紫杉醇研究相关文献
- 格式:pdf
- 大小:2.03 MB
- 文档页数:8
摘要:紫杉醇是红豆杉属植物中的一种复杂的次生代谢产物, 也是目前所了解的惟一一种可以促进微管聚合和稳定已聚合微管的药物。
可以作为抗肿瘤药物。
由于红豆杉为稀有的受保护的植物,所以要用化工合成的方法来生产紫杉醇。
而用樟脑或者α-蒎烯通过We n d e r 的逆合成分析法合成紫杉醇。
关键词:紫杉醇 樟脑或者α-蒎烯 We n d e r 的逆合成分析主要性质【英文名称】 Palliate【别 名】 泰素,紫素,特素【化学名称】 5β,20-环氧-1,2α,4,7β,10β,13α-六羟基紫杉烷-11-烯-9-酮-4,10-二乙酸酯-2-苯甲酸酯-13[(2’R ,3’S )-N-苯甲酰-3-苯基异丝氨酸酯] 【分 子 式】 145147NO H C【分 子 量】 853.92 【CA S NO 】 33069-62-4【产品来源】 为红豆杉科植物红豆杉的干燥根、枝叶以及树皮。
【规格含量】 99.5%【物理性质】 白色结晶体粉末。
无臭,无味。
不溶于水,易溶于氯仿、丙酮等有机溶剂。
反应原理紫杉醇有四个环A ,B ,C ,D ,其中A ,C 环为六元环,B 为八元环,D 为含氧的四元环,另外有十一个手性碳,是结构比较复杂的手性化合物。
对它进行全合成的战略选择采用了逆合成分析的方法。
▶ We n d e r (S t a n f o r d U n i v e r s i t y)的逆合成分析:根据We n d e r的逆合成分析,可用樟脑或者α-蒎烯为合成紫杉醇的起始物,由六环开始建造A环,再建造A,B环,再建造A,B,C环,最后完成A,B,C,D环的合成。
是由A 环开始,逐环合成的战略。
▶Mu k a i y a ma(S c i e n c e U n i v e r s i t y of T o k y o)的逆合成分析:根据Mu k a i y a ma的逆合成分析,可用新戊二醇或丝氨酸为合成紫杉醇的起始物,合成7后,首先合成B环再建造B,C环,然后建造A,B,C环,最后完成A,B,C,D环。
化工能源化 工 设 计 通 讯Chemical EnergyChemical Engineering Design Communications·163·第47卷第1期2021年1月紫杉醇由于其良好的抗肿瘤作用,得到广大的关注,广泛应用于治疗乳腺癌、头颈癌、卵巢癌、肺癌等。
紫杉醇注射液、紫杉醇酯质体、紫杉醇(白蛋白结合型)等产品不断更迭换代、提高疗效,将紫杉醇更好地应用于临床实践。
紫杉醇结构化学名为5β,20-环氧-1,2α,4,7β,10β,13α-六羟基紫杉烷-11-烯-9-酮-4,10-二乙酸酯-2-苯甲酸酯-13[(2’R ,3’S )-N-苯甲酰-3-苯基异丝氨酸酯],结构如图1所示。
图1 紫杉醇结构式1 紫杉醇的全合成紫杉醇母核骨架为6-8-6碳环结构,其全合成自20世纪开始,全世界众多化学家致力于其合成路线的研究。
其全合成路线主要分为三个过程:紫杉醇母核骨架的合成;对骨架进行官能团反应,对其进行修饰;最后加上侧链苯基异丝氨酸完成全合成。
其全合成过程复杂、烦琐,耗时长,且效率低下。
Wender 合成是目前公开最短的紫杉醇全合成路线。
以化合物2为起点,经过系列反应得到化合物7,完成AB 环的合成。
经过C-3位反应和氧化反应得到10,经醇醛缩合得到12,完成C 环的建立。
然后经过C-5的溴取代,C-4、C-20臭氧化完成对含氧D 环的建立,得到13,再进一步得到巴卡亭Ⅲ(14),最后完成C-10乙酰化及侧链的加成得到紫杉醇。
其合成路线,如图2所示。
23OOOOHOH OTMSO OO O CHO45678OOO OOOOOOO OTBSTIPSOOTBSTIPSOCHOOH TIPSOTIPSOOBOMOHHO OBzOAcOTESO OO OOO 910TIPSOHO OH OHOH BrOTroeAcO AcOO OHO 1211OBzOBzHHOBOMTIPSOTIPSOHO HOHO 1314OCOPhOAcOBzH HHH O OOTES 1OO ONPhAcO AcOOHBzOTroe图2 Wender 合成路线2 紫杉醇的半合成紫杉醇的全合成烦琐且收率低,不适合大生产,于是应寻求更佳的合成方法。
紫杉醇的研究进展【摘要】:紫杉醇是存在于红豆杉树中的一种化学物质,其独特的抗癌疗效日益被人们重视,被誉为20世纪90年代国际上的抗癌药三大成就之一。
作为抗肿瘤药物应用于临床,特别是紫杉醇的化学结构与其药理活性的构效关系获得了重要成果。
恶性肿瘤患者应用紫杉醇的临床资料,观察药物的毒副作用,总结紫杉醇临床应用特点。
探讨紫杉醇的作用机理及其获得方法。
【关键词】:红豆杉紫杉醇抗癌次生代谢产物生物合成机理紫杉醇简介紫杉醇最早由太平洋红豆杉Taxus brevifolia的树皮中分离提取的新型抗癌植物药,1992年12月29日,美国FDA批准紫杉醇上市,美国BMS公司,商品名Taxol,用于治疗卵巢癌。
紫杉醇的特点是广谱抗癌。
对肺癌、食管癌、膀胱癌、头颈部癌、黑色素瘤、结肠癌和HIV 引起的卡波济肉瘤也有效【1】。
紫杉醇(Paclitaxel,商品名为Tax01)分子式为C47H5lNOl4,是1963年美国化学家Wall等首先从短叶红豆杉(Taxus brevifolia)树皮中分离出来的具有独特抗癌活性的二萜类化合物,命名为紫杉醇,1971年利用X射线确定了它的结构,紫杉醇为针状结晶,具有高度的亲脂性,不溶于水(在水中溶解度为0.006 mg/mL) ,不溶于石油醚,可溶于甲醇、乙醇、乙酸乙酯、二氯甲烷等有机溶剂。
与糖结合成苷后的水溶性大大提高,紫杉醇分子中虽有含氮取代基,但氮原子处于酰胺状态,邻近又有吸电子基,故不显碱性而为中性化合物。
紫杉醇对酸相对稳定(pH4-8范围内),碱性条件很快分解【9】。
紫杉醇在植物体内的含量相当低,目前公认含量最高的短叶红豆杉树皮中也仅含0.069%,资源很匮乏。
由于美国、加拿大等国家对红豆杉立法保护,药源地转向了中国等国家。
在中国,80%的红豆杉集中在云南,而且云南红豆杉的紫杉醇含量最高。
从1992年到2001年,将近10年时间,云南红豆杉遭到了毁灭性的破坏,分布在滇西横断山区中的300多万棵红豆杉,绝大部分被剥了皮(有调查数据认为是92.5%),已慢慢死去。
抗癌药物紫杉醇化学合成进展杨晨1,张文成2(1.合肥工业大学化学与化工学院,安徽合肥230009;2.合肥工业大学化学与化工学院,安徽合肥230009)摘要: 紫杉醇最初是从红豆杉属植物紫杉的树干、树皮中提取的一种天然抗肿瘤药物。
自1967年被发现以来,随着研究的不断深入,人们对紫杉醇的理化性质认识越来越深刻,并进行了化学合成。
目前它已被广泛应用于各种癌症的临床治疗。
关键词: 紫杉醇;红豆杉;癌症治疗;化学合成英文标题,摘要,关键词0 引言紫杉醇( Paclitaxel,Taxol) 最初是从红豆杉属多种植物的树干、树皮中均可提取到的一种天然抗肿瘤药物,研究发现它对许多癌症有明显的疗效[1]。
因此,自其被发现并逐步被应用于肿瘤治疗以来,一直受到人们的青睐。
迄今为止,紫杉醇及其半合成类似物多烯紫杉醇已成为历史上销量最大的抗癌药物[2],并被广泛应用于包括卵巢癌、乳腺癌、肺癌以及Kaposi’s肉瘤的治疗。
目前,紫杉醇已在60 多个国家获得临床应用批准,被认为是最有效的抗癌药物之一[3]。
1 化学全合成伴随着地球环境的恶化,各种癌症威胁着人类健康,作为有效抗癌药物的紫杉醇需求量日益增多,而天然红杉和人工红杉紫杉醇的产量极低,这就造成了尖锐的供需矛盾。
为了满足供不应求的局面,进一步解决人类的健康,人们在紫杉醇的化学全合成、化学半合成、细胞培养以及内生真菌等方面进行了广泛的探索,均取得了一定进展。
鉴于高度官能团化的[6+8+6]骨架结构,以及11个手性中心(其中母核占9个,侧链2个),使得紫杉醇的化学合成极为复杂,但紫杉醇合成研究却并未因此而停滞。
目前已报道的有5条路线,即1994年初由Holton等[4]和Nicolaou等[5]研究组几乎同时完成的两条路线,1995年Danishefsky 等[6]研究路线及1997年Wender研究组和Mukaiyama研究组的两条路线。
1.1 Holton路线Holton路线的起始物为倍半萜化合物pachioulene oxide,它具有与天然紫杉烷一致的C3和Me-19(19位甲基)的构型。
静配中心配置紫杉醇白蛋白的文献
以下是一篇关于静配中心配置紫杉醇白蛋白的文献:
标题:静配中心配置紫杉醇白蛋白的安全性和有效性评估
摘要:本研究旨在评估静配中心配置紫杉醇白蛋白的安全性和有效性。
我们收集了100例使用静配中心配置的紫杉醇白蛋白治疗的乳腺癌患者的临床数据。
结果显示,静配中心配置的紫杉醇白蛋白治疗在安全性和有效性方面均表现良好。
治疗期间没有严重的不良反应发生,并且治疗后患者的肿瘤缩小程度明显。
此外,静配中心配置的紫杉醇白蛋白的稳定性也得到了验证。
总体而言,静配中心配置紫杉醇白蛋白是一种安全有效的治疗方法,可以在乳腺癌患者中广泛应用。
关键词:静配中心,紫杉醇白蛋白,安全性,有效性,乳腺癌
引用格式:作者. (年份). 文章标题. 期刊名称, 卷(期), 页码.
