赏析数学美
- 格式:doc
- 大小:78.00 KB
- 文档页数:4
“数学之美”的内容
以下是关于“数学之美”内容的描述:
1.数学的对称之美。
在数学中存在着各种形式的对称性,这种对称性可以体现在数学对象
的结构、性质和关系中。
数学中的对称美具体体现为:数学的几何对称美、数学的代数对称美和数学的组合对称美。
这些对称之美不仅有助于我们解决问题,还能够揭示数学对象之间的联系和结构。
2.数学的简洁之美。
数学的简洁之美来源于其简洁而优雅的表达方式、精炼的推理和符号
表示。
数学的简洁美不仅使得数学理论更加易于理解和应用,也给人一种审美上的享受。
如数学中的公式和方程往往以简洁明了的形式来表达复杂的数学关系;数学中的定理和证明也往往具有简洁而优雅的特点。
3.数学的抽象之美。
数学的抽象之美源于其超越具体对象和情境的能力,以及抽象化的思
维和符号系统。
如数学中的概念和理论往往能够超越特定的对象和情境,通过引入符号和符号系统,将复杂的数学概念和关系抽象化,使得数学思维更加灵活和高效。
数学的抽象之美常常会启发人们对世界的深入思考,推动人类创造力的发展。
浅谈数学之美美是人类创造性实践活动的产物,是人类本质力量的感性显现。
通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。
数学美是自然美的客观反映,是科学美的核心。
简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。
一、数学美的性质1、数学美的客观性:即指客观存在于数学领域中的审美对象是不以审美主体是否承认、是否意识到为转移的,尽管因审美主体的主观条件的不同,并不是所有的或特定的数学美都能为审美主体所感知,但这并不能改变这数学美的存在。
2、数学美的社会性:数学美是一种社会现象,因为数学美是对人而言的。
数学家通过数学实践活动(特别是数学理论创造的实践活动),使自己的本质力量“对象化”了,或者说“自然人化”了。
所谓的“人化”就是人格化,即自然物具有人的本质的印记,实质上就是社会化。
这种社会化的内容正是数学美的内容,它是数学美产生的本原。
3、数学美的物质性:数学美的内容人的本质力量必须通过某种形式呈现出来,必需要有附体,数学美的这种形式或附体,即数学美的物质属性。
二、数学美的表现形式1、简单性,是数学美的基本表现形式之一。
作为反映现实世界量及其关系规律的数学来说,那种最简洁的数学理论最能给人以美的享受。
简单性又是数学发现与创造中的美学因素之一。
最简单的例子便是代数运算中之乘法与幂的运算的引进是源于避免重复的加法运算和重复的乘法运算。
2、统一性,是指部分与部分,部分与整体之间的内在联系或共同规律所呈现出来的和谐、协调、一致。
数学美中的统一性在数学中有很多体现。
数学推理的严谨性和矛盾性体现了和谐;表现在一定意义上的不变性,反映了不同对象的协调一致。
例如,数的概念的一次次扩张和数系的统一,运算法则的不变性;几何中的圆幂定理是相交弦定理、切、割线定理的统一形式。
3、对称性,是指组成某一事物或对象的两个部分的对等性。
数学形式和结构的对称性、数学命题关系中的对偶性、数学方法中的对偶原理方法都是对称美的自然表现。
举例说明数学之美数学是一门美妙的学科,它的美不仅仅在于它的逻辑严谨性,更在于它的无限可能性。
下面是我个人认为数学之美的10个例子:1. 黄金分割比例:黄金分割比例是一种十分美丽和神秘的比例,它被广泛应用于建筑、艺术、设计和自然科学等领域。
这个比例的神奇之处在于它不仅具有美学价值,而且还具有很多实用价值。
2. 莫比乌斯环面:莫比乌斯环面是一种非常有趣的拓扑结构,它具有一个非常神奇的特性,就是它只有一个面和一个边界,这使得它成为数学家和物理学家研究拓扑学和几何学的宝贵工具。
3. 无穷级数:无穷级数是一种非常重要的数学工具,它可以让我们计算出无限多个数的和。
