七年级三班数学
- 格式:doc
- 大小:40.50 KB
- 文档页数:1
人教版数学第三章知识点一、知识概述《人教版数学第三章知识点》①基本定义:由于不知道具体是哪一册书的第三章,我就先假设是初中数学七年级上册第三章《一元一次方程》。
一元一次方程简单说就是只含有一个未知数(元),并且未知数的次数都是1的整式方程。
比如3x +1 = 7,这里的x就是未知数,整个方程就是一元一次方程。
②重要程度:它在数学学科中很重要,可以用来解决很多实际生活中的数量关系问题,像计算购物的折扣问题,工程问题等。
算是数学从简单算术走向复杂代数关系的重要一步。
③前置知识:需要掌握基本的四则运算,对数字和字母表示数有一定的理解,像知道2 + 3 = 5,也知道a + b可以代表两个数相加这种。
④应用价值:在日常生活中,当我们遇到需要找未知数量的问题时就用得上。
比如说,你去买文具,一支笔3元,你给了10元,找零4元,问你买了几支笔。
设买了x支笔,方程就是3x + 4 = 10。
二、知识体系①知识图谱:在初中数学知识里,一元一次方程是代数部分的基础内容,为后续学习二元一次方程、一元二次方程等奠定基础。
②关联知识:和有理数的运算、整式的运算都有关系。
整式是方程的组成部分,有理数运算则在解方程的计算过程中要用到。
③重难点分析:掌握的难点在于如何根据实际问题列出方程。
关键就是要找到题目里的等量关系。
比如说某工程,甲队单独做8天完成,乙队单独做10天完成,两队合作x天完成工程的一半。
这里等量关系就是甲队x天的工作量加上乙队x天的工作量等于工程的一半。
④考点分析:在考试中非常重要。
考查方式有直接解方程、根据已知条件列方程求解、以及方程在实际问题中的应用等。
三、详细讲解【理论概念类】①概念辨析:一元一次方程,首先是等式,然后只含一个未知数,并且这个未知数的次数是1,系数不为0,必须是整式方程。
比如2/x + 3 = 7就不是一元一次方程,因为它不是整式方程。
②特征分析:主要特征就是简洁明了地表示一个数量关系。
它的解是唯一的(个别特殊方程除外),而且通过移项、合并同类项等操作能求解。
七年级上册数学教学计划七年级上册数学教学计划篇1一、学生情况分析本学期担任七年级三、四班数学教学工作。
该两班共有学生117人。
首先,以“自强成才”为初一新生的教育指导思想,使学生端正学习态度,树立学习理想、目标,使新学期有良好的精神面貌。
其次,七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。
学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。
七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。
学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。
学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。
二、教材及课标分析第一章有理数1.通过实际例子,感受引入负数的必要性.会用正负数表示实际问题中的数量.2.理解有理数的意义,能用数轴上的点表示有理数.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小.通过上述内容的学习,体会从数与形两方面考虑问题的方法.3.掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算.能运用有理数的运算解决简单的问题.4.理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主).通过实例进一步感受大数,并能用科学记数法表示.了解近似数与有效数字的概念.第二章一元一次方程1、经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.2、通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法.3、了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想.4、能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想.5、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.第三章图形认识初步1.通过大量的实例,体验、感受和认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特征,能识别这些几何体,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系.2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型;通过丰富的实例,进一步认识点、线、面、体,理解它们之间的关系.在平面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉.3.进一步认识直线、射线、线段的概念,掌握它们的表示方法;结合实例,了解两点确定一条直线和两点之间线段最短的性质,理解两点之间的距离的含义;会比较线段的大小,理解线段的和差及线段的中点的概念,会画一条线段等于已知线段.4.通过丰富的实例,进一步认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,并会进行简单的换算;了解角的平分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质质,会画一个角等于已知角(尺规作图).5.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.6.初步体验图形是描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.7.激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.第四章数据的收集与整理1.了解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷收集数据;能根据问题查找有关资料,获得数据信息.2.初步感受抽样的必要性,初步体会用样本估计总体的思想.3.掌握划记法,会用表格整理数据.4.进一步体会条形图、扇形图和折线图在描述数据中的作用.5.能用计算器处理简单统计数据,进一步体会计算器处理运算的优越性.6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.三、进度安排略。