请注意,这只是一个示例,实际的文献可能会有不同的标题、作者和期刊信息。
您可以使用学术搜索引擎或数据库来查找与您感兴趣的主题相关的实际文献。
中山大学研究生学刊(自然科学、医学版)第27卷第4期J OURNAL OF THE GRADUATES VOL.27l42006S UN YAT-SEN UN I VER SITY(NATU RA L SC I ENCES、M ED I C I N E)2006天然抗癌药物)紫杉醇*李媛李振宇(中山大学生命科学学院,广东广州510275)摘要:紫杉醇是目前最新的具有很好疗效的抗癌药物,本文对自紫杉醇发现以来的研究进展进行了比较详尽的综述。
包括以下几个部分:1.紫杉醇的发现和历史;2.紫杉醇的药效;3.紫杉醇的来源;4.紫杉醇的生物合成途径及其相关酶基因的研究。
关键词:紫杉醇;综述;生物合成紫杉醇(paclitaxe,l商品名Taxo1)是从红豆杉的树皮、树根及枝叶中提取的一种化合物,是近年国际市场上最热门的抗癌药物,并已取得了巨大的进展。
美国肿瘤研究所认为,紫杉醇是人类未来20年间最效的抗癌药物之一。
1紫杉醇的发现和研究历史为了寻找安全有效的抗肿赠新药,早在1958年美国国家癌症协会(NC I)就发起一项历时2O余年的筛选315万多种植物提取物的计划。
在计划实施的过程中,W all和W an i于1963年从太平洋红豆杉的皮中提取得到紫杉醇;1964年用细胞毒性实验证明了这一提取物的生物活性;1969年确定了紫杉醇为其中的活性成。
同年,W an j等确定了该物质的化学结构。
此后,美、日、法、德等国的药理学家和药物化学家进行了大量研究。
1978年,确定了紫杉醇的剂型。
1979年,H or w itz等人报告紫杉醇的作用机理。
1980年,进行给药规程化研究。
1983~1987年完成Ñ期临床试验。
1987~1989年完成Ò期临床试验。
1990年以后,转入Ó期临床试验。
1992年12月29日,美国FDA批准紫杉醇用于治疗晚期卵巢癌。
1992年度,FDA共批准26个新分子产品(NM Es),其中有6个是世界首次上市,紫杉醇是其中之一[1-5]。
紫杉醇论文药理作用论文:紫杉醇的药理作用与研究进展【摘要】近年来,随着肿瘤疾病的高发,肿瘤药物的研制也有了创新性突破,其中,紫杉醇是近年来发现的具独特抗肿瘤作用的天然药物,与传统的药物抗肿瘤机理不同,紫杉醇主要是通过与细胞内微管蛋白结合,抑制正常微管的生理性解聚,促进微管蛋白聚合、微管装配,从而达到阻止癌细胞分裂增殖的目的。
现将紫杉醇的药理作用与研究进展作一综述。
【关键词】紫杉醇肿瘤药理作用20世纪60年代,美国化学家瓦尼等从红豆杉的树皮中分离出一种紫杉醇的粗提物,发现紫杉醇粗提物对离体培养的鼠肿瘤细胞有很高活性,并开始分离这种活性成份紫杉醇。
紫杉醇具有独特的二萜类结构成分,由于其独特的抗肿瘤作用机制,近年来在抗肿瘤药物中受到广泛重视,为了使广大医务工作者更好的了解这一药物,现就紫杉醇的药理作用与研究进展综述如下:1 理化特性紫杉醇分子式为c47h51no14,分子量为853.9,白色结晶体粉末。
无臭,无味。
不溶于水,碱性条件下很快分解。
2 药理作用chiff等[1]证实了紫杉醇具有独特的抗癌机制,是新型抗微管药物,微管是真核细胞的一种细胞内成分,正常情况下,微管蛋白二聚体之间存在动态平衡。
紫杉醇可使其失去动态平衡,紫杉醇作用于细胞微管,通过促进诱导和稳定微管蛋白聚合,抑制其解聚,使维管束难与微管组织中心相互连接,导致细胞在有丝分裂时不能形成纺锤体和纺锤丝,将细胞周期阻断于g2和m期,抑制细胞有丝分裂,使癌细胞无法继续分裂而死亡[2]。
体外实验证明紫杉醇具有显著的放射增敏作用,使细胞中止于对放疗敏感的g2和m期。
紫杉醇除作用于微管系统外,实验证明紫杉醇还作用于酶系统,调节的凋亡信号传递。
紫杉醇可诱导bcl-2磷酸化,使肿瘤细胞失去抗凋亡能力。
进一步的研究发现紫杉醇还可通过作用于巨噬细胞,导致癌坏死因子,进而调节体内的免疫功能。
3 紫杉醇的临床研究与应用紫杉醇可广泛用于非小细胞肺癌、乳腺癌、卵巢癌、头颈癌等肿瘤的治疗。
抗癌药物紫杉醇剂型的研究进展抗癌药物紫杉醇剂型的研究进展 2011年第18期科技程向导?高教论述?抗癌药物紫杉醇剂型的研究进展于利成李洪飞(中国矿业大学化工学院江苏徐州221116)【摘要】紫杉醇是一种广谱抗癌药物,由于其独特的作用机制而成为目前三大抗癌药物之一.但是由于自然界中紫杉醇的含量极少,因而它的合成显得极为重要.本文对紫杉醇的发现历史,作用机制,剂型研究作了综述,并对现在的研究工作做了总结和展望.【关键词】紫杉醇;作用机制;合成;研究进展O.引言全世界6O亿人口中.每年约新增800万癌症患者.600多万人死于癌症.几乎每6秒钟就有一名癌症患者死亡癌症严重地威胁着人类的生命和健康,因此寻找有效的抗癌药物成为研究的热点.抗癌药物的研发是当今的一个世界课题.特别是从天然产物中筛选抗癌新药.已成为抗癌药物研发的热点紫杉醇(Paclitaxe1)是从红豆杉科红豆杉属植物中提取得到的二萜类化合物.是过去数十年里发现的最好的天然抗癌药物之一.其独特的药理作用成为继阿霉素和顺铂后的热点抗癌新药.是一种新型的微管稳定剂,具有独特抗癌活性.本文对抗癌药物紫杉醇的发现,作用机制以及最新研究进展作一综述总结.并对其研究作一展望 1.紫杉醇的发现紫杉醇(Paclitaxe,Tax01.TAX)最初是南美国科学家Wall和wIdni 于1971年从太平洋短叶红豆杉(Taxusdrevifolia1的树皮中提取分离得到的.后由AlbertEinstein医学院的生化教授Schiff和Horwitz报道其独特作用后被广泛重视的一种天然活性产物:四环二萜类生物碱, 紫杉醇.根据现有资料表明,紫杉醇不仅在植物中的含量极少.且其植物来源也仅限于红豆杉属而且紫杉醇的水溶性很芳因此人体吸收效果并不理想2.紫杉醇的抗癌机制紫杉醇的作用机制独特且十分复杂.现在普遍认同的主要为:第一.微管解聚稳定机制.通常认为.有丝分裂过程中需要胞质微管解聚以形成纺锤体微管.紫杉醇能抑制有丝分裂.能通过结合到游离微管蛋白而诱导和促使微管蛋白装配成稳定微管.同时抑制已形成微管的解聚,使维管束不能与微管组织中心互相连接.将细胞周期阻断.导致有丝分裂异常或中.从而破坏细胞有丝分裂和分裂期间功能所必需的微管系统动态再生,使癌细胞复制受到阻断而死亡:第二,免疫机制. 紫杉醇与细菌性酯多糖(LPS)有相似作用.能激活巨噬细胞.导致肿瘤坏死因子TFN—a受体的减少以及TFN—a的释放.对肿瘤细胞起杀伤或抑制作用.目前国外已对银屑病等的治疗进入二期临床研究,提示紫杉醇可产生免疫活性调节体内免疫功能:第三.诱导细胞凋亡.紫杉醇可作用于细胞凋亡受体途径的Fas/Fas1通路.或激活半胱氨酸一天冬氨酸蛋白酶家族(cysteiny/aspartateproteases.easpaSeS),诱导细胞凋亡:第四,抑制肿瘤细胞迁移用紫杉醇处理过的鼠成纤维细胞只能产生扁平足状突起和丝状假足.不能移动3.紫杉醇的剂型研究紫杉醇具有良好的抗肿瘤活性.但在水中的溶解度很小.故临床使用时需在注射剂中加入表面活性剂聚氧乙烯蓖麻油fcremophorEL)以提高紫杉醇在水中的溶解度但是这些表面活性剂都有严重的国民反应和致毒效应.从而影响传统紫杉类药物的安全应用为解决紫杉醇的水溶性问题.许多研究在进行其构效关系探索的同时.研发了一系列新剂型3.1紫杉醇脂质体紫杉醇脂质体可避免聚氧乙烯蓖麻油复合溶媒带来的不良反应脂质体制剂静脉给药的紫杉醇最大耐受量可达200mg/kg.而普通注射制剂紫杉醇的最大耐受量仅为30mkg,与普通注射制剂相比,脂质体的抗肿瘤活性相似,但毒性明显较低3.2纳米紫杉醇纳米粒目前多采用生物可降解的新型共聚物作为制备材料.用聚乙二醇fPEG),聚乙烯醇fPVA),聚维酮,肝素,人血白蛋白,唾液酸及神经节苷酯等进行修饰,达到长循环目的.试验表明无过敏反应发生, 毒性表现主要为神经毒性,肌肉痛等.耐受性良好3-3聚合物胶束剂型近年来由两亲嵌段共聚物制备的聚合物胶束给药系统受到r广泛的关注,并成为紫杉醇药物输送领域最重要的发展方向之一该剂型具有如聚合物胶束小粒径f 一般小于200nlr1),在人体血液中的长循环和肿瘤组织血管内皮具有高渗透性和高滞留性及被动靶向作用等优点.3.4微乳紫杉醇属一种水不溶性药物.单纯口服其生物利用度几近于零微乳作为药物载体.兔口服生物利用度达到22.4%.则为开发人的口服给药途径提供了依据中国科学院长春应用化学研究所开发出一种高分子键合药.该键合药在水介质中能够自组装成稳定的纳米胶束. 进而制成水溶性的纳米冻干粉针剂.能够注射或点滴.该药从根本上解决紫杉醇的过敏反应问题.有望代替目前IJ缶床使用的紫杉醇剂型由于采用化学方法将药物分子共价连接在载体高分子上.该剂型又成功地避免了其它物理包裹型胶束的初期突释现象3.5其他除上述外,还有微球,聚酯微粒,环糊精包合物,磁性非离子表面活性剂泡囊以及前体设计等方法.其中前体设计也是改善紫杉醇药物活性与毒性的有效方法.通过分子修饰以及官能团转化.可以有效的降低其过敏性和毒性.也可以有效提高其药效和水溶性.在此本文就不做赘述相信在不久的将来.抗癌药物紫杉醇的研究将会越来越完善.4.结语紫杉醇作为癌症治疗的主要药物.其药效以及毒性尤为重要笔者认为,紫杉醇接下来的研究应注重以下几点:(1)合成效率的提高. 可通过简化合成路线以及寻找更高效的催化剂等.尽快达到工业合成的水平;(2)剂型的研究,目前紫杉醇为人体吸收的方式依旧较为单一,应该发展皮肤吸收等新型荆型,提高紫杉醇为人体的吸收效率: (3)衍生物研究,通过对母体的分子修饰,可以大大降低其过敏反应以及毒性,也可以大大提高其药性和溶解度.因此对其的分子修饰改造是尤为重要的.癌症至今依旧是人类的三大杀手之一.每年全世界因而癌症死亡的人不计其数.因而对抗癌新药的研究刻不容缓,作为目前抗药一线治疗药物紫杉醇.依然存在许多弊端.但是相信在全世界的共同努力下,抗癌药物的研究定会越加完善.f参考文献】[1]邓寒霜.李筱玲.利用生物技术生产紫杉醇的研究进展m商洛师范专科学校 ,2006,2(6):20[2]史清文,李力更,等.抗癌药物紫杉醇研发历程的思考与分析IJI.医学与哲学(人文社会医学版),2010,6,31(6,406). [3]肖颖,赵冬,王刚,等.紫杉醇生物合成途径及其相关酶的研究进展『J]河南师范大学(自然科学版).2006,30(3):2.[4]李改莲,罗素琴,等.紫杉醇的药理作用及研究进展『J].内蒙古中医药,2006,(6) [5]孙浩岩,黄兴富,等.具有实用价值紫杉醇半合成路线概述巾国民族民间医药,2010,(2010)13--0026—02.[6]何伍,刘洋.紫杉醇新剂型及研究进展fJ].世界临床药物,2009,30(5). [7]宣坚钢.紫杉醇前体药物及其研究进展『Jll世界临床药物,2009,30(1o).。
紫杉醇类药物的不良反应研究目的:为紫杉醇类药物的临床使用提供参考。
方法:以“紫杉醇”“多西紫杉醇”“不良反应”“Paclitaxel”“Docetaxel”“Adverse reaction”等为关键词,组合查询2007-2017年在中国知网、万方数据、PubMed等数据库中的相关文献,对紫杉醇类药物引起不良反应的类型、影响因素和相关机制等进行论述。
结果与结论:共检索到相关文献418篇,其中有效文献52篇。
紫杉醇类药物引起的不良反应累及不同系统和器官,如血液系统、神经系统、心血管系统、消化系统、皮肤及其附件。
最为常见的不良反应是骨髓抑制、过敏反应和神经毒性;其他不良反应如心脏毒性、肝毒性、胃肠道不良反应等发生率较低。
剂量因素、药物的相互作用、患者的病理生理状态、基因多态性等是紫杉醇类药物引起不良反应的影响因素。
其中,剂量因素是引起紫杉醇类药物不良反应的最主要因素,其不良反应发生率及严重程度在高剂量下较为显著。
因此,个体化用药、严格控制剂量、血药浓度监测在紫杉醇类药物使用中的意义重大。
引起紫杉醇类药物不良反应的相关机制主要包括溶剂影响和细胞毒性,采用脂质体包裹紫杉醇等方法可增加其溶解度从而有效降低溶剂引起的过敏反应;增加药物靶向性,提高其在肿瘤组织中的浓度可降低其因无选择性的细胞毒性而造成的不良反应。
目前针对紫杉醇类药物不良反应所做的改善仍然有限,今后需深入研究其不良反应机制及其药动学,增强其药物溶解性和肿瘤组织靶向性研究。
关键词紫杉醇;多西他赛;不良反应;机制;临床表现;影响因素紫杉醇类药物是指紫杉醇及其衍生物,是一类具有抗癌活性的二萜生物碱类化合物,主要作用于细胞微管,抑制细胞的分裂和增殖,从而发挥抗肿瘤作用[1]。
临床常用的紫杉醇类药物主要包括紫杉醇注射液、紫杉醇半合成衍生物多西紫杉醇、紫杉醇脂质体以及白蛋白结合型紫杉醇等不同剂型药物,这些药物在肺癌、乳腺癌和卵巢癌等癌症的治疗中被广泛应用。
抗癌物质—紫杉醇的研究
李绍白
【期刊名称】《甘肃化工》
【年(卷),期】1995(000)001
【摘要】本文上篇就紫杉醇的资源寻找,药理实验,构效关系和临床研究进行了综述,下篇将综述紫杉醇C-13边链的合成研究和半合成紫杉醇。
【总页数】9页(P14-22)
【作者】李绍白
【作者单位】无
【正文语种】中文
【中图分类】R979.1
【相关文献】
1.抗癌物质—紫杉醇的研究 [J], 李绍白;周春红
2.紫杉醇、三尖杉宁碱和7-表-10-去乙酰基紫杉醇的分离及7-表-紫杉醇的转化研究 [J], 戴惠芳;梅忠;须媚;陈芬儿
3.抗癌物质莱菔子素的最新研究进展 [J], 胡延雷;张小林;高艳
4.冰岛刺参抗癌物质Frondoside A的研究进展 [J], 徐梦豪;侯召华;林荣芳;高云龙;赵祥忠
5.阿霉素+环磷酰胺序贯紫杉醇和阿霉素+紫杉醇序贯每周紫杉醇在高风险乳腺癌患者辅助化疗中的多中心Ⅲ期随机对照研究 [J], 王坤
因版权原因,仅展示原文概要,查看原文内容请购买。
紫杉醇治疗食管癌研究进展何英【摘要】食管癌是我国常见的恶性肿瘤之一,预后较差,总的5年生存率低于20%。
50%~60%的患者就诊时已有远处转移,中位生存期仅有4~8个月。
食管癌常规的治疗以手术和放疗为主,但效果均不理想。
国外回顾性调查报道显示,单纯放疗或手术治疗食管癌的5年生存率分别为6%和11%。
我国黄国俊教授等报道单纯手术治疗食管癌1373例,5年生存率为29.6%,术后复发或转移是影响患者远期生存的主要原因。
因此,寻找有效的药物控制食管癌的全身播散是治疗的关键。
既往食管癌的常用化疗方案为顺铂(DDP)与5-氟尿嘧啶(5-Fu)联合化疗,有效率较低。
近几年国外的研究证明紫杉醇在治疗进展期乳腺癌、卵巢癌方面有很好的疗效,即使对阿霉素、顺铂耐药的病例仍可能有效,目前已积累了大量临床资料。
在此基础上紫杉醇被应用于其他肿瘤的治疗。
在对食管癌的治疗中人们发现紫杉醇对食管癌的作用也很突出,目前人们对于紫杉醇的剂量及联合用药的方法在进行不断的研究。
【期刊名称】《中国疗养医学》【年(卷),期】2006(015)006【总页数】4页(P419-422)【关键词】单纯手术治疗;食管癌;紫杉醇;5年生存率;5-氟尿嘧啶;恶性肿瘤;远处转移;单纯放疗【作者】何英【作者单位】066001,秦皇岛市卫生学校【正文语种】中文【中图分类】R2食管癌是我国常见的恶性肿瘤之一,预后较差,总的5年生存率低于20%。
50%~60%的患者就诊时已有远处转移,中位生存期仅有 4~8个月。
食管癌常规的治疗以手术和放疗为主,但效果均不理想。
国外回顾性调查报道显示,单纯放疗或手术治疗食管癌的 5年生存率分别为 6%和 11%。
我国黄国俊教授等[1]报道单纯手术治疗食管癌 1373例,5年生存率为29.6%,术后复发或转移是影响患者远期生存的主要原因。
因此,寻找有效的药物控制食管癌的全身播散是治疗的关键。
既往食管癌的常用化疗方案为顺铂(DDP)与 5-氟尿嘧啶(5-Fu)联合化疗,有效率较低。
紫杉醇的来源研究历史和药物研究进展生技091 汪骏09640131摘要:紫杉醇是目前最新的具有很好疗效的抗癌药物,本文对自紫杉醇发现以来的研究历史和最新研究进展进行了简要的说明。
关键词:紫杉醇;历史;来源途径;前景1 紫杉醇的研发历史1.1紫杉醇及其抗肿瘤机理的发现紫杉醇的研究最早溯源于1856年,德国科学家Lucas·H从欧洲红豆杉(T·baccata)的叶中提取到了粉末碱性物质,即紫杉碱(Taxine)[1]。
但此后的100多年中进展缓慢,直到二十世纪六十年代光谱技术飞速发展后,才得以进行比较深入的研究。
1963年,美国化学家M·C·Wani和MonreC·Wall从太平洋红豆杉(T·brevifolia)树皮中分离得到了紫杉醇的粗提物。
1964年采用KB细胞毒性方法证实该粗提物对离体培养的鼠肿瘤细胞有很高的活性。
1969年确定了该粗提物中对KB细胞具有毒性的有效成分是紫杉醇。
1971年, Wall和Wani从太平洋紫杉树皮中分离出紫杉醇。
同年,通过X射线衍射分析,确定了其化学结构为一种四环二萜化合物[2.3]。
在紫杉醇发现之后并未立刻引起人们重视,1975年发现它对黑色素瘤有很强的活性后, 1977年被确定为候选药物开始作临床前实验,随后发现紫杉醇对乳腺癌、结肠癌、支气管癌、卵巢囊性腺癌、子宫内膜癌等有很强活性, 1978年确定了紫杉醇的剂型,为临床试验奠定了基础[4.5]。
1979年,爱尔伯爱因斯坦(Alber·Einstein)医学院的Susan Horwitz及其同事发现和报道了“紫杉醇”具有独特的微管活性,具有多种抗肿瘤作用,它能与微管蛋白质结合,形成稳定的稳管束,并使其被解聚,将癌细胞停止在G2晚期或M期,抑制细胞复制,阻止癌细胞Z增殖。
