综合物理实验辅助材料实验一、光学成像与光信息处理
- 格式:pdf
- 大小:586.72 KB
- 文档页数:14
一、实验目的1. 熟悉光学仪器的基本原理和操作方法。
2. 掌握光学元件的识别和测试方法。
3. 学习光学实验的基本技能,提高实验操作能力。
4. 培养团队合作精神和科学严谨的态度。
二、实验原理光学实验是研究光现象和光学原理的重要手段。
本实验主要涉及以下光学原理:1. 光的折射:光从一种介质进入另一种介质时,其传播方向发生改变的现象。
2. 光的反射:光射到物体表面后,返回原介质的现象。
3. 光的干涉:两束或多束光相遇时,产生的明暗相间的条纹现象。
4. 光的衍射:光波通过狭缝或障碍物后,产生弯曲传播的现象。
三、实验仪器与材料1. 光具座2. 平面镜3. 激光器4. 分束器5. 成像系统6. 透镜7. 光栅8. 光电池9. 数字多用表10. 记录纸四、实验步骤1. 光的折射实验(1)将激光器发出的激光束照射到平面镜上,调整平面镜角度,观察激光束的反射方向。
(2)将平面镜倾斜一定角度,观察激光束的折射方向。
(3)测量激光束的入射角和折射角,记录数据。
2. 光的反射实验(1)将激光束照射到平面镜上,观察激光束的反射方向。
(2)调整平面镜角度,观察激光束的反射方向。
(3)测量激光束的入射角和反射角,记录数据。
3. 光的干涉实验(1)将激光束照射到分束器上,使激光束分为两束。
(2)将两束激光分别照射到透镜上,形成干涉条纹。
(3)调整透镜位置,观察干涉条纹的变化。
(4)测量干涉条纹的间距,记录数据。
4. 光的衍射实验(1)将激光束照射到光栅上,观察衍射条纹。
(2)调整光栅角度,观察衍射条纹的变化。
(3)测量衍射条纹的间距,记录数据。
五、实验结果与分析1. 光的折射实验根据实验数据,计算出折射率n,并与理论值进行比较。
2. 光的反射实验根据实验数据,计算出反射率R,并与理论值进行比较。
3. 光的干涉实验根据实验数据,计算出干涉条纹的间距,并与理论值进行比较。
4. 光的衍射实验根据实验数据,计算出衍射条纹的间距,并与理论值进行比较。
实验一阿贝成像原理与空间滤波光学信息处理是在上个世纪中叶发展起来的一门新兴学科,1873年阿贝首次提出了二次衍射成像理论,创建了空间频谱、空间频率概念,利用空间滤波手段对光学图像进行处理,从而奠定了光信息处理的理论基础。
实验目的1.了解阿贝成像原理,并进行实验验证。
2.加深对空间频谱和空间滤波概念的理解。
3.利用空间滤波技术消除图像噪声。
4.了解透镜的傅里叶变换作用。
5.掌握光学信息处理基本光学系统的搭建及调节方法。
实验仪器半导体激光器(带二维调节架)光具座导轨(1000mm)滑块傅里叶透镜(φ80,f 190)准直透镜(φ55,f 50)扩束镜(带二维调节架)放大镜干板架,正交光栅2枚(空间频率分别为25 lp/mm和100 lp/mm )“光”字屏(内含振幅型正交光栅)、滤波器组件(含狭缝和孔径不同的两个小孔光阑,安装于精密二维调节架上)毛玻璃屏白屏小孔屏手电筒。
实验原理一、阿贝成像理论阿贝成像理论提出了一个与几何光学传统成像理论完全不同的概念,认为相干照明下透镜成像过程可分作两步:首先,物光波经透镜,在透镜后焦面上形成频谱,该频谱称为第一次衍射像;然后频谱成为新的次波源,由它发出的次波在像平面上干涉而形成物体的像,该像称为第二次衍射像。
上述理论即为“阿贝成像理论”。
根据这一理论,像的结构完全依赖于频谱的结构。
图2-1-1是上述成像过程的示意图。
设单色相干平面波照射复振幅为的物平面,由傅里叶光学可知,经透镜L的傅里叶变换,在其后焦面(频谱平面)上可得到物的频谱,其数学表述为:(2-1-1)式中f x,f y为空间频率。
透镜L则称为傅里叶变换透镜。
由频谱面到像平面,光波完成了一次夫朗和费衍射过程,相当于频谱又经过一次傅里叶变换,在像平面上综合成物体的像。
(2-1-2)由式(2-1-1)、(2-1-2)可见,物面与像面的复振幅之比是一个常数,所以像与物几何相似。
二、阿贝—波特实验为了验证阿贝成像理论,阿贝本人于1873年、波特于1906年分别做了验证实验,这就是著名的阿贝—波特实验。
光电检测与信息处理实验实验一红外光源曲线标定实验一、实验目的1 通过实验使学生了解光源的原理和种类。
2 了解输出光的光功率和接收电压之间的关系。
二、基本原理1、光源原理本实验所用的光源为红外功率可调光源,主要由红外发光二极管构成;所用的接收器件是光敏二极管。
采用的发光二极管发射的是自发辐射光,没有谐振腔对波长的选择,谱线较宽。
而半导体激光器在直流驱动下,发射光波长有一定分布,谱线具有明显的模式结构。
光敏二极管又称光电二极管,光敏二极管是基于光伏效应原理工作的光电器件。
当入射光子在本征半导体的p-n结及其附近产生电子—空穴对时,光生载流子受势垒区电场作用,电子漂移到n区,空穴漂移到p区。
电子和空穴分别在n区和p区积累,两端便产生电动势,这称为光生伏特效应,简称光伏效应。
光敏二极管基于这一原理。
如果在外电路把p-n短接,就产生反向的短路电流,光照时反向电流会增加,并且光电流和照度成线性关系。
2、红外光源曲线标定原理红外光源的参数测试原理如图1-2所示,在发射端,将红外发光二极管LED接入到晶体三极管的集电极,通过改变可调电源输出电压的大小来调节三极管基极偏置电压来改变集电极电流I c 。
由于在电流较小时,P-I曲线的线性较好,所以可获得需求的辐射光功率;在接收端,将光电二极管电流转换成可用电压,用一个运算放大器作为电流--电压的转换电路。
这意味着反馈电阻必须非常大,而放大器的偏置电流必须极小。
三、实验仪器1、光电检测与信息处理实验台(一套)2、红外功率可调光源探头3、红外接收探头4、光电信息转换器件参数测试实验板5、光学支架6、万用表7、导线若干四、实验步骤本实验根据红外发光二极管和光敏二极管的特性,对红外发光二极管发出的光功率进行测量。
由于光敏二极管的谱线宽,可见光会影响测量的结果,因此实验最好在暗室中进行。
1、按图1-1连接实验线路。
(1)把红外功率可调光源探头与红外接收探头位置固定好;注:保证两者的精确对准,否则将影响光功率的测量。
光学信息处理技术光学信息处理技术是一种基于光学的信息处理方式,它利用光的干涉、衍射、偏振等特性,实现对信息的获取、转换、加工和存储等操作。
这种技术具有高速度、高精度、高可靠性等优点,因此在现代通信、传感、生物医学等领域得到了广泛应用。
一、光学信息处理技术的基本原理光学信息处理技术主要基于两个基本原理:干涉和衍射。
干涉是指两个或多个光波叠加时,光强分布发生改变的现象。
通过控制干涉的相干性,可以实现信息的叠加、增强或抵消等操作。
衍射是指光波遇到障碍物时产生的空间频率变化现象。
通过控制衍射的图案,可以实现信息的滤波、变换等操作。
二、光学信息处理技术的应用1、光学计算:光学计算利用光的干涉和衍射原理,可以实现高速数学运算和数据处理。
例如,利用光学干涉仪可以实现傅里叶变换等复杂计算。
2、光学传感:光学传感利用光的干涉和偏振原理,可以实现高灵敏度的传感和测量。
例如,利用光学传感技术可以实现生物分子和环境参数的检测。
3、光学通信:光学通信利用光的相干性和偏振原理,可以实现高速、大容量的数据传输。
例如,利用光学通信技术可以实现城域网和长途通信。
4、光学存储:光学存储利用光的干涉和衍射原理,可以实现高密度、高速度的信息存储。