听课记录:新2024秋季七年级人教版数学上册第三章一元一次方程《解一元一次方程(二):去括号与去分母》教学目标(核心素养)1.知识与技能:学生能够掌握解一元一次方程中去括号和去分母的方法,并能准确应用于解题过程中。
2.过程与方法:通过例题讲解、练习巩固,培养学生分析问题、解决问题的能力,以及运用数学规则进行运算的能力。
3.情感态度价值观:激发学生对数学学习的兴趣,培养耐心细致的学习态度,以及面对复杂问题时勇于探索的精神。
导入教师行为:1.1 教师首先复习上一节课解一元一次方程的基本步骤,特别是移项和合并同类项的方法,为新课做铺垫。
1.2 接着,教师展示一个包含括号和分母的复杂一元一次方程,如“2(x + 3) - 5 =(x - 1)/2”,引导学生观察方程特点,提出疑问:“这样的方程我们该如何解呢?”学生活动:•学生回忆并回答上一节课的解方程步骤,巩固基础知识。
•观察新方程,思考其特殊之处,对如何解这样的方程产生好奇和疑问。
过程点评:导入环节通过复习旧知、展示新知,自然引出本节课的学习内容,激发了学生的求知欲和学习兴趣。
教学过程教师行为:2.1 去括号讲解:•教师详细讲解去括号的方法,强调括号前是加号时,去掉括号后各项符号不变;括号前是减号时,去掉括号后各项符号要变号。
•通过具体例题,如“3(x + 2) = 9”,示范去括号的过程,并让学生尝试独立完成类似题目。
学生活动:•认真听讲,理解去括号的规则。
•在教师指导下,独立完成去括号的练习,加深对规则的理解和应用。
过程点评:通过具体例题和练习,学生有效掌握了去括号的方法,为后续学习打下基础。
教师行为:2.2 去分母讲解:•教师介绍去分母的方法,即先找到方程中所有分母的最小公倍数,然后方程两边同时乘以这个最小公倍数,从而消去分母。
•通过例题“(x - 1)/2 - (x + 2)/3 = 1”,详细展示去分母的过程,并强调去分母后要注意方程两边的每一项都要乘以最小公倍数。
初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。
2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。
3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。
过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。
情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。
感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:娴熟地进展合并同类项,化简代数式。
教学难点;如何推断同类项,正确合并同类项。
教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。
(2)甲比乙油漆面积大多少。
(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。
并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生沟通、争论。
③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母一样②一样字母的指数也一样简称“两同”。
数据的表示1.七年级三班共有学生54人,学习委员调查了班级学生参加课外活动情况(每人只参加一项活动),其中,参加读书活动的18人,参加科技活动的占全班总人数的16,参加艺术活动的比参加科技活动的多3人,其他同学参加体育活动.则在扇形图(如图)中表示参加体育活动人数的扇形的圆心角的度数为( )A .80° B.90° C.100° D.110° 2.如图是某农户2015年收入情况的扇形统计图.已知他2015年的总收入为5万元,则他的打工收入是( )3.某校测量了七年级(1)班学生的身高(精确到1 cm),按10 cm 为一段进行分组,得到如图所示的频数直方图,则下列说法正确的是( ) A .该班人数最多的身高段的学生数为7C .该班身高最高段的学生数为20D .该班身高最高段的学生数为74.如图是某厂2005年各季度产值统计图(单位:万元):•则下列说法正确的是( )A.四个季度中,生产总值有增有减;B.四个季度中,前三个季度的生产总值增长较快;C.四个季度中,各季度的生产总值变化一样;D.第四季度生产总值增长最快5.如图表示的是对某班50名学生最喜欢的活动的调查图,则喜欢游泳的学生有()A.5人 B.12人 C.16人 D.20人6.如图是A校女生占全校总人数的50%,B校男生占全校总人数的50%,•比较两校女生人数是()A.A校多于B校 B.A校比B校少C.A校与B校一样多 D.无法比较7.如图是光明中学七年级(1)班就“同学们在家是否做家务”制作的调查统计图:(1)根据图中的数据制作扇形统计图;(2)从扇形统计图中你还能得到什么信息?