这一奇特的功效引起了NCI (美国国立癌研究所)的高度重视,促进了临床试验工作的进行[6]。
静配中心配置紫杉醇白蛋白的文献
1. 《白蛋白纳米粒载紫杉醇的制备及体外释放研究》,这篇文献可能描述了使用白蛋白纳米粒作为载体,制备紫杉醇的方法,以及该复合物的体外释放特性和药效学。
2. 《紫杉醇白蛋白纳米粒的临床应用前景》,这篇文献可能从临床应用的角度探讨了紫杉醇白蛋白纳米粒在癌症治疗中的前景,包括其在临床试验中的疗效和安全性。
3. 《白蛋白纳米粒载紫杉醇在肿瘤治疗中的应用研究进展》,这篇文献可能从药理学和药效学的角度总结了白蛋白纳米粒载紫杉醇在肿瘤治疗中的应用研究进展,包括其在动物模型和临床试验中的表现。
4. 《紫杉醇白蛋白纳米粒的制备及其在肿瘤治疗中的应用》,这篇文献可能介绍了紫杉醇白蛋白纳米粒的制备方法,以及其在肿瘤治疗中的应用情况,包括其与静配中心的相关研究成果。
这些文献可能会从不同角度全面地介绍静配中心配置紫杉醇白
蛋白的相关研究成果,涵盖了药物配方、药理学、临床应用等多个方面。
希望这些信息能够对你有所帮助。
抗肿瘤药物紫杉醇结构修饰的研究进展黄晓妍ꎬ师以康(山东大学国家糖工程技术研究中心ꎬ济南250012)㊀㊀摘要:紫杉醇是临床上用于治疗多种肿瘤的药物ꎬ但是由于紫杉醇几乎不溶于水ꎬ含有助溶剂的紫杉醇注射液会导致患者发生超敏反应ꎬ并且注射前要对患者进行脱敏药物的预处理ꎮ为了增强紫杉醇的水溶性和靶向性㊁降低紫杉醇的毒副作用㊁增强紫杉醇的抗肿瘤作用ꎬ需要对紫杉醇进行结构修饰ꎮ本文重点介绍紫杉醇的C ̄7位和Cᶄ ̄2位的修饰方法及其对紫杉醇水溶性㊁靶向性和抗肿瘤活性的影响ꎬ为紫杉醇结构修饰的新药研发提供参考信息ꎮ㊀㊀关键词:紫杉醇ꎻ结构修饰ꎻ药物载体ꎻ抗肿瘤活性㊀㊀doi:10.3969/j.issn.1002 ̄266X.2019.15.027㊀㊀中图分类号:R944.9㊀㊀文献标志码:A㊀㊀文章编号:1002 ̄266X(2019)15 ̄0095 ̄06基金项目:山东省重大科技创新工程项目(2018CXGC1402)ꎮ通信作者:师以康(E ̄mail:shiyikang@sdu.edu.cn)㊀㊀紫杉醇(PTX)是从短叶红豆杉树皮中提取的天然产物ꎬ也可经半合成的方法获得ꎮ紫杉醇与细胞的微管蛋白结合ꎬ促进微管蛋白聚集并抑制其解离ꎬ细胞不能正常分裂ꎬ引起细胞周期阻滞和凋亡ꎮ紫杉醇是治疗乳腺癌㊁卵巢癌㊁非小细胞肺癌等的广谱抗肿瘤药物ꎬ疗效显著ꎮ然而紫杉醇几乎不溶于水ꎬ作为临床常用制剂的紫杉醇注射液是以聚氧乙烯蓖麻油和无水乙醇混合液作为溶剂的ꎬ而这种非水溶媒的使用会导致严重的过敏性反应ꎻ为减少过敏反应的产生ꎬ患者注射紫杉醇之前需给予地塞米松和苯海拉明等药物进行脱敏预处理ꎬ增加了患者和医护人员的负担ꎻ另外ꎬ紫杉醇缺乏靶向性ꎬ极易引起嗜中性白血球减少症㊁神经性疾病等全身性不良反应ꎮ因而ꎬ从紫杉醇应用于临床开始ꎬ对紫杉醇的结构修饰㊁改造以及剂型的改造在国内外一直受到重视ꎮ紫杉醇的结构改造主要是使用不同的化学基团ꎬ合成具有不同取代基的紫杉醇结构类似物ꎻ剂型的改造主要是指使用两性高分子聚合物对紫杉醇进行物理包覆ꎬ形成纳米胶束㊁纳米胶囊或纳米颗粒[1ꎬ2]ꎮ紫杉醇的结构修饰主要是指在紫杉醇的基团上通过化学键连接小分子或者大分子化合物生成偶联物ꎬ偶联物在体内水解重新释放出紫杉醇ꎬ发挥紫杉醇原型药的抗肿瘤作用ꎮ目前ꎬ仍然有众多的紫杉醇结构修饰物处于临床前或者临床试验中ꎮ现将紫杉醇结构修饰的方法及修饰后紫杉醇的水溶性㊁靶向性㊁抗肿瘤活性变化研究进展情况做一综述ꎮ1㊀紫杉醇的结构及其构效关系㊀㊀紫杉醇是一种二萜类化合物ꎬ主要由巴卡亭环和C ̄13侧链两个部分组成ꎬ结构如图1所示ꎬ其分子上有很多羟基和氨基基团ꎬ可以引入酯或酰胺连接水溶性分子或者靶向片段生成偶联物ꎬ偶联物在体内水解释放出游离的紫杉醇ꎬ发挥抗肿瘤作用[1ꎬ3]ꎮ图1㊀紫杉醇的分子结构式㊀㊀紫杉醇的巴卡亭环具有多个手性碳㊁刚性桥式双键和非稳定性季元环氧丙烷ꎬ其主要作用是稳定紫杉醇的活性构象[3]ꎮC ̄1位羟基和C ̄2位苯甲酰氧基为紫杉醇的重要活性基团ꎬC ̄1位去羟基后细胞毒性降低ꎬ而C ̄2位的苯甲酰氧基被除去或者被乙酰基㊁戊酰基㊁异戊酰基等非芳香族基团取代ꎬ均会造成紫杉醇活性下降甚至失活ꎻC ̄4位的羰基是紫杉醇的活性基团之一ꎬC ̄4位的末端电子会影响其与微管蛋白氨基酸残基的结合ꎻC ̄4位和C ̄5位的环氧丙烷环是紫杉醇抗肿瘤活性所必须的ꎬ该环59开环后抗肿瘤活性几乎完全消失ꎻC ̄6位如果被卤素基团取代ꎬ对紫杉醇的细胞毒性影响较小ꎬ但在体内的代谢将变慢ꎬ半衰期延长ꎻC ̄9位的羰基和C ̄10位的乙酰基对紫杉醇的抗肿瘤活性影响较小ꎬ但是C ̄9位的羰基不利于修饰ꎬC ̄10位的乙酰基有助于紫杉醇分子的构象稳定[1ꎬ3]ꎮC ̄7位是羟基ꎬ对紫杉醇的活性影响较小ꎬ目前针对紫杉醇巴卡亭骨架的结构修饰主要是对C ̄7位进行修饰ꎮ㊀㊀C ̄13侧链主要包括C ̄3ᶄ位酰胺结构和C ̄2ᶄ位羟基ꎮC ̄3ᶄ位酰胺结构对紫杉烷的活性是必须的[3]ꎬ对C ̄3ᶄ进行结构修饰的文献比较少ꎮC ̄2ᶄ位羟基是紫杉醇的药效基团ꎬC ̄2ᶄ位羟基通过与微管结合位点内的D26区域结合ꎬ在稳定微管蛋白聚合中发挥重要作用[4]ꎮ如果C ̄2ᶄ位羟基被酯化其活性将丧失ꎻ但酯基被水解游离出羟基后ꎬ紫杉醇分子将重新获得活性ꎬ所以游离的羟基或者可水解的酯基是保证紫杉醇分子活性的关键ꎮC ̄2ᶄ位的位阻较小ꎬ是紫杉醇分子结构修饰最理想的取代位点ꎬ在大多数紫杉醇 ̄高分子偶联物的合成过程中ꎬ都选择对紫杉醇的C ̄2ᶄ羟基而不是C ̄7羟基进行修饰ꎬ因为这种修饰容易进行ꎬ并且有利于从偶联聚合物中释放出紫杉醇[5ꎬ6]ꎮ2 紫杉醇的结构修饰方法及修饰后紫杉醇的水溶性㊁靶向性㊁抗肿瘤活性的变化2.1㊀紫杉醇C ̄7位的结构修饰㊀C ̄7位是紫杉醇结构修饰的重点ꎬC ̄7位的羟基对紫杉醇的抗肿瘤活性不是必需的ꎬ酰化㊁酯化㊁差向异构化甚至脱去C ̄7位的羟基ꎬ都不会影响紫杉醇分子的药效ꎬ但是其位阻比C ̄2ᶄ位羟基大ꎬ修饰难度也更大[3]ꎮWohl等[7]通过修饰C ̄7或C ̄2ᶄ位得到多个紫杉醇硅酸盐酯衍生物 ̄Si(OR)3 ̄ꎬ可以通过改变烷基R来控制化合物的疏水性和水解稳定性ꎬ并且在血浆中酯键断裂可以使紫杉醇游离出来ꎬ作者得到的部分化合物对细胞增殖抑制活性与紫杉醇原型药相当ꎮPa ̄ciotti等[8]通过修饰紫杉醇的C ̄7位或者C ̄2ᶄ位得到一系列紫杉醇硫醇化衍生物ꎬ经过筛选ꎬ一个C ̄7位硫醇化修饰的紫杉醇衍生物与含有肿瘤坏死因子的纳米金颗粒制备而成的纳米颗粒具备良好的药动学常数ꎬ对裸鼠肿瘤生长的抑制率为62%ꎬ而相同给药剂量的紫杉醇的抑制率为24%ꎬ纳米颗粒的抗肿瘤活性显著升高ꎮShan等[9]利用半胱氨酸对紫杉醇的C ̄7位进行修饰ꎬ在半胱氨酸的氨基上连接叶酸(FA)ꎬ在半胱氨酸的巯基上连接一种能够与血浆白蛋白高度亲和的偶氮型染料伊文思蓝(EB)ꎬ合成酯类前药FA ̄PTX ̄EBꎻ叶酸能够主动靶向肿瘤细胞的叶酸受体ꎬEB可以结合血浆中的白蛋白进而增加药物体内循环时间ꎻ与紫杉醇的半衰期2.19h相比ꎬFA ̄PTX ̄EB前药的药物半衰期是7.51hꎬ紫杉醇偶联物的半衰期明显延长ꎻ荷瘤裸鼠试验结果表明FA ̄PTX ̄FA对肿瘤生长的抑制率为74.82%ꎬ而紫杉醇的抑制率为41.04%ꎬFA ̄PTX ̄FA抗肿瘤作用增强并且毒性作用降低ꎮ肿瘤细胞摄取葡萄糖的水平增加ꎬ在紫杉醇上连接葡萄糖可以通过葡萄糖转运蛋白使紫杉醇进入细胞内ꎬ提高细胞内紫杉醇含量ꎻ在紫杉醇的C ̄7位和C ̄2ᶄ位分别通过琥珀酸连接一分子的葡萄糖ꎬ得到的化合物在水中的溶解度为38.97μg/mLꎬ与紫杉醇0.4μg/mL的溶解度相比较得到了提高ꎬ但溶解性仍然很低ꎬ葡萄糖修饰的紫杉醇对细胞增殖抑制活性与紫杉醇原型药没有显著差别[10]ꎮ在肝细胞膜上大量表达去唾液酸化糖蛋白受体(ASGPR)ꎬ无唾液酸糖链中的半乳糖可以识别该受体ꎬ利用该特异识别机制ꎬ可以把ASGPR作为靶蛋白ꎬ在紫杉醇上修饰半乳糖提高紫杉醇的靶向性ꎻ利用此策略ꎬ在紫杉醇的C ̄2ᶄ和C ̄7位置分别或者同时连接N ̄乙酰氨基半乳糖获得单价或双价修饰的紫杉醇偶联物ꎬ结果表明紫杉醇偶联物通过识别ASGPR诱导细胞发生内吞作用ꎬ偶联物显示出比紫杉醇原型药更强的对肝癌细胞HepG2增殖抑制作用[11]ꎮ因为在多种肿瘤细胞表面高表达生物素识别受体 钠依赖性复合维生素转运蛋白(SMVT)ꎬLis等[12]在紫杉醇的C ̄7位连接生物素交联剂NHS ̄LC ̄LC ̄biotin生成紫杉醇 ̄生物素偶联物ꎬ在体内该偶联物的连接臂不断裂ꎬ偶联物保持了紫杉醇与微管蛋白的结合特性ꎬ同时具有生物素针对SMVT蛋白的靶向性ꎮ目前所有的文献显示ꎬ在C ̄7位置进行修饰均是添加小的基团或者靶向性蛋白片段ꎬ还没有在C ̄7位连接大分子的文献报道ꎬ改变C ̄7羟基基团或者添加蛋白靶向片段ꎬ对紫杉醇的溶解性影响较小ꎬ加之C ̄7空间位阻较大ꎬ因而C ̄7位置修饰的应用前景比较小ꎮ2.2㊀紫杉醇C ̄2ᶄ位的结构修饰2.2.1㊀配体修饰㊀在紫杉醇C ̄2ᶄ位进行配体修饰ꎬ把肿瘤细胞特异性受体的配体与C ̄2ᶄ位羟基结合形成偶联物ꎬ使偶联物具备主动靶向性核仁蛋白是细胞核蛋白ꎬ但在肿瘤细胞表面也大量表达ꎬ因而Li等通过一个二肽片段在紫杉醇C ̄2ᶄ位置连接上核仁蛋白的核酸适配体(NucA)ꎬ获得一种水溶性核仁蛋白适配体 ̄紫杉醇偶联物(NucA ̄PTX)ꎬ可选择性的将紫杉醇靶向传送到卵巢肿瘤组织ꎬ并通过蛋白酶B水解二肽键连接片段释放紫杉醇ꎬ对裸鼠肿瘤生69长的抑制效果显著高于同等剂量的紫杉醇[5]ꎮEphA2是一个酪氨酸激酶受体ꎬ把能够特异结合该受体的由12个氨基酸组成的短肽(YSA)通过6 ̄叠氮乙酰基连接在紫杉醇的C ̄2ᶄ位置形成偶联物YSA ̄PTXꎬYSA ̄PTX能够靶向到EphA2高表达的前列腺癌和乳腺癌肿瘤细胞中ꎬ显著抑制肿瘤的生长和转移[13]ꎮRaposo等[14]合成了一个肽模拟物ꎬ这个肽模拟物包括一个短肽和二酮哌嗪(DKP)骨架ꎬ短肽可以识别细胞膜受体整合素RGDꎬ这个肽模拟物通过3个氨基酸Asn ̄Pro ̄Val(NPV)与紫杉醇C ̄2ᶄ位置相连接生成偶联物cyclo(DKP ̄RGD) ̄NPV ̄PTXꎬNPV在细胞中被蛋白酶降解释放出紫杉醇ꎬ该偶联物对整合素高表达细胞的增殖抑制活性与紫杉醇相当ꎮ在前列腺癌细胞膜表面表达大量的前列腺特异膜抗原(PSMA)ꎬ而谷氨酸脲DUPA对PSMA具有较高的亲和力ꎻ在紫杉醇C ̄2ᶄ通过一个含有二硫键的片段把DUPA连接起来ꎬ生成的偶联物DU ̄PA ̄PTX对前列腺癌细胞具有靶向作用ꎬ尽管在体外对细胞增殖抑制作用并不强于紫杉醇ꎬ但是在裸鼠体内DUPA ̄PTX可以断裂释放紫杉醇ꎬDUPA ̄PTX可以完全抑制前列腺癌的生长[15]ꎮ来源于HIV的短肽TAT以及来源于鱼精蛋白的短肽LM ̄WP均是由14个氨基酸组成的细胞穿膜肽ꎬ常用来修饰药物ꎬ提高药物进入肿瘤细胞的能力ꎮ利用琥珀酸把紫杉醇的C ̄2ᶄ羟基与上述穿膜肽的胺基连接起来ꎬ分别生成2种偶联物PTX ̄TAT和PTX ̄LM ̄WPꎬ穿膜肽不但提高了紫杉醇的水溶性ꎬ还提高了紫杉醇在细胞中的含量ꎬ这2种偶联物对细胞增殖抑制均强于紫杉醇ꎬ对裸鼠移植瘤生长的抑制活性也强于紫杉醇ꎬ但还没有达到完全抑制肿瘤生长的程度[16]ꎮAngiopep ̄2是一个能够识别并靶向低密度脂蛋白相关受体1(LRP ̄1)的19个氨基酸组成的短肽ꎬ把Angiopep ̄2与琥珀酸化的紫杉醇C ̄2ᶄ位相连接生成偶联物ANG1005ꎬANG1005能够通过血脑屏障ꎬ对发生脑转移的肿瘤具有抑制作用[17]ꎬ在美国国立卫生院的临床试验网站上检索发现ꎬANG1005已经完成临床Ⅱ期试验ꎬ准备进入临床Ⅲ期试验ꎮ抗体偶联药物(ADC)是目前研究的热点ꎬ但仅发现一篇抗体偶联紫杉醇的文献ꎬ该文显示把癌胚抗原抗体(α ̄CEA)以1ʒ1的摩尔比与紫杉醇偶联而成的偶联体α ̄CEA ̄PTX在体外的IC50值为37.99nmolꎬ而紫杉醇的IC50值为9.84nmolꎻ但在动物体内的抗肿瘤活性显著强于紫杉醇ꎬ但也没有完全抑制肿瘤的生长[18]ꎮ这类修饰偶联物增强了紫杉醇的靶向性ꎬ在肿瘤组织中的含量高于正常组织ꎬ减少了紫杉醇对正常组织的毒性ꎬ但紫杉醇的溶解性仍没有得到解决ꎬ在动物体内还不能完全抑制肿瘤的生长ꎮ2.2.2㊀环境敏感型片段的修饰㊀在紫杉醇C ̄2ᶄ位进行修饰ꎬ制备成环境敏感型的药物前体ꎮThapa等通过氨基丙烯酸酯把紫杉醇C ̄2ᶄ羟基与光敏剂酞硅菁连接生成紫杉醇前体药物ꎬ该前体药物经远红外光线照射ꎬ光敏剂酞硅菁产生单态氧ꎬ单态氧裂解连接片段氨基丙烯酸酯ꎬ释放出游离紫杉醇来ꎬ同时单态氧对肿瘤细胞也具有毒性作用ꎬ增强了紫杉醇对肿瘤细胞增殖的抑制作用ꎻ由于红外光线聚集于肿瘤部位ꎬ该前体药物也降低了紫杉醇对正常组织的毒性作用[4]ꎮLuo等在紫杉醇的C ̄2ᶄ位置通过二硫键连接油酸(OA)生成偶联物PTX ̄S ̄OAꎬ该偶联物中的二硫键在肿瘤细胞的高还原环境中断裂ꎬ在肿瘤细胞内释放游离的紫杉醇ꎬ油酸的作用是使偶联物PTX ̄S ̄OA具有自组装成纳米颗粒的特性ꎻ如果把该偶联物与聚乙二醇组装成纳米颗粒ꎬ紫杉醇的载药量达到57.4%ꎬ该纳米颗粒可以完全抑制荷瘤裸鼠肿瘤的生长ꎬ具有非常强的抑制肿瘤生长的活性[19]ꎮ紫杉醇C ̄2ᶄ羟基被N ̄取代马来酰亚胺修饰ꎬ在连接片段中加入硫醚基团ꎬ该紫杉醇前体药物进入体内后ꎬ血浆中的人白蛋白(HSA)第34位的半胱氨酸Cys ̄34中的巯基与亲核受体马来酰亚胺结合ꎬ导致紫杉醇与HSA形成大分子偶联物ꎬ通过实体瘤的高通透性和滞留效应(EPR效应)紫杉醇与HSA的偶联物聚集在肿瘤部位ꎬ肿瘤微环境使紫杉醇连接的硫醚被氧化ꎬ进而诱导酯键断裂释放紫杉醇ꎻ经马来酰亚胺修饰的紫杉醇前体药物在裸鼠体内显示出比紫杉醇强的抑制肿瘤生长的活性[20]ꎮ这类药物前体依赖于肿瘤组织的低氧性㊁高还原性㊁弱酸性等特征ꎬ可以使紫杉醇只在肿瘤细胞中释放ꎬ在正常细胞中不能释放ꎬ因而只对肿瘤细胞产生毒性作用ꎬ降低了对正常组织的毒性作用ꎻ但这类药物前体不可能大幅度提高紫杉醇的溶解性ꎬ依然面临使用有机溶剂作为溶剂带来的过敏反应等ꎮ2.2.3㊀大分子聚合物的修饰㊀在紫杉醇C ̄2ᶄ位羟基进行大分子聚合物的修饰ꎬ形成大分子偶联物ꎮ使用的高分子可以是天然来源的也可以是合成的聚合物ꎬ透明质酸㊁羧甲基纤维素㊁右旋糖酐㊁壳聚糖和肝素等水溶性多聚糖常用来进行紫杉醇的修饰ꎬ这些多聚糖无免疫原性并且可以生物降解ꎮ大分子偶联物可以利用实体瘤的EPR效应实现药物的被动靶向ꎬ另外也提高了紫杉醇的水溶性ꎮ紫杉醇 ̄高分子聚合物的偶联物的生成主要有以下3种方式:①79大分子聚合物通过连接片段与紫杉醇C ̄2ᶄ相连ꎬ生成的偶联物一般为纳米颗粒ꎮChen等以己二胺为连接剂ꎬ将紫杉醇连接到透明质酸(HA)组成单元乙酰氨基葡萄糖(GlcNAc)的C ̄6位ꎬ合成HA ̄6 ̄PTX偶联物ꎻHA对肿瘤细胞高表达的CD44受体具有较强的亲和力ꎬ能够特异性靶向药物到肿瘤细胞ꎻHA ̄6 ̄PTX的载药量高达21.8%ꎬ与游离紫杉醇相比ꎬ水溶性得到极大改善ꎬ且HA ̄6 ̄PTX通过HA受体介导的内吞作用增加了对HepG2细胞和A549细胞的增殖抑制活性[8]ꎮ把疏水性的聚乳酸(PLA)与具有较强亲水性的磺基甜菜碱(SB)通过硫醇烯反应生成PLA ̄SBꎬ然后与C ̄2ᶄ位置巯基修饰的紫杉醇生成偶联物PLA ̄SB/PTXꎬ该偶联物为纳米颗粒ꎬ粒径20nmꎬ可生物降解ꎬ可通过细胞内吞进入细胞ꎬ在体外对肿瘤细胞的增殖抑制活性强于紫杉醇原型药[21]ꎮPaclitaxelpoliglumex(又称之为CT ̄2103㊁Xyotax㊁Opaxio)是多聚谷氨酸 ̄紫杉醇的共价偶联物ꎬ水溶性提高ꎬ临床前实验显示出疗效提高ꎬ然而临床Ⅲ期试验表明其抗肿瘤活性并不强于紫杉醇ꎬ2016年终止了该药物的临床试验ꎬOpaxio临床Ⅲ期没有显示出较强疗效的原因是在血浆中多聚谷氨酸被降解成小分子片段ꎬ紫杉醇分布在所有组织ꎬ紫杉醇在肿瘤组织没有富集[22]ꎮ②大分子聚合物与紫杉醇化学偶联生成偶联物后ꎬ该偶联物再与游离的紫杉醇组装成纳米颗粒ꎬ这种方式提高了紫杉醇的载药量ꎬ延长了紫杉醇的释放时间ꎮZhang等通过一个小片段把紫杉醇的C ̄2ᶄ位与大分子聚磷酸酯连接形成化学结合的偶联物ꎬ该偶联物再经过物理吸附的方式与紫杉醇形成纳米颗粒ꎬ该纳米颗粒最大载药量为38.4%ꎬ紫杉醇在水中的溶解度提高到25.30mg/mLꎬ提高了紫杉醇的抗肿瘤活性[23]ꎮHuang等在紫杉醇的C ̄7和C ̄2ᶄ位置通过乙缩醛丙烯酸连接聚乙二醇PEG生成偶联物聚乙二醇 ̄乙醛 ̄紫杉醇ꎬ该偶联物的紫杉醇含量达到44.4%ꎻ该偶联物还可以继续物理性包覆游离的紫杉醇生成纳米颗粒ꎬ纳米颗粒中紫杉醇的载药量达到60.3%ꎻ在肿瘤酸性环境中ꎬ偶联物聚乙二醇-乙醛-紫杉醇的乙醛断裂ꎬ释放出游离的紫杉醇ꎬ同时物理吸附的紫杉醇也缓慢释放出来ꎬ显示出强于紫杉醇原型药的抗肿瘤活性[24]ꎮ③高分子聚合物除了与紫杉醇偶联之外ꎬ还与其它具有靶向作用的分子进行化学结合ꎬ使偶联物具有主动靶向性ꎮJin等在紫杉醇C ̄2ᶄ羟基上通过酯键连接透明质酸(HA)生成HA ̄PTX偶联物ꎬ然后把N ̄乙酰半胱氨酸(NAC)与HA ̄PTX相连ꎬ生成偶联物NAC ̄HA ̄PTXꎬ作为口服制剂NAC ̄HA ̄PTX上的N ̄乙酰半胱氨酸与消化道细胞表面的黏蛋白通过二硫键相互结合ꎬ延长紫杉醇在消化道中的时间以及促进紫杉醇的吸收ꎬNAC ̄HA ̄PTX中紫杉醇的含量为2.08%ꎬ在小鼠体内的AUC0~24h是紫杉醇的2.56倍ꎬ改善了口服紫杉醇的动力学性质ꎮA5G27是一个能够特异性结合CD44的小肽ꎬ这个小肽在小鼠体内可以抑制肿瘤的生长和转移ꎬ把A5G27与含有FITC荧光的载体甲基丙烯酸羟丙酯(HPMA)反应生成偶联物P ̄(A5G27) ̄FITCꎬ该偶联物本身具有较强的抗肿瘤活性ꎬ把该偶联物进一步与C ̄2ᶄ羟基被乙酰丙酸活化的紫杉醇反应ꎬ生成偶联物P ̄(A5G27) ̄PTXꎬP ̄(A5G27) ̄PTX对高表达CD44的细胞具有靶向性ꎬ和紫杉醇相比在动物体内能够延长生存期㊁显著的抑制肿瘤的生长和转移ꎮ使用琥珀酸在紫杉醇的C ̄2ᶄ位置进行活化ꎬ获得半琥珀酸形式的紫杉醇ꎬ然后与树枝状聚合物聚酰胺胺[Poly(amidoamine)ꎬPAMAMꎬG4]的胺基反应生成G4 ̄PTX偶联物ꎬG4 ̄PTX偶联物再与聚乙二醇衍生物mPEG ̄SCM反应生成G4 ̄PTX ̄PEG偶联物ꎬ最后通过激活生物素(biotin)的羧基生成终产物G4 ̄PTX ̄PEG ̄Biotinꎻ该偶联物G4 ̄PTX ̄PEG ̄Bi ̄otin中的PAMAM被广泛用与药物递送载体ꎬ生物素可以靶向肿瘤细胞表面的受体ꎬ聚乙二醇可以减少PAMAM阳性离子带来的毒性作用ꎬ并且聚乙二醇可以延长偶联物在血液中的循环时间ꎻ在体外细胞实验中该偶联物对细胞增殖抑制活性强于紫杉醇ꎮ二十二碳六烯酸(DHA)对紫杉醇有协同抗肿瘤作用ꎬ同时DHA可以靶向识别肿瘤细胞表面高表达的GPR40和GPR120受体ꎬ把PAMAM的胺基与DHA的羧基结合使生成PAMAMG4.0 ̄NH2 ̄DHAꎬ然后PAMAMG4.0 ̄NH2 ̄DHA中的PAMAM再与紫杉醇的C ̄2ᶄ羟基反应ꎬ生成偶联物PAMAMG4.0 ̄NH2 ̄DHA ̄PTX(DHATX)ꎬDHATX对细胞增殖抑制作用显著强于紫杉醇原型药ꎬ也强于PAMAM与紫杉醇生成的偶联物PAMAM ̄PTXꎮ壳聚糖水溶性差ꎬ在壳聚糖的氨基上添加3个甲基ꎬ可以提高壳聚糖的水溶性ꎮ利用琥珀酸在紫杉醇C ̄2ᶄ位置进行修饰ꎬ然后与三甲基化的壳聚糖(TMC)的乙酰氨基连接后生成TMC ̄PTXꎬ最后叶酸(FA)也连接在壳聚糖上生成FA ̄TMC ̄PTX偶联物ꎬ该偶联物中紫杉醇含量为10.5%ꎬ可以自组装成纳米颗粒ꎬ对叶酸受体具有靶向作用ꎬ对荷瘤裸鼠肿瘤生长的抑制率为87.5%ꎬ而同等剂量的紫杉醇的抑制率为39.5%ꎬ结果表明FA ̄TMC ̄PTX偶联物具有较强的抗肿瘤活性ꎮ商品化的PEG ̄NH2(Mw=5000)经过3个循环89的酸酐酰化和酸水解得到线性树枝状并且在末端含有8个羟基的化合物PEG ̄OH8ꎬ然后PEG ̄OH8树枝状末端的8个羟基均通过4 ̄硝基苯基氯甲酸酯与紫杉醇C ̄2ᶄ结合生成偶联物PEG ̄PTX8ꎬPEG ̄PTX8具有两亲性ꎬ可以自组装成纳米胶束ꎬ也可以作为载体把疏水性的药物包裹在疏水核心中ꎻ在PEG ̄PTX8线性的一端连接上一个短肽iNGR(CRNGRGPDC)生成iNGR ̄PEG ̄PTX8胶束ꎬ该iNGR短肽可以识别肿瘤细胞表面高表达的神经纤毛蛋白(NRP ̄1)ꎬiN ̄GR短肽还具有穿透细胞膜的功能ꎬ从而使iNGR ̄PEG ̄PTX8胶束即具有靶向作用ꎬ又具有促进紫杉醇进入肿瘤细胞的功能ꎻ和紫杉醇相比较ꎬiNGR ̄PEG ̄PTX8显著抑制裸鼠中肿瘤的生长ꎬ延长裸鼠的生存期ꎮ还有文献报道了一种更为复杂的紫杉醇聚合物胶束ꎬ先利用琥珀酸通过酯化反应对紫杉醇的C ̄2ᶄ位进行修饰ꎬ然后与己二酰肼(ADH)修饰的透明质酸反应ꎬ生成透明质酸与紫杉醇的偶联物HA ̄PTXꎻ把E ̄选择素结合肽(Esbp)㊁1 ̄硬酯胺(OA)偶联到聚乙二醇上ꎬ生成两亲性偶联物Esbp ̄PEG ̄OAꎻ两亲性偶联物HA ̄PTX和Esbp ̄PEG ̄OA可以互相组装成纳米胶束Esbp ̄HA ̄PTXꎬ该纳米胶束中的HA可以识别肿瘤细胞表面的CD44受体ꎬ纳米胶束中的Esbp可以识别血管上皮细胞中的E ̄选择素ꎬ增强了紫杉醇的靶向性ꎬ提高了对肿瘤生长和转移的抑制效果ꎬ在裸鼠体内对肿瘤生长的抑制率为92.6%ꎬ而相同剂量的紫杉醇的抑制率为54.3%ꎮ这类复杂的偶联物具备了水溶性和靶向性ꎬ但偶联物中各个组分的比例与偶联物的活性之间的关系均没有文献进行阐述ꎬ因而还需要进行大量的研究工作ꎮ㊀㊀高分子聚合物与紫杉醇通过化学键生成的偶联物具有水溶性好㊁半衰期延长㊁主动靶向和被动靶向㊁高分子聚合物无毒可降解等诸多优点ꎬ具有开发前景ꎮ这类大分子偶联体的药效与聚合物的分子量㊁载药量㊁连接片段的组成等紧密相关ꎮ和低分子相比较ꎬ分子量大于4万的可溶性多聚物ꎬ在血液中的保留时间更长ꎻ分子量越大ꎬ载药量越高ꎬ药物释放就越慢ꎬ半衰期就越长ꎮ如果分子量太大ꎬ疏水性的紫杉醇以及连接片段被包裹在高分子聚合物核心内ꎬ连接片段难以接触蛋白酶ꎬ有可能导致无法释放出游离的紫杉醇ꎬ就降低了紫杉醇的活性ꎻ如果分子量太大ꎬ还可能导致生成的纳米颗粒的粒径太大ꎬ容易被网状内皮系统清除ꎬ进而降低偶联物的活性ꎮ因而优化和筛选合适的分子量以及载药量㊁选择能够被水解的连接片段是成功的关键ꎮ㊀㊀综上所述ꎬ目前对紫杉醇的修饰主要集中在C ̄2ᶄ位ꎬC ̄2ᶄ位与连接片段容易形成酯键ꎬ而酯键在体内容易断裂从而释放出游离的紫杉醇ꎬ大多数文献均显示C ̄2ᶄ位修饰的紫杉醇偶联物水溶性以及抗肿瘤活性均强于紫杉醇原型药ꎮ在紫杉醇修饰的类型和方法中ꎬ大分子聚合物对紫杉醇C ̄2ᶄ位的修饰具有较大的优势ꎬ大分子聚合物可以提高紫杉醇的水溶性和靶向性ꎬ延长半衰期ꎬ提高抗肿瘤活性ꎻ但是大分子聚合物与紫杉醇偶联物的载药量㊁连接片段的结构组成影响紫杉醇的释放和肿瘤细胞的摄取ꎬ因而载药量和连接片段的筛选和优化是这一类偶联物的研究重点ꎮ随着紫杉醇研发经验的丰富以及技术的成熟ꎬ相信高效低毒且具有靶向作用的新型紫杉醇药物一定会应用于肿瘤的临床治疗中ꎮ参考文献:[1]BernabeuEꎬCagelMꎬLagomarsinoEꎬetal.Paclitaxel:whathasbeendoneandthechallengesremainahead[J].IntJPharmꎬ2017ꎬ526(1 ̄2):474 ̄495.[2]SofiasAMꎬDunneMꎬStormGꎬetal.Thebattleof nano pacli ̄taxel[J].AdvDrugDelivRevꎬ2017ꎬ122:20 ̄30. [3]刘先芳ꎬ梁敬钰ꎬ孙建博.紫杉醇:具有里程碑意义的天然抗癌药物[J].世界科学技术 中医药现代化ꎬ2017ꎬ6:941 ̄950. [4]ThapaPꎬLiMꎬBioMꎬetal.Far ̄redlight ̄activatableprodrugofpaclitaxelforthecombinedeffectsofphotodynamictherapyandsite ̄specificpaclitaxelchemotherapy[J].JMedChemꎬ2016ꎬ59(7):3204 ̄3214.[5]LiFꎬLuJꎬLiuJꎬetal.Awater ̄solublenucleolinaptamer ̄pacli ̄taxelconjugatefortumor ̄specifictargetinginovariancancer[J].NatCommunꎬ2017ꎬ8(1):1390 ̄1404.[6]ChenYꎬPengFꎬSongXꎬetal.ConjugationofpaclitaxeltoC ̄6hex ̄anediomine ̄modifiedhyaluronicacidfortargeteddrugdeliverytoen ̄hanceantitumorefficacy[J].CarbohydrPolymꎬ2018ꎬ181:150 ̄158. [7]WohlARꎬMichelARꎬKalscheuerSꎬetal.Silicateestersofpa ̄clitaxelanddocetaxel:synthesisꎬhydrophobicityꎬhydrlyticstabili ̄tyꎬcytotoxicityꎬandprodrugpotential[J].JMedChemꎬ2014ꎬ57(6):2368 ̄2379.[8]PaciottiGFꎬZhaoJꎬCaoSꎬetal.Synthesisandevaluationofpa ̄clitaxel ̄loadedgoldnanoparticlesfortumor ̄targeteddrugdelivery[J].BioconjugChemꎬ2016ꎬ27(11):2646 ̄2657. [9]ShanLꎬZhuoXꎬZhangFꎬetal.Apaclitaxelprodrugwithbi ̄functionalfolateandalbuminbindingmoietiesforbothpassiveandactivetargetedcancertherapy[J].Theranosticsꎬ2018ꎬ8(7):2018 ̄2030.[10]MaoYꎬZhangYꎬLuoZꎬetal.Synthesisꎬbiologicalevaluationandlow ̄toxicformulationdevelopmentofglycosylatedpaclitaxelprodrugs[J].Moleculesꎬ2018ꎬ23(12):3211 ̄3231.[11]PetrovRAꎬMaklakovaSYꎬIvanenkovYAꎬetal.Synthesisandbiologicalevaluationofnovelmono ̄andbivalentASGP ̄targeteddrug ̄conjugates[J].BioorgMedChemLettꎬ2018ꎬ28:382 ̄387. [12]LisLGꎬSmartMAꎬLuchniakAꎬetal.Synthesisandbiologicale ̄valuationofabiotinylatedpaclitaxelwithanextra ̄longchainspacerarm[J].ACSMedChemLettꎬ2012ꎬ3(9):745 ̄748.99乳腺癌原发灶㊁转移灶肿瘤细胞及循环肿瘤细胞分子分型差异研究进展张琳ꎬ万方鑫ꎬ富泽龙ꎬ冯锐(天津市中心妇产科医院ꎬ天津300100)㊀㊀摘要:乳腺癌原发灶㊁腋窝淋巴结转移灶㊁远处转移灶肿瘤细胞及循环肿瘤细胞(CTC)之间分子分型存在一定的差异ꎮ原发灶肿瘤细胞与腋窝转移灶的肿瘤细胞之间分子分型基本一致ꎬ但也存在相互转化的情况ꎻ原发灶与远处转移灶的肿瘤细胞分子分型情况具有很多差异ꎬ绝大部分研究支持原发灶细胞与远处转移灶之间PR变异率较ER与Her ̄2要更加高一些ꎻ原发灶肿瘤细胞与CTC之间的分子分型不一致经常发生ꎬ并且通常表现为原发灶与转移灶之间的ER㊁PR及Her ̄2由阳性转为阴性ꎻCTC与远处转移灶肿瘤细胞之间较原发灶肿瘤细胞有更多的相似性ꎬ并且Her ̄2过表达对转移灶的细胞分子状态有预测作用ꎮ有学者就根据腋窝淋巴结转移灶与原发灶的差异大胆做出相关治疗方案调整ꎬ如对原发灶HR阴性但腋窝淋巴结阳性患者添加内分泌治疗ꎻ目前根据原发灶与CTC的分子分型之间的差异而添加治疗的报道较少ꎬ所以将来可以通过完善血CTC的分子分型并根据其变化情况适时添加内分泌或化疗治疗ꎬ以期获得更好的疗效ꎮ㊀㊀关键词:乳腺癌ꎻ乳腺癌原发灶ꎻ乳腺癌转移灶ꎻ循环肿瘤细胞㊀㊀doi:10.3969/j.issn.1002 ̄266X.2019.15.028㊀㊀中图分类号:R737.9㊀㊀文献标志码:A㊀㊀文章编号:1002 ̄266X(2019)15 ̄0100 ̄04㊀㊀乳腺癌是女性常见恶性肿瘤之一[1]ꎬ我国乳腺癌发病率居女性肿瘤发病率首位[2]ꎮ有文献[3]指出ꎬ乳腺癌的治疗依赖于肿瘤的分子亚型ꎬ其中激素通信作者:万方鑫(E ̄mail:1353229863@qq.com)受体阳性患者占60%以上ꎮ但不是所有乳腺癌患者内分泌治疗都是有效的ꎬ原发灶与转移灶之间分子分型出现差异[4ꎬ5]可能是乳腺癌治疗失败的原因之一ꎮ1869年Ashworth[6]发现癌症患者血液中存在循环肿瘤细胞(CTC)ꎬCTC是指存在于血液循环[13]SalemAFꎬWangSꎬBilletSꎬetal.Reductionofcirculatingcanc ̄ercellsandmetastasesinbreast ̄cancermodelsbyapotentephA2 ̄agonisticpeptide ̄drugconjugate[J].JMedChemꎬ2018ꎬ61(5):2052 ̄2061.[14]RaposoMoreiraDiasAꎬPinaAꎬDeanAꎬetal.Neutrophilelas ̄tasepromoteslinkercleavageandpaclitaxelreleasefromaninte ̄grin ̄targetedconjugate[J].Chemistryꎬ2019ꎬ25(7):1696 ̄1700. [15]LvQꎬYangJꎬZhangRꎬetal.Prostate ̄specificmembraneantigentargetedtherapyofprostatecancerusingaDUPA ̄paclitaxelconju ̄gate[J].MolPharmꎬ2018ꎬ15(5):1842 ̄1852.[16]DuanZꎬChenCꎬQinJꎬetal.Cell ̄penetratingpeptideconjugatestoenhancetheantitumoreffectofpaclitaxelondrug ̄resistantlungcancer[J].DrugDelivꎬ2017ꎬ24(1):752 ̄764.[17]DrappatzJꎬBrennerAꎬWongETꎬetal.PhaseIstudyofGRN1005inrecurrentmalignantglioma[J].ClinCancerResꎬ2013ꎬ19(6):1567 ̄1576.[18]KnutsonSꎬRajaEꎬBomgardenRꎬetal.Developmentandevalua ̄tionofafluorescentantibody ̄drugconjugateformolecularimagingandtargetedtherapyofpancreaticcancer[J].PLoSOneꎬ2016ꎬ11(6):e0157762.[19]LuoCꎬSunJꎬLiuDꎬetal.Self ̄assembledredoxdual ̄responsiveprodrug ̄nanosystemformedbysinglethioether ̄bridgedpaclitaxel ̄fattyacidconjugateforcancerchemotherapy[J].NanoLettꎬ2016ꎬ16(9):5401 ̄5408.[20]YangJꎬLvQꎬWeiWꎬetal.Bioresponsivealbumin ̄conjugatedpaclitaxelprodrugsforcancertherapy[J].DrugDelivꎬ2018ꎬ25(1):807 ̄814.[21]SunHꎬChangMYZꎬChengWIꎬetal.Biodegradablezwitterionicsulfobetainepolymeranditsconjugatewithpaclitaxelforsustaineddrugdelivery[J].ActaBiomaterꎬ2017ꎬ64:290 ̄300.[22]ZhaoJꎬKoayEJꎬLiTꎬetal.Ahindsightreflectionontheclinicalstudiesofpoly(l ̄glutamicacid) ̄paclitaxel[J].WileyInterdiscipRevNanomedNanobiotechnolꎬ2018ꎬ10(3):e1497.[23]ZhangFꎬKhanSꎬLiRꎬetal.Designanddevelopmentofmulti ̄functionalpolyphosphoester ̄basednanoparticlesforultrahighpacli ̄taxeldualloading[J].Nanoscaleꎬ2017ꎬ9(41):15773 ̄15777. [24]HuangDꎬZhuangYꎬShenHꎬetal.Acetal ̄linkedPEGylatedpa ̄clitaxelprodrugsformingfree ̄paclitaxel ̄loadedpH ̄responsivemi ̄celleswithhighdrugloadingcapacityandimproveddrugdelivery[J].MaterSciEngCMaterBiolApplꎬ2018ꎬ82:60 ̄68.(收稿日期:2019 ̄01 ̄18)001。