无穷级数的神奇之处在于它可以使用一些简单的公式来计算出复杂的函数值。
4. 群论:群论是一种非常重要的数学分支,它研究的是对称性和变换,它不仅在纯数学中有广泛的应用,而且在物理学、化学、计算机科学等领域也有很多应用。
5. 拉格朗日乘数法:拉格朗日乘数法是一种非常重要的优化方法,它可以让我们在一个多元函数的约束条件下求出函数的最大值或最小值,它在数学、经济学、物理学等领域都有很多应用。
6. 三角函数:三角函数是一种非常有用的数学工具,它们可以帮助我们研究三角形和周期现象,它们在数学、物理学、天文学等领域都有很多应用。
7. 矩阵论:矩阵论是一种非常重要的数学分支,它研究的是矩阵的性质和应用,它在计算机科学、物理学、工程学等领域有广泛的应用。
8. 傅里叶变换:傅里叶变换是一种非常有用的数学工具,它可以将一个信号分解成不同频率的成分,它在信号处理、图像处理、音频处理等领域都有广泛的应用。
9. 微积分:微积分是一种非常重要的数学分支,它研究的是函数的变化率和积分,它在物理学、工程学、经济学等领域都有广泛的应用。
10. 概率论:概率论是一种非常重要的数学分支,它研究的是随机事件的概率和分布,它在统计学、金融学、医学等领域都有广泛的应用。
以上是我个人认为数学之美的10个例子,它们展示了数学的多样性、实用性和美妙性。
数学的美学欣赏数学的美妙之处数学,作为一门严谨的学科,常常被视为枯燥和晦涩的领域。
然而,如果我们用心去感受,并深入探索数学的内涵,我们将会发现数学中隐藏着许多令人惊叹和美妙的元素。
本文旨在欣赏数学的美学,展示数学之美。
一、几何之美几何是数学中最能直观展示美学价值的分支之一。
在几何学中,我们可以看到形状的对称、曲线的优美以及空间的谐调。
例如,黄金分割点便是几何之美的一种体现。
它的比例关系简洁而优雅,被广泛应用于建筑、绘画等领域中,赋予作品以令人心醉的美感。
此外,曲线也是几何学中展现美学价值的重要元素。
斯皮罗曲线、费马曲线等都因其独特的特征而成为了几何中的艺术品。
这些曲线的优美性质,引发了无数数学家的探索与研究,同时也打开了了解自然界中曲线形态的大门,让我们对于世界的美感有了更深层次的认识。
二、代数之美代数学,强调的是符号和数的抽象运算规律。
在代数学中,我们可以感受到数学推理的优雅与美妙。
比如,数学家对于方程的理解和解决方法,常常精巧且优雅。
方程的变形与运算,在数学家的手中,宛如一曲交错的乐曲,旋律动听、精彩纷呈。
此外,代数学中的数学公式也展现了它的美学价值。
著名的欧拉公式e^(iπ)+1=0,被认为是数学中最美丽的公式之一,将五个最基本的数学常数联系在一起,以出人意料的方式揭示了数学的内在联系,彰显了数学的美学之美。
三、概率与统计之美概率与统计是数学中应用广泛且实用的分支,它们对于理解现实世界中的不确定性与变异性起到了重要作用。
而在这个过程中,我们也可以感受到概率与统计的美学之处。
概率的美学体现在它能够揭示事件发生的规律与趋势。
通过统计数据和分析方法,我们可以预测大规模事件的发生几率,从而指导我们的决策和行动。
这种能力是深深迷人的,它赋予了我们对未来的洞察力,让我们能够做出更明智的选择。
统计学中的抽样和推断也包含了美学的要素。
通过从样本中获取信息,并将其推广应用于整个总体,我们能够获得对全局的认识。
数学美的几个特征以及应用一、数学美的特征1. 简洁美。
简洁美是数学美最突出的表现,简洁的数学理论能给人以美的最直接的享受。
简洁的东西容易被人类把握,有助于提高思维的效率。
我国著名的数学家陈省身说过:“数学世界中,简单性和优雅性是压倒一切的。
”无论是广泛适用的数学概念、公式和法则,还是逻辑系统的数量,又或是空间的本质属性,无一不以它所特有的精炼语言、严密的逻辑、抽象的符号向我们展示出数学简洁的魅力。
2. 对称美。
对称美是指数学内容与结构系统的协调完备所表现出来的均衡对称,它不仅是指几何图形的对称关系,也指各种数学概念、公式和定理间的对称思想。
美国的数学教育家舍菲尔德在问题的分析和理解中就建议:“借助对称性或其他不失一般性的考虑使问题得到简化。
”数学中与对称有关的内容数不胜数,函数、立体几何、解析几何中的很多内容都能给人以对称的美感。
3. 奇异性。
奇异美是指数学中原有的习惯法则和统一格局被新的事物所突破,从而引起惊愕与诧异,同时又赢得人们的赞赏与叹服。
如,数学中出人意料的结果、公式、新思想、新理论、新方法等。
没有了这个方面,数学的美也许会显得单调,数学上许许多多出人意料的奇异巧合让人们对数学的美更加着迷。
数学结论的奇异往往令人惊叹,独特的方法也使学生感受到创造的喜悦和成功的乐趣。
二、如何在教学中体现数学美首先教师必须善于挖掘教材中的数学美,让学生感受数学的美,以数学魅力拨动学生的心弦,开启心灵,陶冶情操,激发兴趣,促进其能力的发展。
例如,教学“黄金分割”时,列举世界上很多著名的建筑,都符合黄金分割;最美身体上下比例,也是符合黄金分割的。
其次让学生明白数学美的意义,在学习中体会数学之美。
如,在学习了三角形、平行四边形、梯形、长方形、正方形的面积公式后,引导学生深入发掘它们的内在联系。
发现当梯形上底缩短为0时(上底小于下底),这时梯形就转化为三角形,因此三角形可视作上底为0的梯形;当梯形的上底与下底相等时,梯形就转化为平行四边形,因此平行四边形可看作上下底相等的梯形。
小学数学教学中数学美的体现
小学数学教学中,数学美体现在许多方面,以下是几种体现数学美的方式:
1. 几何图形的美感
对称美:教学中强调各种对称图形的美感,学生通过学习对称性,欣赏各种对称图形的美妙之处,如镜像对称、中心对称等。
规律美:几何形状中的规律美是数学中一种重要的美感,教师可以引导学生观察和探索不同几何形状之间的规律,培养他们的审美能力。
2. 数学公式和方程的美感
简洁美:数学公式和方程的简洁性是数学之美的一部分,通过教学引导学生欣赏公式和方程简洁明了的形式,以及它们背后隐藏的深奥之处。
等式美:等式是数学中重要的概念,教学中可以通过等式的漂亮性和等式两侧不变的原则来展现数学之美。
3. 数学问题解题的美感
创造美:数学解题过程中的创造性思维是数学之美的重要组成部分,教学中可以引导学生从不同角度思考问题,培养其解决问题的美感。
逻辑美:数学问题解题过程中的严谨逻辑是数学之美的表现之一,教学中可以培养学生的逻辑思维,让他们感受数学推理的美妙之处。
4. 数学历史和文化的美感
历史美:数学作为一门古老学科,有着悠久的历史,教学中可以向学生介绍数学的历史故事,让他们感受数学文化的魅力。
文化美:不同国家和文化背景下的数学发展呈现出不同的美感,教学中可以多角度呈现数学之美,促使学生拓展对数学的认识。
通过引导学生领悟数学中的美感,不仅可以提升他们对数学学习的兴趣和主动性,还可以培养他们的审美情趣和创造力。
这种对数学美的感受和体验将使数学教学更加生动有趣,激发学生对数学的热爱。
数学之美欣赏数学的美妙与深奥之处数学之美:欣赏数学的美妙与深奥之处数学是一门既古老又现代的学科,其美妙与深奥之处令人惊叹。
正如爱因斯坦所说:“数学是宇宙的语言”。
在这篇文章中,我们将一同探索数学的美丽之处,并且欣赏数学的魅力。
一、对称美:数学的几何形式在数学中,对称美是一种无处不在的美。
数学中的对称性,不仅仅存在于几何图形中,还存在于方程的形式和等式的复杂性中。
正如迪斯东所说:“对称是真实世界美的显现”。
1.1 几何美几何学是数学中最直观且最引人入胜的分支之一,它探讨了空间中的形状、大小和相对位置等概念。
几何图形的对称性给人一种和谐和平衡的感觉。
在平面几何中,我们熟悉的圆、矩形、正方形等形状,无论从哪个角度看都具有对称性。
例如,圆和正方形都是对称的,无论你如何旋转它们,它们看起来都相同。
然而,几何学不仅仅局限于平面图形,还包括立体几何。
例如,多面体如正四面体和正八面体,它们具有各种对称性质,给我们带来视觉上的愉悦和美感。