例如,利用光学存储技术可以实现光盘、蓝光等存储介质。
三、光学信息处理技术的未来趋势随着科技的不断发展,光学信息处理技术也在不断创新和进步。
未来,光学信息处理技术将朝着以下几个方向发展:1、高速度、大容量:随着数据量的不断增加,对光学信息处理技术的速度和容量要求也越来越高。
未来的光学信息处理技术将更加注重提高处理速度和扩大存储容量。
2、微型化、集成化:随着微纳加工技术的不断发展,未来的光学信息处理技术将更加注重微型化和集成化。
例如,利用微纳加工技术可以实现光学器件的集成和封装,提高系统的可靠性和稳定性。
3、智能化、自动化:未来的光学信息处理技术将更加注重智能化和自动化。
例如,利用人工智能技术可以实现光学系统的自适应和优化,提高系统的智能化水平。
实验十 透镜的FT 性质及常用函数与图形的光学频谱分析一、实验目的:1. 了解透镜对入射波前的相位调制原理2. 加深对透镜复振幅传递函数透过率物理意义的认识(参见实验十一实验原理)3. 应用光学频谱分析系统观察常见图形的傅里叶(FT )频谱,加深空间频率域的概念二、实验原理:理论基础:波动方程、复振幅、光学传递函数透镜由于本身厚度变化,使得入射光在通过透镜时,各处走过的光程不同,即所受时间延迟不同,因而具有位相调制能力,下图为简化分析,假设任意点入射的光线在透镜中的传播距离等于该点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生大小正比于透镜各点厚度的位相变化,透镜传递函数记为: t(x,y)=exp[j Φ(x,y)] (1)Φ(x,y )=kL(x ,y)L (x ,y ):表示光程MNL (x,y )=nD (x,y )+[D 0-D(x ,y )] (2)D 0:透镜中心厚度。
D :透镜厚度。
n :透镜折射率。
可见只要知道透镜厚度函数D (x ,y )可得出其位相调制,在球面透镜傍轴区域,用抛物面近似球面,可得到球面透镜的厚度函数:()()⎪⎪⎭⎫⎝⎛-+-=212201121,R R y x D y x D (3) R 1,R 2:构成透镜的两个球面的曲率半径。
因此有()()()()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+--•=2122011211R R y x n jk exp jknD exp y ,x t (4) 引入焦距f ,其定义式为()⎪⎪⎭⎫⎝⎛--=211111R R n f 代入(4)得: ()()()⎥⎦⎤⎢⎣⎡+-=2202y x f k j exp jknD exp y ,x t此即透镜位相调制的表达式.第一项位相因子仅表示透镜对于入射光波的常量位相延迟,不影响位相的空间分布,即波面形状。
第二项起调制作用的因子,它表明光波通过透镜时的位相延迟与该点到透镜中心的距离平方成正比。
实验二十一AOTF成像光谱测试实验传统的成像光谱仪大多采用棱镜、光栅、干涉仪滤光,进行推帚式线光谱扫描成像。
这种方式往往需要目标和成像系统做相对移动,对载体运动的平稳性要求比较高,整个系统的构造十分复杂,需要经过相当复杂的校正处理才能得到最后的图像,因此成像速度慢,且仪器体积大而笨重,移动困难。
声光可调谐滤光器(Acousto-Optic Tunable Filter,简称AOTF)是一种声光调制器件。
其工作原理主要是利用了声波在各向异性介质中传播时对入射到传播介质中的光的布拉格衍射作用。
声光可调谐滤光器由单轴双折射晶体(通常采用的材料为TeO2),粘合在单轴晶体一侧的压电换能器,以及作用于压电换能器的高频信号组成。
当输入一定频率的射频信号时,AOTF会对入射的复色光进行衍射,从中选出波长为λ的单色光。
单色光的波长λ与射频频率f有一一对应的关系,只要通过电信号的调谐即可快速、随机改变输出光的波长。
采用AOTF进行电调谐滤光,可以实现凝视式面光谱成像。
与推帚式相比,它不需要探测系统和目标之间做相对运动,而且能够获得很高的图像分辨率,一般也不需要进行几何校正就可以得到高质量的图像。
而且凝视式成像系统一般结构也比较简单,可靠性高,因此相关的仪器产品体积可以做得很小,进而实现成像光谱仪的便携化。
成像光谱系统既可构成便携式成像光谱仪,用于近距离目标探测;又可构成显微成像光谱仪。
【预习提要】(1)声光可调谐滤波器AOTF的分光原理是什么?(2)如何确定AOTF衍射光的波长?(3)成像光谱测试时成像位置不同对测试结果有无影响?【实验要求】(1)了解AOTF的工作原理和成像光谱测试的特点;(2)掌握成像光谱测试的基本光路系统;(3)掌握吸收光谱曲线的比较和吸收峰分析。
s【实验目的】(1)了解基于AOTF的成像光谱测试系统光路和设备构成;(2)掌握成像光谱系统的软件操作;(3)利用成像系统测量不同样品的吸收光谱;【实验器材】声光可调谐滤波器一套(含AOTF、驱动器、电源),高亮度光源一套(含光源、电流源),光学元件若干,成像透镜一个,光学CCD一个,实验用微机一套(含自编控制和数据采集软件系统一套)。
光学信息处理实验报告光学信息处理实验报告引言光学信息处理是一门研究如何利用光学原理和技术来处理和传输信息的学科。
它在通信、计算机科学、图像处理等领域有着广泛的应用。
本实验旨在通过实际操作和观察,探索光学信息处理的原理和技术,并对其应用进行分析和评估。
实验一:光的干涉与衍射在实验一中,我们使用干涉与衍射现象来实现光的信息处理。
首先,我们将一束激光通过一个狭缝,产生一条狭缝衍射的光斑。
然后,我们将光斑通过透镜进行聚焦,并观察光斑的衍射现象。
通过调整透镜的位置和焦距,我们可以改变光斑的大小和形状,从而实现对光的信息进行处理。
实验二:光的全息术实验二中,我们使用全息术来实现光的信息存储和再现。
首先,我们使用激光将被记录的物体进行照射,并将光波与参考光波进行干涉。
然后,我们使用光敏材料记录干涉图样,形成全息图。
最后,我们使用激光将全息图进行照射,通过光的衍射和干涉效应,将记录的物体再现出来。
通过调整照射光的角度和波长,我们可以改变再现物体的位置和形状,实现对光的信息进行存储和再现。
实验三:光的调制与解调实验三中,我们使用光的调制与解调技术来实现光的信息传输。
首先,我们将待传输的信息通过光电调制器将其转化为光信号。
然后,我们使用光纤将光信号传输到接收端。
在接收端,我们使用光电解调器将光信号转化为电信号,并通过解调器将其还原为原始的信息。
通过调整调制器和解调器的参数,我们可以实现对光信号的调制和解调,从而实现对光的信息进行传输。
实验四:光的图像处理实验四中,我们使用光的图像处理技术来实现对图像的处理和分析。
首先,我们将待处理的图像通过光学透镜进行聚焦,并通过光敏材料记录图像。
然后,我们使用图像处理软件对记录的图像进行数字化处理,包括滤波、增强、分割等操作。
最后,我们使用激光将处理后的图像进行再现。
通过调整图像处理软件的参数,我们可以实现对图像的不同处理效果,从而实现对光的信息进行处理和分析。
结论通过本次实验,我们深入了解了光学信息处理的原理和技术,并通过实际操作和观察,对其应用进行了分析和评估。
初中物理光学学实验的基本操作引言在初中物理学中,光学实验是一个非常重要的学习部分。
通过进行光学实验,学生可以观察和研究光的性质和现象,深入理解光的传播规律和光学原理。
在进行光学实验时,掌握基本的实验操作是十分必要的。