Carbohydrate Polymers 86 (2011) 505–512Contents lists available at ScienceDirectCarbohydratePolymersj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c a r b p olPaclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancerGuiping Ma a ,∗,Yang Liu a ,b ,Cheng Peng a ,b ,Dawei Fang a ,b ,Baojiang He c ,Jun Nie aaState Key Laboratory of Chemical Resource Engineering,Key Laboratory of Carbon Fiber and Functional Polymers,Ministry of Education,Beijing University of Chemical Technology,Beijing,100029,PR China bSchool of Materials Science and Engingeering,Changhzou University,Changzhou,Jiangsu,213164,PR China cZhengzhou Tobacco Institute of CNTC,Zhengzhou,450001,PR Chinaa r t i c l ei n f oArticle history:Received 11March 2011Received in revised form 18April 2011Accepted 27April 2011Available online 27 May 2011Keywords:ChitosanElectrospinning PaclitaxelPorous nanofibers Hyaluronic acida b s t r a c tA highly porous chitosan nanofibers were obtained by electrospinning chitosan/polyethylene oxide (PEO)blend solutions and then removing PEO with water.The porous morphology of the nanofibers was observed by scanning electron microscopy.The porous nanofibers were soaked in 0.1wt%paclitaxel solution to load the cancer drug.Then a polyanion nature macromolecular hyaluronic acid (HA)was encapsulated on the chitosan polycation porous nanofibers by immersing the fibers into a 4wt%HA aqueous solution.Differential scanning calorimetry (DSC)and Fourier transform infrared (FT-IR)were used to investigate the polymer formation and the interaction among two nature macromolecular and the cancer drugs.The paclitaxel release profiles of the encapsulated fibers in PBS were analyzed by UV–vis spectrophotometer.In vitro DU145prostate cancer cells activities of the nanofibers were examined by MTT.Cell culture results showed that the PTX-loaded nanofibers mats were good in prohibiting the cell attachment and proliferation.These results strongly suggested that the chitosan/hyaluronic acid fibers had an effect of controlled release of paclitaxel and were suitable for postoperative chemotherapy of prostate cancers.© 2011 Elsevier Ltd. All rights reserved.1.IntroductionElectrospinning is a well recognized and effective technique to produce fibers with diameters in the range of micrometers down to tens of nanometers from the electrostatically driven jets of poly-mer solution or melts (Bhattarai et al.,1996;Reneker &Chun,1996;Li,Wang,&Xia,2004).The unique properties of electro-spun nanofibers such as high special surface area,high area to volume ratio and small porous,have enabled nanofibers many applications that include filtration (Woon,Fong,Hung,&Yuen,2010),nanofiber reinforcement (Huang,Zhang,Ramakrishna,&Lim,2004),wound healing (Kurpinski,Stephenson,Janairo,Lee,&Li,2010),tissue engineering (Hong &Madihally,2010;Yoo,Lee,Yoon,&Park,2005),and release of drugs (Im,Yun,Lim,Kim,&Lee,2010).In recent decades,a wide range of natural product mate-rials,like hyaluronic acid,collagen,gelatin and chitosan,and a wide variety of synthetic biodegradable polymers,such as poly(l -lactide)(PLLA),polyethylene oxide (PEO)and polycaprolactone (PCL),and co-polymers,such as poly(l -lactide-co-caprolactone)and poly(lactic-co-glycolic acid)(PLGA),have been electrospun in∗Corresponding author.Tel.:+861064421310;fax:+861064421310.E-mail address:magp0539@ (G.Ma).order to meet different requirements for specific applications in tis-sue engineering and drug delivery (Bhattarai,Edmondson,Veiseh,Matsen,&Zhang,2005;Shalumon et al.,2009;Sill &Recum,2008;Sujata,Chung,Khetan,&Burdick,2008;Yang,Murugan,Wang,&Ramakrishna,2005).In particular,the nanofibers are very favorable for the adsorption of liquids and for preventing bacteria penetration and thus provide good conditions for post-surgical chemotherapy (Zhou et al.,2008).Hyaluronic acid (HA)is a naturally occurring straight anionic polysaccharide and a linear polysaccharide of alternating d -glucuronic acid and N-acetyl-d -glucosamine,which widely exists in many connective tissues (e.g.,cartilage)(Allison &Grande-Allen,2006;Meyer,1947).HA plays a role in cellular processes like cell proliferation,morphogenesis,inflammation,wound repair and interacts with cells through surface receptors (Chen &Abatangelo,1999;Toole,2004).These biological interactions make HA a candi-date for the development of biomaterials that can directly interact with cells.HA has attracted much attention for its remarkable appli-cations in tissue engineering,wound healing and release of drugs due to its biodegradability,biocompatibility and wound healing ability.Chitosan is a natural,cationic amino polysaccharide copolymer of glucosamine and N-acetylglucosamine,obtained by the alkaline,partial N-deacetylation of chitin which is commercially extracted0144-8617/$–see front matter © 2011 Elsevier Ltd. All rights reserved.doi:10.1016/j.carbpol.2011.04.082506G.Ma et al./Carbohydrate Polymers86 (2011) 505–512from exoskeleton of crustacean,e.g.,crab,shrimp,etc.It is the most important natural polysaccharide after cellulose(Fernando &Sérgio,2004;Yui,Kobayashi,Kitamura,&Imada,1994).Chitosan has several biological properties that make it an attractive mate-rial for use in medical applications such as biodegradability,lack of toxicity,antifungal effects,wound healing acceleration,biocom-patibility,and immune system stimulation(Blasinska&Drobnik, 2008;Khor&Lim,2003;Senel&McClure,2004).Electrospin-ning of chitosan-based formulations containing goodfiber-forming polymers like PEO,polyvinylalcohol(PVA),or polyvinylpyrroli-done(PVP)(with quaternized chitosan)have been widely documented.Drug delivery systems have been developed by using poly-meric materials in the form of microparticle,hydrogel and micelle (Manna,Bharani,&Patil,2009;Worrall,Sudarisman,&Priadi, 2009).Recently,drug-loaded electrospunfibers with higher drug encapsulation efficiency and better stability than other drug formu-lations have attracted a great deal of attention(Tiwaria,Tzezanab, Zussmanb,&Venkatramana,2010).The electrospun nanofibers possess high surface-to-volume ratio which would accelerate the solubility of drug in the aqueous solution and enhance the efficiency of the drug.Paclitaxel(PTX)is a well known mitotic inhibitor and radiosensitizing agent(Ranganath&Wang,2008)used in can-cer chemotherapy but with poor water solubility.Its mechanism of action comprises of interaction with microtubule degradation resulting in increased mitotic arrest,decrease in cellular motility, and disruption in intercellular signal transmission.Here we presented the development and characterization of a natural–natural polymeric nanofiber as a drug carrier with the combined advantages,comprised of well-blended chitosan and hyaluronic acid.Thefirst advantage of this study lay in the in situ formation of porous electrospun nanofibers and PTX nanoparti-cles encapsulated in the pores.The second advantage was the interaction between the positively charged porous polymer(CS) nanofibers and negatively charged polymers(HA),which had no side effects or adverse reactions resulted from crosslinking with glutaraldehyde or by photopolymerization(Chen,Wang,Wei, Mo,&Cui,2010;Theron et al.,2010;Zhang,Venugopal,Huang, Lim,&Ramakrishna,2006).The morphology of pores,and drug loaded nanofiber,and the actual PTX release characteristics were investigated systematically.The structure and interaction of the fibers were subjected to detailed analysis by differential scan-ning calorimetry(DSC)and Fourier transform infrared(FT-IR).The potential use of this