第9章 碳酸盐岩类
- 格式:pptx
- 大小:764.60 KB
- 文档页数:27
碳酸盐岩地质碳酸盐岩地质是地球地壳中重要的地质类型之一,它由碳酸盐矿物构成,包括方解石、白云石、菱苦土石等。
碳酸盐岩地质具有广泛的分布和重要的地球科学意义,不仅是制约石油、天然气等资源的重要载体,还是重要的工程材料和旅游资源。
在本文中,我们将详细介绍碳酸盐岩地质的形成过程、特征、分类以及相关的地质现象。
碳酸盐岩地质的形成过程主要有两种:沉积和变质。
沉积是指碳酸盐岩在地壳表面或地下盆地中通过生物和物理化学作用在长时间内沉积积聚形成的过程。
变质是指碳酸盐岩在地壳深部因高温、高压等条件发生变质作用,形成大理岩、大理岩麋状岩等。
碳酸盐岩地质一般形成在大洋盆、古海湖盆以及海洋沉积物沉积区等地,这些地区通常富含钙离子和碳酸盐离子,有利于碳酸盐岩的形成。
碳酸盐岩地质具有独特的特征,其最显著的特点是岩石中含有大量的碳酸盐矿物,具有相对较高的硬度和密度,并且容易溶解。
由于碳酸盐矿物的溶解性质,碳酸盐岩地质在地下水和包括酸雨在内的大气降水的作用下,容易发生溶蚀作用,形成各种地下溶洞、地下溶蚀河道和喀斯特地貌等。
此外,碳酸盐岩地质还具有脆性强、可塑性差等特点,容易发生断裂和折叠等构造变形。
根据碳酸盐岩的物质组成和形成过程,可以将其细分为多种类型,常见的有石灰岩、白垩纪石灰岩、多石级石灰岩和大理岩等。
石灰岩是由方解石或白云石主要组成的碳酸盐岩地质,广泛分布在地球各个地区。
白垩纪石灰岩是白垩纪时期沉积的石灰岩,常见于地球上许多地区的山脉和高原上。
多石级石灰岩是由多种碳酸盐矿物和其他沉淀物组成的碳酸盐岩地质,广泛分布在包括中国在内的许多国家和地区。
大理岩是由大理石经过变质作用形成的碳酸盐岩地质,常见于地壳深部,是中高温和高压下的产物。
与碳酸盐岩地质相关的地质现象有很多,其中最重要的是喀斯特地貌。
喀斯特地貌是碳酸盐岩地区地表和地下发育的特殊地形,包括天坑、溶洞、地下河等。
喀斯特地貌的形成与碳酸盐岩的溶蚀作用密切相关,地表水和地下水对碳酸盐岩的溶蚀作用形成了独特的地下溶蚀通道。
目录一、碳酸盐岩的孔隙类型 (1)二、碳酸盐岩类描述 (2)2.1灰岩 (2)2.2白云岩 (8)三、碳酸盐岩储层与碎屑岩储层对比 (11)一、碳酸盐岩的孔隙类型碳酸盐岩孔隙的分类及命名,乔奎特等按受组构控制及不受组构控制将碳酸盐岩孔隙划分为三大类十五种基本类型,如图1-1-4所示。
(1)原生孔隙这是沉积时形成的孔隙,成岩过程中可能产生一定的变化。
这种孔隙主.要受碳酸盐岩的结构组分所控制,其中颗粒因素是主要的。
原生孔隙可分为粒间孔隙、粒内孔隙、晶间孔隙、壳体掩蔽孔隙和生物骨架孔隙等五种。
(2)溶蚀孔隙指沉积过程及成岩后由于溶解作用所形成的孔隙。
地下水的溶解作用往往在沉积过程中就已开始进行,并延续到成岩作用结束。
在这个阶段,地层中原生孔隙发育时,地下水大都比较活跃,并通过溶蚀而使孔隙进一步增加。
成岩作用结束后,溶蚀孔隙仍可继续发育。
尤其在不整合侵蚀面附近,由于处于渗流带及潜流带上部水文条件下,使得地下水在原生的孔隙发育带更为活跃。
加上地表水的不断补充,因而在不整合面附近往往形成极为发育的溶烛孔隙,有时可具有极高的产能。
(3)生物钻孔和潜孔孔隙这种孔隙多在沉积及成岩过程中形成。
(4)收缩孔隙由于沉积物的收缩作用而形成的孔隙。
(5)裂缝裂缝一般是由于构造作用或成岩作用而形成的。
裂缝的长度可以由几厘米到几公里不等。
宽度也可由几毫米到几十厘米,但微裂缝的宽度仅数十微米。
一般说来,大裂缝延伸远,方向稳定,与油气储集关系更为密切。
二、碳酸盐岩类描述1、观察碳酸盐岩主要结构特征(包括晶粒结构、粒屑结构、生物骨架结构和交代结构)、胶结类型,注意泥晶基质与亮晶胶结物的区别。
2、学会对碳酸盐岩标本及薄片的描述方法。
3、掌握碳酸盐岩岩石分类命名原则和最基本的岩石类型。
4、碳酸盐岩主要由自生的碳酸盐矿物方解石和白云石组成。
自生的碳酸盐矿物方解石含量>50%时称为石灰岩;若一半以上为白云石时为白云岩。
它们经常还和陆源碎屑及粘土矿物组成过渡类型岩石。
常见碳酸盐岩的认识目的:1.学会观察和描述常见碳酸盐岩的基本特征,加深对碳酸盐岩成因的了解。
2.掌握碳酸盐呀的肉眼鉴定方法和分类命名原则。
3.认识常见碳酸盐岩,并能根据其基本特征,对未知岩石进行初步分类命名。
碳酸盐岩:由化学沉积的碳酸盐矿物(方解石、白云石)组成的岩石。
主要的岩石类型为石灰岩和白云岩。
古老的石灰岩经机械风化剥蚀下来的碳酸盐岩碎屑经搬运再沉积形成的岩石不属于碳酸盐岩。
一、碳酸盐岩的成分1.矿物成分和化学成分组成碳酸盐岩的矿物主要为方解石和白云石,前者化学成分为CaCO3,后者化学成分为CaMg(CO3)2,如果以氧化物表示,组成碳酸盐岩的化学成分主要有:CAO、MgO、CO2。
2.结构组分(1) 颗粒:相当于碎屑岩中的碎屑颗粒,但它是在盆地内形成,在水盆地内就地形成或经短距离搬运再沉积的。
a 内碎屑:是已形成的弱固结的碳酸盐沉积物,经岸流、波浪和潮汐等的作用而破碎再沉积形成的碎屑。
内碎屑按粒径大小可分为:砾屑:>2mm砂屑:0.05~2mm粉屑:0.05~0.005mm内碎屑粒径越大,代表形成内碎屑时的水动力越强。
b 鲕粒:是具核心和同心层(包壳)结构的球状和似球状颗粒,直径<2mm的称鲕粒,>2 mm 称豆粒c 生物碎屑:由生物死亡后遗体的钙质硬体部分组成的颗粒。
d 球粒:是由泥晶碳酸盐矿物组成的颗粒,多呈卵圆形,内部结构均匀,粒径约在0.03~0.2mm,0.2mm大于的称团粒。
(2) 泥晶:为泥级的碳酸盐质点。
(3) 胶结物:充填在颗粒之间的结晶的方解石。
(4) 生物骨架:由原地生长的造礁群体生物所组成的一种坚硬的碳酸钙骨架。
二、碳酸盐岩的分类及结构(一)按矿物成分:1.灰岩:主要由方解石组成,进一步按含泥质的多少分为灰岩、含泥灰岩、泥质灰岩、泥灰岩2.白云岩:主要由白云石组成,通常具晶粒结构。
(二)按结构组分:鲕粒灰岩:鲕粒结构生物碎屑灰岩:生物碎屑结构砾屑灰岩:砾屑结构内碎屑灰岩砂屑灰岩:砂屑结构粉屑灰岩:粉屑结构泥晶灰岩:泥晶结构生物岩系列:礁灰岩:生物骨架结构三、实习指导(1)颜色:灰—灰白色居多,但往往随混入物而变化。
碳酸盐岩地层划分及类型识别方法
碳酸盐岩的形成与地球内部结构的演化密切相关,其在古海洋环境中形成,在现代地壳中也有一定的分布。
碳酸盐岩的出现,标志着地球上经历了一个多阶段地质事件,具有较高的成矿潜力。
但碳酸盐岩层分布广、类型多,对其进行地层划分与对比存在一定难度。
基于前人研究成果来看,传统地震地层学在对碳酸盐岩层的划分方面主要以“层”或“段”为基本单位进行地层划分:将整个岩性区及相对应的含水层视为一个整体;将各个含水层中与其相对应的沉积岩相或地质层位作为一个地层单位;按照岩性特征将岩石划分为若干个沉积单元,再将各单元作为不同含水层段进行研究。
在实际工作中,对于碳酸盐岩岩性地层划分及对比,多数情况下存在以下几个问题:一是同一剖面中可能存在多种岩相;二是在同一口井或同一条钻井中存在多种不同成因类型;三是同一层位内不同地层之间横向不连续。
基于此本文通过对前人研究成果及生产实际情况的总结分析,以“层”为基本单位进行碳酸盐岩层的划分及对比、再结合各类地层单位内部不同含水层之间相互叠置关系建立新的碳酸盐岩地层划分方法:以“段”为基本单位进行碳酸盐岩岩性层段划分,再依据“组”或“族”
进行碳酸盐岩地层单位内部层位或含水层间上下地层之间横向不连续问题建立“叠合地层”。
关于碳酸盐岩类型识别:
碳酸盐岩层与碳酸盐岩石层一样可分为不同时期、不同成因及不同类型。
但与之存在明显差别,如:在全球范围内其沉积环境主要是海相环境;而在我国主要形成于陆相环境。