本文将介绍初中物理光学学实验的基本操作。
实验一:利用凸透镜成像的实验操作实验材料•凸透镜•透明物体(如针尖或小球)•屏幕•光源实验步骤1.将凸透镜放在光源前方,并让光线射向透明物体。
2.将屏幕放在凸透镜的焦点位置,调整屏幕距离凸透镜的距离。
3.观察屏幕上的成像现象,记录实验结果。
实验原理当光线通过凸透镜时,会发生折射现象,从而形成透镜后的成像。
根据透镜成像的规律,当物体放置在凸透镜的焦点位置时,成像会出现在无穷远处;当物体放置在焦点与凸透镜之间时,成像会放大、倒立;当物体放置在焦点与凸透镜之外时,成像会缩小、正立。
实验注意事项1.实验过程中,要保证光源和观察屏幕的位置固定,避免干扰实验结果。
2.在观察屏幕上的成像时,要注意调整屏幕与凸透镜的距离,以获得清晰的成像效果。
3.在进行实验操作时,要小心处理凸透镜,避免损坏或污损。
实验二:测量光的折射角的实验操作实验材料•空心半球•直尺•光源•光程板•仪器架•透明介质实验步骤1.在仪器架上放置空心半球,并将光源置于半球边缘处。
2.取一片透明介质(如玻璃板),将其放置在空心半球内。
3.在透明介质上方,放置直尺,并使其过透明介质的中心点。
4.观察直尺上的刻度与光线的位置,记录实验结果。
5.移动透明介质,重复步骤4,记录多组实验数据。
实验原理光的折射是光线从一种介质射到另一种介质中时产生的现象。
根据斯涅尔定律,入射角和折射角之比等于两种介质的折射率之比。
通过测量光线的位置和入射角度,可以计算出折射角的大小。
实验注意事项1.实验前要确保光源、直尺和透明介质的位置正确,并固定在仪器架上。
2.在测量时,要保持直尺与光线垂直,并精确读取刻度位置。
3.通过多组实验数据的测量,可以提高实验结果的准确性。
物理实验:光学实验原理与操作方法1. 引言光学是物理学的一个重要分支,研究光的传播规律、光与物质之间的相互作用以及利用光进行测量和处理的技术。
在学习光学时,进行光学实验是加深理解和掌握知识的重要途径之一。
本文将介绍一些常见的光学实验,包括其原理和操作方法。
2. 凸透镜焦距测量法凸透镜焦距测量法是一种常用的测量凸透镜焦距的方法。
其原理基于薄透镜成像公式:1 f =1d o+1d i其中,f为透镜焦距,d o为物体距离透镜的距离,d i为像距。
实验步骤:1.在平直桌面上放置一个凸透镜。
2.调整凸透镜到合适的高度,并使其稳定固定。
3.在前方放置一个物体,并调整其与凸透镜之间的距离d o。
4.移动一个屏幕来观察在什么位置能够得到清晰的像。
5.测量并记录物体距离透镜的距离d o和像距d i。
6.根据公式计算凸透镜的焦距。
3. 杨氏实验杨氏实验是一种研究光的干涉现象的实验。
它通过使用一个狭缝和一个双缝装置来观察光的干涉条纹。
实验步骤:1.在对光源进行筛选和确保光线单色性质后,将其放置在合适位置上。
2.放置一个狭缝装置,调整其宽度和位置以使得发出经过狭缝射出的平行光束。
3.将双缝装置放置在适当位置上,并调整其间距和角度。
4.观察通过双缝装置漏掉后的光进入屏幕形成的干涉条纹。
5.测量并记录不同条件下干涉条纹的特征参数,如条纹间距等。
4. 全息术全息术是一种记录并再现三维图像的技术。
它利用了光波的干涉与衍射现象,并结合了光的振幅和相位信息。
实验步骤:1.准备一块感光介质(全息板)。
2.准备一个分束器,将激光束分为参考光束和物体光束。
3.调整物体光束的角度和位置,使其反射或穿过物体并投射到全息板上。
4.将参考光束与物体光束合成,并照射到全息板上形成干涉图样。
5.用适当的化学处理方法固定干涉图样。
6.利用适当的照明条件以及读出装置来观察并再现全息图像。
5. 分光计测量分光计是一种常用于测量光线波长、色散等参数的仪器。