(3)根据你得到的信息,请你给光明中学七年级(1)班同学提出你的建议.8.为创建“国家园林城市”,某校举行了对“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?9.李老师为了解班里学生的作息时间,调查了班里50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如图6-3-16所示的频数直方图的一部分(每组数据含最小值不含最大值).请根据该频数直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?10.某班全体同学在“献爱心”活动中都捐了图书,捐书的情况如下图表:每人捐书的册数 5 10 15 20相应的捐书人数17 22 4 2根据题目中的扇形统计图回答下列问题:(1)该班共有多少名学生?(2)全班同学一共捐了多少册图书?(3)送给山区学校和本市兄弟学校各多少册图书?参考答案:1.C2.B3.D4.D5.C6.D7.(1)每天做家务:5÷50×360°=36°;偶尔做家务:15÷50×360°=108°;一点不做家务:30÷50×360°=216°.如图所示(2)从扇形统计图中可以看出:学生做家务的人数太少. (3)今后应提倡学生多做家务.8.(1)200-(35+40+70+10)=45(名),补图略. (2)设抽了x 人,则20040=40x,解得x =8.(3)依题意知:获一等奖的人数为200×25%=50(名),则一等奖的分数线是80分. 9.解:(1)∵总体是所调查对象的全体, ∴班上50名学生上学路上花费的时间是总体. (2)如图所示:(3)依题意得花费时间在30分钟以上(含30分钟)的学生有5人, ∴5÷50×100%=10%.∴该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是10%.10.解:(1)该班共有17+22+4+2=45(名)学生.(2)全班同学一共捐书5×17+10×22+15×4+20×2=405(册). (3)送给山区学校405×60%=243(册), 送给本市兄弟学校405×20%=81(册).科学记数法一、选择题1.-800 800 可以用科学记数法表示为()A -8.008×104B 8.008×104C -8.008×105D 8.008×1052.下列用科学记数法表示各数的算式中,不正确的是()1 456.7=1.4567×103;5.447=5.447×101;152=1.52×102;-37800=-378×102A 0个B 1个C 2个 D 3个3.我国西部地区面积约为640 万平方千米,用科学记数法表示为()A 640×104 平方千米B 64×105平方千米C 6.4×106平方千米D 6.4×107平方千米4.2002年世界杯足球赛期间,现场观看人数达到1 920 000 人,用科学记数法表示为()A 1.92×104人B 1.92×105 人C 1.92×106人D 1.92×107人5.某市科记园区的超级计算机中心内,被称为“神州一号”的计算机运算速度为每秒384 000 000 000 次.用科学记数法表示为()A 3.84×1010次B 3.84×1011次C 3.84×1012次D 3.84×1013次6.设n是一个正整数,那么10n 是()A 10个n相乘的结果B 是一个n位整数C 10的后面又n个0的整数D 是一个n+1位的整数7.神州五号飞船与送它上天的火箭共有零部件约120 000 个,用科学记数法表示为()个A 1.2×104B 1.2×105 C1.2×106 D 12×1058.一光年是光在真空中经历一年所走的距离,一光年约等于9 460 800 000 000 千米.用科学记数法表示正确的是()千米A 9.4608×109B 9.4608×1010C 9.4608×1012D 94608×1059.已知:a = 1.2647×105 ,则a表示为()A 12 647B 126 470C 1 264 700D 12 647 00010.从“第二届互联网大会”上获悉,中国的互联网上网用户数已超过7 800 万,居世界第二位.7 800 万用科学记数法表示为()A 7.8×105B 7.8×106C 7.8×107D 7.8×108二、填空题11.如图1是陆地面积最大的三个国家,用科学记数法表示它们的面积为:中国________千米2;俄罗斯_________ 千米2;加拿大________ 千米2.12. 纳米技术已走进我们的生活,1 纳米相当于一米的1 000 000 000 分之一.则1 米 = _______ 纳米(用科学记数法表示).13.水星半径是2 440 000 米,用科学记数法表示为____________米.14.北京故宫的占地面积约为7.2×105米2,其原数是__________米2.15.人体中约有2.5×1013 个红细胞,其原数为__________个.16.地球离太阳约有一亿五千万千米,用科学记数法表示为__________千米.17.我国“神州五号”载人飞船,按预定轨道环绕地球14 周,共飞行60 多万千米后成功着陆.用科学记数法表示60 万千米是__________千米.18.用科学记数法表示7.3×107 - 8.3×106 =__________ .19.据报道,我国将在2 007 年前发射“嫦娥一号”绕月卫星,总投资14 亿元.14 亿元用科学记数法表示为__________元.20.一个大于10的数可以表示成a×10n的形式,其中1≤ a <______,n 时正整数,这种记数方法叫做科学记数法.如果这个数是n 位整数,那么10 的指数为_________.三、解答题21.请用科学记数法表示下表中的数:名称围绕太阳公转的轨道半径长/千米科学记数法/千米水星58 000 000金星110 000 000地球150 000 000间的实际距离.(单位:米)23.