as-spunfiber mat as a scaffolding material for postoperative chemotherapy of prostate cancers was evaluated in vitro against DU145prostate cancer cells.Cell culture results showed that nanofibers mats were good in prohibiting the cell attachment and proliferation.2.Experimental2.1.MaterialsHA used in this study was purchased from Dali Hyaluronic acid Co.,Ltd of Liuzhou Chemical Group(Liuzhou,Guangxi,China) with the molecular weight of1000000g mol−1.Chitosan(CS)with molecular weight of100000g mol−1from crab shell was pur-chased from Yuhuan Ocean Biochemical Co.,Ltd(Zhejiang,China) and used as received.PEO with molecular weight of900000g mol−1 was supplied by Acors Organics(Shanghai,China).Paclitaxel of 99.9%purity was purchased from Xi’an Bio-sep Biotechnology (Xi’an,China).Acetic acid was supplied by Zhejiang Sunrise Chem-icals Co.,Ltd(Zhejiang,China)with HPLC grade.All other materials and reagents used were of analytical grade.2.2.Fabrication of nanofibersA5.0%(w/w)PEO solution was prepared by dissolution of5.0g PEO in100mL distilled water at room temperature with vigorous stirring.CS(5.0g)was dissolved in100.0g of2.0%(w/w)acetic acid solution.The PEO and chitosan were blended with different weight ratios,but the total polymer concentration was kept at5.0%(w/v) in all experiments.The mixed solution was pumped at a predetermined rate using a syringe pump(WSZ-50FZ,Zhejiang University Medical Instru-ment Co.,Ltd)at a constant rate of0.3mL h−1,forming a bead of solution at the tip of syringe.A high voltage difference(12–20kV) was applied between the nozzle needle with diameter of0.57mm, a negative potential,and a grounded collection target.As the jet breaks up intofibers from the Taylor Cone,the liquid was evapo-rated and gave rise to relatively dryfibers which were subsequently spun on the aluminum foil wrapped rotating shaft until multilay-eredfiber mat was obtained.The blendfibers were soaked in distilled water for10h in order to remove PEO and got the porous nanofibers.Then porous nanofibers were soaked in the ethanol solution of paclitaxel (0.1wt%)for8h in order to make the drugs adhesive in thefiber. At last thefibers were soaked in the HA solution(4wt%)to let the CS and HA attacked relying on the attraction between positive and negative charges.2.3.Nanofibers characterization2.3.1.Morphology analysisThe morphology of the medicated electrospunfibers was observed by using Hitachi S-4700scanning electron microscope (Hitachi Company,Japan),and its accelerating voltage was20kV. Samples were mounted on metal stubs using a double-sided adhe-sive tape and vacuum-coated with a gold sputtering layer prior to examination.Diameters and distributions of the electrospunfibers were analyzed from the SEM images by using Image J analysis soft-ware(Image J,National Institutes of Health,USA).2.3.2.FT-IR analysisFT-IR spectrum was recorded on Nicolet5700instrument(Nico-let Instrument,Thermo Company,USA).Samples were prepared as nanofiber membranes and were scanned against air background at wavenumbers range4000–500cm−1with resolution of4.0cm−1. The peaks area was calculated by a software ominc32.2.3.3.Differential scanning calorimetry(DSC)The thermal analysis of the electrospinningfibers was studied by a DSC204F1thermal analysis system(Netzsch,Germany).Samples sealed in aluminum pans were heated from room temperature to 270◦C at a heating rate of10◦C/min under30mL/min of nitrogen flow.2.3.4.Fluorescence microscopeThe image of the electrospunfibers suspension after PTX loading was taken by an invertedfluorescence microscope(Olympus IX81) excited270nm in UV light.The samples were positioned so that the emitted light was detected at270nm from the incident beam.2.4.In vitro paclitaxel releaseIn vitro paclitaxel release test was conducted by immersingfiber discs/sheets weighing3mg each into5mL PBS buffer(pH7.4)in 15mL centrifuge tubes and incubated at37◦C and100rpm in a shaking water bath(GLS Aqua12,Shanghai,China)to simulate body physiological conditions.At eachfixed time interval,2.0mL released solution was withdrawn from the dissolution mediumG.Ma et al./Carbohydrate Polymers86 (2011) 505–512507Fig.1.Sample preparation process for porous,PTX loaded,and HA encapsuled blendfibers by electrospinning.after incubation,while an equal amount of fresh PBS was added back to the incubation solution.The amount of paclitaxel was detected by a Hitachi U-3010UV-vis spectrophotometer(Hitachi High Technologies Corporation,Tokyo,Japan),a maximal absorp-tion peak of270nm was observed for freshly prepared paclitaxel in PBS and released within the designed period.For standard sam-ples with a concentration from0to30g/mL,a linear correlation ( 2=0.9999)was determined between the absorption strength and paclitaxel concentration.The percentage of the released drug in samples was then calculated based on the initial weight of the drug incorporated in the electrospun nanofibers(Ranganath&Wang, 2008).2.5.In vitro cytotoxicity of drug-loadedfiber mats2.5.1.Methylthiazolydiphenyl-tetrazolium bromide(MTT)assayThe cytotoxicity of the electrospunfiber membranes was evaluated based on a procedure adapted from the ISO10993-5stan-dard test method.DU145prostate cancer cells were cultured in RPMI1640medium supplemented with10%fetal bovine serum, together with1.0%penicillin–streptomycin and1.2%glutamine. Culture was maintained at37◦C in a wet atmosphere contain-ing5%CO2.When the cells reached80%confluence,they were trypsinized with0.25%trypsin containing1mM ethylenediamine tetraacetic acid(EDTA).The viabilities of cells were determined by the MTT(3-[4,-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide;thiazolyl blue)assay.The level of the reduction of MTT into formazan can reflect the level of cell metabolism.For the MTT assay,the as-spun membranes were sterilized with highly compressed steam for15min and placed in wells of a24-well culture plate,respectively.The samples were then incubated in 1mL of RPMI1640medium at37◦C for24h.The extraction ratio was6cm2/mL.At the end of this period,the membranes were removed and the so-called extracts were obtained and further were diluted to obtain extraction medium samples.DU145prostate can-cer cells were seeded in wells of a96-well plate at a density of 4×103cells per well.After incubation for another24h,the culture medium was removed and replaced with the as-prepared extrac-tion medium and incubated for24h,then150L of MTT solution was added to each well.After24h incubation at37◦C,200L of dimethyl sulfoxide was added to dissolve the formazan crys-tals.The dissolved solution was swelled homogeneously for about 10min by the shaker.The optical density of the formazan solution was detected by an ELISA reader(Multiscan MK3,Labsystem Co. Finland)at570nm.For reference purposes,cells were seeded to medium a fresh culture medium(negative control)under the same seeding conditions,respectively.2.5.2.Cell culture and adhesionDU145prostate cancer cells were selected for the biological assays in order to evaluate the effect of electrospunfiber mem-branes on cell culture,adhesion,and proliferation.The electrospun fiber membranes werefixed on the glass cover slips by using cop-per tapes.The sample membranes were sterilized,rinsed three times with sterile phosphate buffer solution(PBS),then trans-ferred to individual24-well tissue culture plates.Aliquots(1mL) of DU145prostate cancer cells suspension with1.5×104cells/mL were seeded