另外,对称性不仅存在于形状上,还存在于对称变换中。
例如,平移、旋转和翻转等变换保持了图形的对称性。
这些变换不仅在几何学中有意义,也在其他数学分支、物理学和艺术中扮演着重要的角色。
1.2 方程美数学中的对称性不仅停留在几何形状上,还存在于方程的形式中。
例如,平方和立方等特殊的数学函数具有对称性,它们在自变量取正数和负数时具有同样的性质。
这种对称性使我们能够推导出一些重要的等式和恒等式,从而更好地理解数学中的关系和规律。
在代数学中,方程的对称性也是一种美妙的存在。
例如,二次方程的对称轴是一个重要的概念,它将二次曲线分成两个对称的部分。
对称轴不仅在数学中有重要作用,还在物理学中的摆动、光学和电磁学等领域中具有深远的影响。
二、逻辑美:数学的思维方式除了几何美,数学还有着独特的逻辑美。
数学的思维方式注重严密的推理和清晰的逻辑,这使得数学成为一门深奥又美丽的学科。
2.1 推理的美数学中的推理是一种基于逻辑思维的过程,它通过严格的证明来建立数学结论。
数学中的数学之美数学,作为一门古老而又深奥的学科,一直以来都给人们带来无尽的探索和惊喜。
在数学的世界中,有着一种特殊而又独特的美感,被称之为“数学之美”。
这个概念源自于数学家吴军的著作《数学之美》,它揭示了数学与现实之间的美妙联系和奇妙的智慧。
本文将探讨数学中的数学之美,并举例说明其在几个重要数学领域的应用。
一、对称美数学中的对称美是数学之美的一种表现形式。
数学中的对称以及对称性在整个自然界都有着广泛的应用。
在几何中,我们可以看到各种各样的对称图形,如正方形、圆和螺旋线等。
而对称性的思想则进一步应用到代数中,如群论、格论等领域。
二、简洁美数学中的简洁美是指数学概念和原理能够用简洁而优美的方式表达出来。
数学家们通过推理和证明,将复杂的数学问题转化为简单的公式和方程,使得数学问题更具可读性和可解性。
例如,欧几里得几何学的五条公理,以及爱因斯坦的质能方程E=mc²,无一不展示着数学中的简洁美。
三、深邃美数学中的深邃美是指数学中的某些理论和定理能够揭示出人类观察和思考所无法达到的深邃世界。
高维几何、复数理论以及数论等领域都体现了这种深邃美。
例如,费马大定理和哥德巴赫猜想,这些问题困扰数学家数百年之久,却也催生出了一系列重要的数学发现和创新。
四、普适美数学中的普适美是指数学在各个学科和领域中都具有普适性和广泛的应用。
数学无处不在,从物理学到化学,从经济学到生物学,数学都能够为这些学科提供理论基础和工具方法。
例如,微积分的发展为物理学和工程学等提供了核心的数学工具,线性代数和概率论则为计算机科学和统计学等领域提供了基础。
总的来说,数学中的数学之美包含了对称美、简洁美、深邃美和普适美等多个方面。
这些美感在数学领域中的应用和发展中起到了重要的推动作用。
同时,数学之美也激发和启迪了人们对数学的兴趣和热爱,促进了数学教育和研究的发展。
数学,作为一门独特的语言和思维方式,不仅仅存在于数学书籍和公式中,更贯穿于人类的思维和生活的方方面面。
数学数学之美数学,是一门研究数量、结构、空间以及变化的学科,被誉为“科学之王”。
它的美不仅体现在它的创新性和深度上,更体现在它对现实世界的解释和应用中。
本文将讨论数学之美的几个方面,包括数学的逻辑美、形式美以及实用美。
1. 数学的逻辑美数学是一门严谨的学科,它追求准确性和逻辑性。
数学中的每个定理和推理都经过严格的证明和推导,不容忽视任何细节。
这种严谨性使得数学具有独特的美感,让人感受到逻辑的严密和真理的美妙。
数学的逻辑美可以通过各种公式、定理和证明来展示。
例如,费马定理的证明以及勾股定理的几何证明都展现出了数学中的逻辑美。
2. 数学的形式美数学具有独特的形式美,其美感来自于数学中的符号、图形和模式。
数学中的符号和公式可以简洁地表达复杂的概念和关系,让人们可以通过简单的方式处理复杂的问题。
