动量守恒定律(二)
- 格式:pptx
- 大小:645.81 KB
- 文档页数:10
1学程动量守恒定律一.动量守恒定律例1.如图甲所示,光滑水平面上有A、B两物块,已知A物块的质量m A=1kg.初始时刻B静止,A以一定的初速度向右运动,之后与B发生碰撞并一起运动,它们的位移—时间图象如图乙所示(规定向右为位移的正方向),则物块B的质量为多少?二、动量守恒条件:1、2、3、例2、如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中( )A.动量守恒、机械能守恒B.动量不守恒、机械能不守恒C.动量守恒、机械能不守恒D.动量不守恒、机械能守恒练习1.如图所示,光滑的水平地面上有一上表面水平的小车C,A、B两物体的质量mA >mB,中间用一段轻绳相连接并有一被压缩的轻质弹簧,A、B、C均处于静止状态.若细绳被剪断后,A、B滑离C之前,A、B在C上向相反方向滑动,设A与C、B与C之间的摩擦力大小分别用f1、f2表示,用P表示A、B和弹簧组成的系统,用Q表示A、B、C和弹簧组成的系统.关于A、B在C上滑动的过程,下列说法中正确的是( )A.若f1=f2,则P和Q动量均不守恒B.若f1=f2,则P动量守恒,Q动量不守恒C.若f1≠f2,则P动量守恒,Q动量守恒D.若f1≠f2,则P动量不守恒,但Q动量守恒练习2、抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,测得其速度为50m/s,另一小块质量为200g,求它的速度的大小和方向。
例3、南京模拟)如图所示,将质量为m1的铅球以大小为v0、仰角为θ的初速度抛入一个装有砂子的总质量为M的静止的砂车中,砂车与水平地面间的摩擦可以忽略.求:(1)铅球和砂车的共同速度;(2)铅球和砂车获得共同速度后,砂车底部出现一小孔,砂子从小孔中流出,当漏出质量为m2的砂子时砂车的速度练习3. 如图所示,质量为M的小车和车上站着的一个质量为m的人一起以速度v0在光滑水平地面上向右匀速运动,当人以相对地的速度u向左水平跳出后,车的速度大小v为()三、经典模型1、人船模型例4、如图,质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
高三一轮同步复习专题25 动量守恒定律及应用二——“滑块-弹簧”模型【模型归纳】【典例分析】例1、如图所示,一轻弹簧的两端与质量分别为m1和m2的两物块甲、乙连接,静止在光滑的水平面上。
现在使甲瞬时获得水平向右的速度v0=5m/s,当甲物体的速度减小到1m/s 时,弹簧最短。
下列说法正确的是()A.紧接着甲物体将开始做减速运动B.紧接着甲物体将开始做加速运动C.甲乙两物体的质量之比m1∶m2=1∶3D.甲乙两物体的质量之比m1∶m2=1∶4【变式训练1】如图所示,质量为m1=2 kg的小球P从离水平面高度为h=0.8m的光滑斜面上滚下,与静止在光滑水平面上质量为m Q=2kg的带有轻弹簧的滑块Q碰撞,g=10m/s2,下列说法正确的是()A.P球与滑块Q碰撞前的速度为5m/sB.P球与滑块Q碰撞前的动量为16kg·m/sC.它们碰撞后轻弹簧压缩至最短时的速度为2m/sD.碰撞过程中动能守恒【变式训练2】如图甲所示,一轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上。
现使A瞬时获得水平向右的速度3m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图像信息可得()A.在t1、t3时刻两物块达到共同速度1m/s,且弹簧都处于伸长状态B.从t3到t4时刻弹簧由伸长状态恢复到原长C .两物体的质量之比为12:1:3m m =D .在t 2时刻A 与B 的动能之比为12:1:8k kE E =【变式训练3】如图所示,质量为m 1=0.95kg 的小车A 静止在光滑地面上,一质量为m 3=0.05kg 的子弹以v 0=100m/s 的速度击中小车A ,并留在其中,作用时间极短。
一段时间后小车A 与另外一个静止在其右侧的,质量为m 2=4kg 的小车B 发生正碰,小车B 的左侧有一固定的轻质弹簧,碰撞过程中,弹簧始终未超弹性限度,则下列说法错误的是( )A .小车A 与子弹的最终速度大小为3m/sB .小车B 的最终速度大小为2m/sC .弹簧最大的弹性势能为10JD .整个过程损失的能量为240J【变式训练4】如图所示,质量M=4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L=0.5m 这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑。