f 的关系曲线图和ϕ - f 的关系曲线曲线图。
•采用讨论式、提案式教学方法电流大小 22)1(CL R U ZU I SSωω-+==。
矢量图解法如图2所示,总电压S U与电流I 之间的相位(或S U 与电阻电压R U 的相位)为RCL arctg ωωϕ1-=,可见,RLC 串联回路相位ϕ与电源频率f (f πϖ2=)有关。
3.什么是RLC 串联谐振?RLC 串联电路中,当信号的频率f 为谐振频率LCf π210=,即感抗与容抗相等(00ϖϖCL =)时,电路的阻抗有最小值(Z=R ),电流有最大值(RU Z U I SS ==0),电路为纯电阻,这种现象称为RLC ...串联谐振....。
RLC 串联电路的稳态特性一、实验目的1、RLC 串联电路的幅频特性和相频特性;2、掌握用示波器测量相位差的方法;3、进一步学习使用示波器。
二、实验仪器交流电桥实验箱、示波器三、实验原理一、RC 串联电路的幅频和相频特性如图a 所示,RC 串联的复阻抗 j RC e C R c j R Z ωωω122)1(1-+=-= 则阻抗幅值 22)1(CR Z ω+= 电压求解法如图b 所示则2222)1(CR I U U C R ω+=+=U U 落后于I 的相位为:⎪⎭⎫ ⎝⎛-=RC arctg ωϕ1 ()2221)1(cos RC C UR C R URU U R ωωωϕ+=+==R U RU c C(图a)二、RL 串联电路的幅频和相频特性 R L j e L R L j R Z ωωω22)(+=+=22)(L R Z ω+= R Larctg ωϕ=22)(cos L R URU U R ωϕ+==22)(sin L R LU U U L ωωϕ+==三、LRC 串联电路的幅频特性和相频特性1、幅频特性ϕωωj e C L R Z 22)1(-+= 当01=-CL ωω时φ=0电流达到最大值 则谐振角频率 LC 10=ω 谐振频率 LC f π210= 当0f f <时呈电容性,电流max I I <当0f f >时呈电感性,电流max I I <当0f f =时呈电阻性,电流max I I =2、品质因数 Q为描述i -ω谐振曲线的尖锐程度,通常规定I 由最大值I max 下降到2max I时对应的频率ω1、ω2之差称为“通频带宽度”则 120120f f f Q -=-=ωωω Q 值越大,12f f -越小,宽带越窄,反映谐振曲线的尖锐程度。
3、相频特性ϕωωωωj e C L R C L j R Z )1()1(2-+=-+= R C L arctg ωωϕ1-= 1.当01=-CL ωω时φ=0总电压与电流同相位,阻抗最小,呈电阻性,谐振。
实验报告RLC串联电路的稳态特性
物理科学与技术学院吴雨桥2013301020142 13级弘毅班
【实验目的】
1.观察、分析RLC串联电路中的相频与幅频特性,理解和具体应用此特性。
2.进一步学习用双踪示波器进行测量相位差。
【实验器材】
正弦信号发生器、毫伏表、双踪示波器、自感器、电容器、交流电阻箱。
【实验原理】
电流、电压的幅度与频率间的关系称为幅频特性;电流和电源电压间、各元件上的电压与电源电压间的相位差与电源的频率关系称为相频特性。
电路的稳态就是该电路在接通正弦交流电源一段时间(一般为电路的时间常数的5至10倍)以后,电路中的电流i和元件上电压(UR,UC,UL)的波形已经发展到与电源电压的波形相同且幅值稳定的状态。
1.RC串联电路的幅频特性和相频特性
幅频特性:当ω→ 0时,UR → 0,UC → U; ω增大时,UR增大,UC 减小;ω→∞时,UR → U,UC → 0。
相频特性:ω低时用φR→π/2 ;ω高时φR→0;φC=-[π/2-|φ|];φ随ω增大从-π/2增至0。
等幅频率(截止频率): f ur=uc=1/2 π RC, 是高通滤波器的下界频,低
通滤波器的上界频。
2.RL串联电路的幅频特性和相频特性
幅频特性:当ω→ 0时,UL → 0,UR → U; ω增大时,UL增大,UR减小;ω→∞时,UL → U,UR → 0。