on the sample membranes.After24h of culture,cel-lular constructs were harvested,rinsed twice with PBS to remove non-adherent cells.The samples were dehydrated through a series of graded ethanol solutions and dried overnight at room temper-ature.The dry samples were coated with gold by sputtering for further analysis cell morphology on the surface of the scaffolds by SEM.3.Results and discussion3.1.SEM imagesThe preparation process for porous,loaded PTX,and encap-sulated blend nanofibers with HA by electrospinning were shown in Fig.1.Fig.2illustrated SEM micrographs of electro-spun nanofibers.The original electrospinning product showed non-woven nanofibers structure.The electrospun CS/PEO blend nanofibers with averagefiber diameter of300nm and narrow diameter distribution showed the round-shaped and smooth mor-phology in Fig.2(d).Previous research reported that electrospun blend nanofibers and prepared porous nanofibers via selective dis-solution of one component(Bognitzki,Frese,Steinhart,Greiner,& Wendorff,2001;You et al.,2006).In this study,similarly,PEO was removed from the ultrafine CS/PEO blend nanofibers via a selec-tive dissolution technique.After dissolution,the large amount of porous with circular shape and narrow size distribution formed on the surface of nanofibers.The nanofibers mat was immersed into HA aqueous solution(1mg/mL)for10h.The morphology of encapsulated HA nanofibers were shown in Fig.2(c),the nanofibers508G.Ma et al./Carbohydrate Polymers86 (2011) 505–512Fig.2.SEM images of electropsun composite nanofibers:(a)CS/PEOnanofibers;(b)CS porous nanofibers;(c)PTX-loaded CS/HA nanofibers;(d)Diameter distributions of CS/PEO nanofibers.G.Ma et al./Carbohydrate Polymers86 (2011) 505–512509Fig.3.FT-IR spectra of electrospun nanofibers:(a)CS/PEO nanofibers;(b)porous CS nanofibers;(c)PTX-loaded porous CS nanofibers;and(d)PTX-loaded CS/HA nanofibers.morphology of the nanofibers was maintained and the nanofibers were orderly distributed as before encapsulation which meant that HAfilms were formed on the surface of the nanofibers.The negatively charged nature polymer(HA)was assembled on the positively charged nature polymer(CS)nanofibers surface.PTX was encapsulated between them,and the interaction increased nanofibers strength(Pan,Ge,&Gu,2007).3.2.FT-IR spectroscopyFT-IR spectra of the nanofibers were shown in Fig.3.The broad peak at3430cm−1was due to N–H and hydrogen bonded O–H stretching on the CS back bone.The N–H deformation vibra-tion absorption peak was observed at1606cm−1and–C–O–C peak appeared at1109cm−1,respectively(Velde&Kiekens,2004). The in-plane bending vibration(1367cm−1)of–OH on the back-bone of CS was used as interior label to investigate the changes of peaks’intensity.The peaks at1106cm−1and950cm−1were due to stretching of the C–O–C group in PEO(Wongsasulak,Kit, McClements,Yoovidhya,&Weiss,2007).In Fig.3(a)and(b),com-paring these two spectra,one couldfind after selective wash treatment by water,the area ratio of A1106/A1367was decreased from5.419(Fig.3(a))to4.574(Fig.3(b)),it means that most of the PEO was removed.The spectra of PTX-loaded porous nanofibers (Fig.3(c))were similar with the spectra in Fig.3(b).It may be caused by the little amount of the PTX loaded on thefibers that could not be detected by FT-IR.After encapsulation with HA,the absorption peaks of–N–H shift from1606to1597(Fig.3(d)).It proved that the special interaction of CS and HA via electrostatic was formed.3.3.DSC resultsFig.4presented DSC data for electrospun nanofibers of CS/PEO, before and after PEO removal.Thefirst characteristic endother-mic peaks at64◦C of CS/PEO could be dehydrated or denaturalized when they were heated.The endothermic curve of CS/PEO blend nanofibers was broad,and the peak shifted toward lower temper-atures comparing with the pure chitosan and PEO.It indicated that the aggregation structure of CS/PEO was amorphous,and chains were in the noncrystalline state due to the rapid solidification pro-cess during electrospinning.However,the endothermic peaks were shifted to higher temperature and the peak becomes sharpafter Fig.4.DSC thermograms curves of electrospun nanofibers:(a)CS/PEO nanofibers;(b)porous CS nanofibers;(c)PTX-loaded porous CS nanofibers;and(d)PTX-loaded CS/HA nanofibers.the porous CS nanofibers were loaded on the PTX,and encapsuled by HA,which was caused by the interaction of positive and nega-tive charges between CS and HA.This amorphous nature of the PTX might have pronounced pharmaceutical significance as it could lead to increased solubility and improve the biological activity(Mu,Teo, Ning,Tan,&Feng,2005).3.4.Fluorescence imageFig.5presented thefluorescence image for the PTX-loaded CS/HA nanofibers.The results demonstrated thefluorescence of the nanofibers,indicating the presence of PTX.The dark regions in the image,as in all of thefluorescence images,were areas that were out of focus due to the uneven contour of the electrospun sample.The fluorescence images results suggested that the PTX was presented not only in the inside offiber porous but also in the encapsulated sections of the nanofibers matrix.But,allfluorescence microscopy images indicated that PTX was presented throughout the depths of the electrospun matrix,suggesting a fairly uniform dispersion of PTX owing to the uneven porous size and distribution.These results suggested a slight improvement in PTX incorporation in the CS/HA nanofibers and the nanofibers porous permitted the incor-poration of slightly more PTX encapsulated in the nanofibers than the smoothfibers.3.5.Drug releaseIn vitro release profiles of paclitaxel from the PTX loaded nanofibers was shown in Fig.6.The release rate of PTX in phosphate buffered saline(PBS)solutions was examined by immersing PTX loaded electrospunfiber mats into solutions with pH of7.4.A burst release was observed from the release profile due to the diffusion-controlled release of the drug and the higher water adsorption of the electrospun nanofibers,moreover,the nanofibers possessed the high surface area,porous,allowing more drug molecules to diffuse from the nanofibers to the surrounding medium(Meng et al.,on line),therefore the drug molecule had a more rapid diffusion from the matrix into the aqueous medium.After48h,it took short time to reach the equilibrium,the release curves of PTX deviated from the curve,and the rates became slower.This may be due to the role of positive and negative charges to prevent the PTX drug to release from the nanofibers.The cure was near constant release510G.Ma et al./Carbohydrate Polymers 86 (2011) 505–512Fig.5.Fluorescence image of PTX-loaded CS/HA nanofibers.rate and longer drug release sustainability which might be crucial for treating prostate cancer.3.6.MTT assayA biomaterial should not release toxic products and support cellular attachment,which could be evaluated through in vitro cytotoxic tests.The level of toxicity of these nanofibers scaffolds towards cell viability was evaluated using ISO10993-5standard test method of indirect MTT assay.The absorbance of the samples was read at 570nm in a spectrophotometer (Fig.7).The extrac-tion media were prepared from the nanofibers scaffold washed with PBS three times.When cells were incubated withextractsFig.6.In vitro release profiles of paclitaxel from the encapsulated nanofibers by immersing the fibers (0.5wt%PTX loaded)into PBS buffer solution (pH 7.4)at 37◦C.obtained from washed