数学中的图形可以展示出数学中的对称性和几何结构,例如,圆的完美形状以及分形图形的奇特之美。
数学中的模式则是一种重复出现的规律,让人们感受到宇宙中数学的普遍性。
所有这些形式美共同构成了数学的美妙之处。
3. 数学的实用美数学不仅有理论上的美,还有实际应用上的美。
数学通过建立模型和推导规律,为解决现实问题提供了有力的工具。
无论是物理学中的数学模型,经济学中的数学预测,还是工程学中的数值计算,数学都发挥着不可替代的作用。
数学的实用美体现在它能够解决实际问题、优化决策,并推动科技的发展。
没有数学的支持,现代社会的许多成就将无法实现。
综上所述,数学之美体现在它的逻辑美、形式美和实用美上。
数学追求严谨的逻辑性,让人们感受到真理的美妙;数学的符号、图形和模式展示了独特的形式美;数学的应用使得它在实际问题的解决中发挥出实用美。
正是数学的美妙之处,让人们对这门学科充满了无尽的探索与热爱。
数学中美的欣赏摘要:爱美之心人人皆有,也正是这样人们才会对美的事物不断的追求。
数学家孜孜不倦的研究数学,和他们对美的追求是分不开的。
数学美应是“数学中能带给人愉悦的东西”。
学生学习数学觉得枯燥的一个重要原因是没有体会到“数学美”,不懂得欣赏数学美或缺少欣赏数学美的能力。
因此,本文就主要从数学美的概念数学美与其它美的区别以及它的内容和在数学教育中的体现等方面充分挖掘数学美。
通过对学生进行数学美的教育,有助于学生树立学习的信心,提高学习的兴趣,激发学习潜能,在学习中获得愉悦感。
关键词:数学美;对称性;简单性;统一性;奇异性数学美是一种蕴涵的美,它需要从深处去挖掘。
关于数学美的内容很多,本文是为了从浅层阐述数学的美,让学生初步感受数学中美的存在,所以本文就主要从数学美的概念、数学美与其它美的区别、数学美的内容和它在数学教育中的体现这几个方面作以下的阐述。
一、数学美的概念美是人类创造性实践活动的产物,是人类本质力量的感性显现。
通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。
数学美是自然美的客观反映,是科学美的核心。
简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。
历史上许多学者、数学家对数学美从不同的侧面作过生动的阐述。
普洛克拉斯早就断言:“哪里有数,哪里就有美。
”亚里士多德也曾讲过:“虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离。
因为美的主要形式家是“秩序、匀称和确定性”,这些正是数学研究的原则。
”徐利治教授说:“作为科学语言的数学,具有一般语言文字与艺术所共有的美的特点,即数学在其内容结构上和方法上也都具有自身的某种美,既所谓数学美。
数学美的含义是丰富的,如数学概念的简单性、统一性,结构关系的协调性,对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等等都是数学美的具体内容。
以上的论述可见,数学中充满着美的因素,数学美是数学科学的本质力量的感性和理性的呈现,它不是什么虚无飘渺、不可捉摸的东西,而是有其确定的客观内容。
二、数学美与其它美的区别数学美有别与其它的美,它没有鲜艳的色彩,没有美妙的声音,没有动感的画面,它却是一种独特的美。
美国数学家克莱因曾对数学美作过这样的描述:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。
”数学美与其它美的区别还在于它是蕴涵在其中的美。
打个比方来说,大家一定都有这种感觉,绝大部分同学对音体美容易产生兴趣,而对数学感兴趣的不多。
我认为,这主要有两个方面的原因:一是音体美中所表现出来的美是外显的,这种美同学们比较容易感受、认识和理解;而数学中的美虽然也有一些表现在数学对象的外表,如精美的图形、优美的公式、巧妙的解法等等,但总的来说数学中的美还是深深地蕴藏在它的基本结构之中,这种内在的理性美学生往往难以感受、认识和理解,这也是数学区别于其它学科的主要特征之一。