有资料表明,一粒废旧的纽扣电池大约会污染60 万升的水,如果你们学校的每个同学都丢弃1 粒纽扣电池,大约会污染多少升水?用科学记数法表示这一结果.参考答案选择题1. C2. C3. C4. C5. B6. D7. B8. C9.B 10. C填空题11. 9.597×106;1.707×107;9.976×10612. 10913. 2.44×10614. 720 00015. 2 500 000 000 000 00016. 1.5×10817. 6×10518. 6.47×10719. 1.4×10920. 10;n-1解答题21.23.略第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0”;二、一元一次方程的基本形式: ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:变形步骤具体方法变形根据注意事项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号乘法分配律、去括号法则1.分配律应满足分配到每一项2.注意符号,特别是去掉括号移项把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同类项把方程中的同类项分别合并,化成“bax=”的形式(0≠a)合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a,得abx=等式性质2 分子、分母不能颠倒注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。
对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。
1)有多重括号,去括号与合并同类项可交替进行2)当括号内含有分数时,常由外向内先去括号,再去分母3)当分母中含有小数时,可用分数的基本性质化成整数4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系)2)根据数量关系与解题需要设出未知数,建立方程;3)解方程;4) 检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c 则这个三位数表示为:abc , 10010abc a b c =++(其中a 、b 、c 均为整数,且1≤a ≤9,0≤b ≤9,0≤c ≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题;4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形;8)优化方案问题9)浓度问题:溶液×浓度=溶质10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想.3)化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a 的形式. 体现了化“未知”为“已知”的化归思想.4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.典型题列1、x 取何值时,代数式 63x +与 832x - 的值相等.2、已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.3、解下列方程|x -2|+|2x+1|=8 5|x|-16=3|x|-4200920102009433221=⨯++⨯+⨯+⨯x x x x ()20102009111216121=+++++n n4、已知:(a -3)(2a +5)x +(a -3)y +6=0是一元一次方程,求a 的值。
3.4一元一次方程的应用一、和、差、倍、分问题:1.某校初三年级甲、乙两班学生人数相等,甲班男女人数之比为4:5,乙班男生人数占全班人数的60%,若把甲乙两班合成一个新团队,则新团队男生人数比女生人数多4人,求新团队总人数.2.一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时,他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色的安全帽和红色的一样多,而每位女同学看到白色的安全帽是红色的安全帽的2倍.求这群学生的总人数.3.目前广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人.(1)求目前广州市在校的小学生人数和初中生人数;(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?4.某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%, 这样全市人口将增加1%,求这个城市现有的城镇人口数和农村人口数.二、劳力调配问题:某公司有两个工程队,甲工程队人数比乙工程队人数的12多28人,因有紧急任务,需从乙队抽调21到甲队,这时甲队人数刚好是乙队人数的23,问该公司两个工程队共有多少人?三、配套问题:1.箭鹿服装厂要生产某种型号学生服一批,已知每3 米长的某种布料可以做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600 米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?2.某车间有技术工人人,平均每人每天可加工甲种部件16个或乙种部件10个,两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?四、等积变形问题:在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?五、行程问题:1.某人从家里骑自行车到学校。