相频特性:ω从0增大至∞时,φR 从0减小趋于-π/2,φ从0增大趋于π/2,φL从π/2减至0。
等幅频率(截止频率): f ur=uc=R/2 π L。
3.RLC串联电路的相频特性
谐振频率:φ =0,UR=U为极大值,f0 = 1/2π√LC ,电路为谐振态。
相频特性:ω<ω0时,φ<0,电容性;ω>ω0时,φ>0,电感性;ω=ω0时,φ=0,纯电阻。
【实验内容】
1.测量并做出RC串联电路的幅频、相频曲线
(1)接好电路,并将仪器调至安全待测状态,然后接通各仪器的电源进行预热。
(2)调节信号源,使得f=500Hz ,U=3.0V ,并用毫伏表进行电压校准。
(3)依次用电压表测出R、C上的电压UR、UC ,从示波器的李萨如图形上读出x 轴与图形相交的水平距离2x0 和图形在x 轴上的投影2X 。
(4)仿照前两步,依次测出其余f值条件下的UR 、UC 和φ值。
2.测量并做出RL串联电路的幅频、相频曲线
3.测量并做出RLC串联电路的相频曲线
将电压表去掉,然后将串联LC代替原来的C即可。
(1)用李萨如图形找出谐振频率。
(2)测出f=350Hz ,600 Hz ,700 Hz ,780 Hz ,900 Hz ,1500 Hz 条件下的φ值。
【实验数据】
RC幅频、相频曲线数据
RL幅频、相频曲线数据
RLC 相频曲线数据
【数据处理】
RC 幅频曲线
RC 相频曲线
f/Hz
U /V
RC 幅频曲线
f/Hz
φ/(°)
RL 幅频曲线
RL 相频曲线
500
100015002000
250030003500400045005000
0.511.52
2.5
3
f/Hz
U /V
RL 串联电路的幅频曲线
500
1000
1500
2000
25003000
3500
4000
4500
5000
25
303540455055
606570
75RL 相频曲线
f/Hz
φ/(°)
RLC 相频曲线
测量谐振频率时,误差Ua=f0p – f0 =2.32Hz 相对误差=Ua
f0*100%=0.316%
Ub =0.01Hz
U= √Ua 2+Ub 2 =2.32
f 的实际值f = (734.12±2.32)Hz
1.RC 串联电路当ω → 0时,UR → 0,UC → U; ω增大时,UR 增大,UC 减小;ω →∞ 时,UR → U ,UC → 0。
ω 低时用φR →π/2 ;ω 高时φR →0;φC=-[π/2-|φ|];φ随ω增大从-π/2增至0。
2.RL 串联电路当ω → 0时,UL → 0,UR → U; ω增大时,UL 增大,UR 减小;ω →∞ 时,UL → U ,UR → 0。
ω 从0增大至∞时,φR 从
RLC 相频曲线
f/Hz
φ/(°)
0减小趋于-π/2,φ从0增大趋于π/2,φL从π/2减至0。
3.RLC串联电路ω<ω0时,φ<0,电容性;ω>ω0时,φ>0,电感性;ω=ω0时,φ=0,纯电阻。
【误差分析】
1.系统误差
(1)仪器误差:
①信号发生器的频率输出与电压输出一直在振荡,无法按
照理想取值精确读数。
②即使是信号发生器的输出频率与输出电压的平均值也与
理论不相符,其实际输出与仪表上的显示读数有偏差。
③电容器与电感器实测电压、电容与读数有微量偏差,且
其电阻等参数也和实验环境因素如温度有关。
(2)理论误差
①导线与连接点的电阻在理论推导中被忽略了。
2.随机误差
①电压表的读数有刻度的限制,在刻度之下的数位只能估读。
②信号发生器的示数一直在波动,读数时难免有误差。
③温度、湿度等随机因素对电阻的影响。
【实验时注意的问题】
1.信号发生器给出的示数不准,调节电压值时应该连接电
压表进行调节。
2.由于信号源的内部输出阻抗不能忽略,其输出端电压随
负载阻抗变化而变化。
因此,每选好一个频率f时,都必须调节信号端的电压调节旋钮“输出调节”,使输出电压U保持一定。
3.注意电压表的量程。
若选择手动调节,则注意选择匹配
的量程;若选择自动调节,则读数时也要注意量程的变化以免读错数。
4.谐振时,电容上和电感上的电压可以很大,要注意不要
触碰其金属端以免触电。
5.注意共地问题。