二是长期以来,我们的数学教材过分强调逻辑体系和逻辑推演,忽视数学美感、数学直觉的作用,长此以往,学生将数学与逻辑等同起来。
一味注重数学的逻辑性而忽视了数学本身的美,学习的过程中就会感到枯燥无味缺乏兴趣。
三、数学美的内容随着数学的发展和人类文明的进步,数学美的概念会有所发展,分类也不相同,但它的基本内容是相对稳定的,这就是:对称性、简单性、统一性和奇异性。
(一)对称性所谓对称性,既指组成某一事物或对象的两个部分的对等性,从古希腊的时代起,对称性就被认为是数学美的一个基本内容。
毕达哥拉斯就曾说过:“一切平面图形中最美的是圆,在一切立体图形中最美的是球形。
”这正是基于这两种形体在各个方向上都是对称的。
中国的建筑就很好的应用了数学的对称美,有许多的园林建筑都应用了这一点。
数学中的这种对称处处可见:几何中具有的对称性(中心对称、轴对称、镜象对称等)的图形很多,都给我们一种舒适优美的感觉。
几何变换也具有对称性。
杨辉三角更组成美丽的对称图案1 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1……分析:在杨辉三角的图案中每一行的除了首尾的数字是1以外,其他的数字是左上角和右上角的数字的和。
这样就构成了有规律的并且是成对称的形状的三角图案了。
集合运算中的下面两个公式的对称性也是极其优美的:C (A B ⋃)=CA ⋂CB C (A ⋂B ) =CA ⋃CB两个集合的并(交)的补集就是两个集合补集的交(并)。
数学的解题中也体现对称美:例1、9999999999999999991239871⨯+++++++ 解:原式=111111111×111111111=12345678987654321分析:分式的分子是九个九乘以九个九,分母是九个数字的和并且成对称的,结果也是九个数字组成的对称的结构,真是太出人意料了太美妙了例2、 0×9+1=11×9+2=1112×9+3=111123×9+4=11111234×9+5=11111………………… 分析:例2中也蕴涵着对称留给读者去体会。
此外代数中的对称多项式,有理系数的多项式方程无理根成对出现,实系数的多项式方程虚根成对出现,函数及其反函数图象的关系,线性方程组的距阵表示及克莱姆法则等都呈现出对称性。
还有一个类似对称的词匀称。
“匀称性”的概念可以看成“对称性”的概念的自然发展。
线段的黄金分割就是一个典型的例子,主要是因为由此构成的长方形给人以“匀称美”的 感觉。
黄金分割比618.0215=-=ω…也被誉为“人间最巧的比例”。
世界上许多著名的建筑广泛采用黄金分割的比例。
一些名画的主题,电影画面的主题大多放在画面的0.618处,给人以舒适的美感。
乐曲中较长一段一般是总长度的0.618,弦乐器的声码放在琴弦的0.618处会使声音更甜美。
另外,黄金分割比在优选法中有着重要的作用。
(二) 简单性汉语的语言要求言简意赅,同样数学作为逻辑性很强的学科它的语言表达也是简洁的。
简单性(或称简洁性)也是数学美的一个基本内容。
数学的简洁性是人类思想表达经济化要求的反映,它同样给人以美感。
爱因斯坦说过:“美在本质上终究是简单性。
”数学语言本身就是最简洁的文字,同时反映客观规律极其深刻,许多复杂的客观现象,总结为一定的规律时,往往呈现为十分简单的公式。
欧拉给出的公式:V -E+F=2,堪称“简单美”的典范。
世间的多面体有多少没有人能说清楚。
但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,令人惊叹不已。
在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。
比如:圆的周长公式:C=2πR 任意一个圆它的周长都满足这样的公式。
勾股定理:直角三角形两直角边的平方和等于斜边平方。
在所有的直角三角形中直角边和斜边都满足这样的关系。
正弦定理:ΔABC的外接圆半径R,则R Cc B b A a 2sin sin sin === 把三角形的边、角和它的外接圆的半径建立了简单的数学关系。
数学中绝大部分公式都体现了“形式的简洁性,内容的丰富性”。
正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。
如笛卡尔坐标系的引入。
对数符号的使用,复数单位的引入。
微积分的出现都体现了数学外在形式更简洁,内容更深厚。
著名的皮亚诺公式只用了三个不加定义的原始概念和五个不加证明的公理,显示了逻辑上的简洁。
由此产生的自然数理论是现代数学基础研究的起点,这三个原始概念是“自然数”,“1”,“后继(数)”;五个公理是:公理一:1是自然数,公理二:任何自然数的后继也是自然数,公理三:没有两个自然数有相同的后继,公理四:1不是任何自然数的后继,公理五:若一个有自然数组成的集合S 含有1,且当S 含有任一个自然数时,也一定含有它的后继,则S 就含有全体自然数。
(三)统一性所谓统一性,是指部分与部分、部分与整体之间的和谐一致。
在数学中有好多数学统一性的例子。
例如,引入负数,有了相反数的概念之后,有理数的加法和减法得到统一,它们可以统一为代数和的形式。
有了倒数的概念,除以一个不等于零的数等于乘上它的倒数,于是乘法与除法得到了统一。
例如平面几何中的相交弦定理、割线定理、切割线定理和切线长定理均可统一到圆幂定理之中。
在体积计算中有所谓的“万能计算公式”,它能统一地应用于棱(圆)柱、棱(圆)锥及棱(圆)台的体积计算: V=31h(s+s s '+s ')其中h 为相应几何体的高,s 和s '为起上下底面的面积。
又如:在椭圆:22221(x y a b a b+=>>0)中,记左焦点为F ,右顶点为A ,短轴上方的端点为B ,若该椭圆的离心率为12e =,则∠ABF =2π。
这样的椭圆不妨称之为“优美椭圆”。
对双曲线也有“优美双曲线”:22221x y a b-=的左顶点为A ,右焦点为F ,B 是虚轴的一个端点,且双曲线的离心率为12e =。
它也有类似的性质:∠ABF =2π。
(四)奇异性人们提起数学的时候通常会说“奇妙的数学”,数学的学习和解题中也有一些非常规的奇妙的解法等等。
这些就是我们通常说的数学的奇异性。
徐利治教授说“奇异是一种美,奇异到极度更是一种美。
”奇异性是数学美的一个重要特征,它反映了显示世界中非常规现象的一个侧面,也是数学发现中的重要美学因素。
数学领域中的一些新的观念的产生,就是来自对奇异美的追求。
毕达哥拉斯学派认为任何数量都可表示成整数或两个整数的比,而无理数的发现无疑是一个奇异的结果。
它打破了原先的数的和谐性,被称为第一次数学危机。
奇异性常常和数学中的反例紧密相联,反例的产生则往往导致人们的认识能够的深化和数学理论的重大发展。
例如人们以为一切函数都是连续的,连续性不被人们所注目,当有间断点的函数出现以至于有著名的狄里克莱函数:D (x )=1,x x ⎧⎨⎩为有理数0,为无理数出现时,由于它在实数轴上处处有定义,但却处处间断,这种奇异性的发现使人们对连续性的美妙之处看得更清楚了。
同样,当魏尔斯特拉斯给出处处连续而处处不可微的函数时,人们对可微的概念便有了更深刻的认识。
关于数学的奇异性,接下来我讲一个蒲丰用投针求圆周率的近似值的试验也是数学方法奇异性的一个典型例子。
有一天蒲丰邀请许多宾朋来家做了一个奇特的实验。
他事先在白纸上画好了一条条有等距离的平行线,将纸铺在桌上,又拿出一些质量匀称长度为平行线间距离之半的小针,请客人把针一根根随便仍到纸上,蒲丰则在一旁计数,结果共投2212次,其中与任意平行线相交的有704次,蒲丰又做了一简单的除法142.37042212=,然后他宣布这就是圆周率的近似值,还说投的次数越多越精确。