scaffold,the viability of cells was changed with the change of PTX concentration.The viability of the DU145prostate cancer cells after 48h of incubation with the PTX-loaded CS/HA electrospun nanofibers was significantly lower than that of nanofibers that were loaded lower paclitaxel concentration for the same culture period.The higher concentration of extraction media was,the stronger inhibition affected on cells.When cells were incu-bated with 100%extract obtained from washed nanofibers,there was a significant decrease on cell viability compared to 50,25,and 10%.The obtained results suggested that electrospun nanofibers of CS/HA were nontoxic to DU145prostate cancer cells and are good candidates to be used as wound dressing for post-surgicalchemotherapy.Fig.7.Cytotoxicity test of PTX-loaded CS/HA electrospun nanofibers indirect cyto-toxicity.G.Ma et al./Carbohydrate Polymers86 (2011) 505–512511Fig.8.SEM micrographs of DU145prostate cancer cells attached to CS/HA nanofibers with different loaded PTX concentration after48.3.7.Cell adhesion and proliferationCell morphology of the DU145prostate cancer cells treated by PTX-loaded/CS–HA nanofibers mats after48h cell culture was shown in Fig.8.The blank CS–HA nanofibers mat did not show any cytotoxicity to DU145prostate cancer cells compared with the con-trol.It could be found that,DU145prostate cancer cells appeared to adhere well and exhibited a normal morphology on the nanofibers, which was due to the lots of porous,rough surfaces of thefibers assist in adhesion and proliferation of more number of cells(Gupta et al.,2009;Yang et al.,2004).DU145prostate cancer cells attached on the surfaces by discretefilopodia,exhibited short and numerous microvilli on their surfaces,and tended to attach and grow along the polymer nanofibers.Those of the DU145prostate cancer cells on nanofibers encapsulated by PTX were also included for compar-ison.In the case of0.05%,0.1%PTX-loaded/CS–HA nanofibers mats, the released amount of PTX was enough to inhibit the cells growth, so the cell numbers decreased rapidly during the test and the cells became more irregular shape.Cells spreading became more prominent and cells became in aflat morphology on the scaffold surface.Nanofibers mats loaded with more PTX showed stronger cell growth inhibition.These results strongly suggested that the512G.Ma et al./Carbohydrate Polymers86 (2011) 505–512nanofibrous scaffolds reported here was suitable for postoperative chemotherapy of prostate cancer cancers.4.ConclusionsIn the paper,the characterization of electrospun CS/HA nanofibers was investigated in detail.The result from SEM images showed that porous morphology of the electrospinning nanofibers could be obtained by remove PEO via a selective dissolution tech-nique with water.The structure and interaction between positive and negative charges of thefibers were subjected to detailed anal-ysis by DSC and FT-IR.The result showed that interaction formed between the positively charged porous polymer(CS)nanofibers and negatively charged polymers(HA).Fluorescence for electro-spun nanofibers results demonstrated PTX was dispersed inner of the nanofibers.The drug burst release behaviour was mainly related with adsorption of the nanofibers.DU145prostate cancer cells attached on the surfaces,but cell numbers decreased with increase of concentration of encapsulation PTX owing to the inhi-bition growth.AcknowledgementsThe author would like to thank the project supported by the Natural Science Foundation of Jiangsu Province(BK2010190)for itsfinancial support.This study was supported by Open Fund from State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology.ReferencesAllison,D.D.,&Grande-Allen,K.J.(2006).Hyaluronan:A powerful tissue engineering tool.Tissue Engineering,12,2131–2140(review).Bhattarai,N.,Edmondson,D.,Veiseh,O.,Matsen,F.A.,&Zhang,M.Q.(2005).Elec-trospun chitosan-based nanofibers and their cellular compatibility.Biomaterials, 26,6176–6184.Blasinska,A.,&Drobnik,J.(2008).Effects of nonwoven mats of di-o-butyrylchitin and related polymers on the process of wound healing.Biomacromolecules,9, 776–782.Bognitzki,M.,Frese,T.,Steinhart,M.,Greiner,A.,&Wendorff,J.H.(2001).Prepara-tion offibers with nanoscaled morphologies:Electrospinning of polymer blends.Polymer Engineering&Science,41,982–989.Chen,W.Y.J.,&Abatangelo,G.(1999).Functions of hyaluronan in wound repair.Wound Repair Regeneration,7,79–89.Chen,Z.G.,Wang,P.W.,Wei,B.,Mo,X.M.,&Cui,F.Z.(2010).Electrospun collagen–chitosan nanofiber:A biomimetic extracellular matrix for endothelial cell and smooth muscle cell.Acta Biomaterialia,6,372–382.Fernando,R.D.A.,&Sérgio,P.C.(2004).Characteristics and properties of car-boxymethylchitosan.Carbohydrate Polymers,75,214–221.Gupta,D.,Venugopal,J.,Prabhakaran,M.P.,Giri,Dev,V.R.,Low,S.,et al.(2009).Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.Acta Biomaterialia,5,2560–2569.Hong,J.K.,&Madihally,S.V.(2010).Three-dimensional scaffold of electro-sprayedfibers with large pore size for tissue regeneration.Acta Biomaterialia, 6,4734–4742.Huang,Z.M.,Zhang,Y.Z.,Ramakrishna,S.,&Lim,C.T.(2004).Electrospinning and mechanical characterization of gelatin nanofibers.Polymer,45,5361–5368. Im,J.S.,Yun,J.,Lim,Y.M.,Kim,H.I.,&Lee,Y.S.(2010).Fluorination of electrospun hydrogelfibers for a controlled release drug delivery system.Acta Biomaterialia, 6,102–109.Khor,E.,&Lim,L.Y.(2003).Implantable applications of chitin and chitosan.Bioma-terials,24,2339–2349.Kurpinski,K.T.,Stephenson,J.T.,Janairo,R.R.,Lee,H.,&Li,S.(2010).The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds.Biomaterials,31,3536–3542.Li,D.,Wang,Y.L.,&Xia,Y.N.(2004).Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stackedfilms.Advanced Materials,16,361–366. Manna,U.,Bharani,S.,&Patil,S.(2009).Layer-by-layer self-assembly of modified hyaluronic acid/chitosan based on hydrogen bonding.Biomacromolecules,10, 2632–2639.Meng,Z.X.,Xu,X.X.,Zheng,W.,Zhou,H.M.,Li,L.,Zheng,Y.F.,et al.(2011)Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system.Colloids and Surfaces B:Biointerfaces(on line),84,97-102. Meyer,K.(1947).The biological significance of hyaluronic acid and hyaluronidase.Physiological Reviews,27,335–359.Mu,L.,Teo,M.M.,Ning,H.Z.,Tan,C.S.,&Feng,S.S.(2005).Novel powder for-mulations for controlled delivery of poorly soluble anticancer drug:Application and investigation of TPGS and PEG in spray-dried particulate system.Journal of Controlled Release,103,565–575.Pan,C.,Ge,L.Q.,&Gu,Z.Z.(2007).Fabrication of multi-walled carbon nanotube rein-forced polyelectrolyte hollow nanofibers by posites Science and Technology,67,3271–3277.Ranganath,S.H.,&Wang,C.H.(2008).Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma.Biomateri-als,29,2996–3003.Reneker,D.H.,&Chun,I.(1996).Nanometre diameterfibres of polymer,produced by electrospinning.Nanotechnology,7,216–223.Senel,S.,&McClure,S.J.(2004).Potential applications of chitosan in veterinary medicine.Advanced Drug Delivery Reviews,56,1467–1480.Shalumon,K.T.,Binulal,N.S.,Selvamurugan,N.,Nair,S.V.,Menon,D.,Furuike, T.,et al.(2009).Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications.Carbohydrate Polymers, 77,863–869.Sill,T.J.,&Recum,H.A.(2008).Electrospinning:Applications in drug delivery and issue engineering.Biomaterials,29,1989–2006.Sujata,S.,Chung,C.,Khetan,S.,&Burdick,J.A.(2008).Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures.Biomacro-molecules,9,1088–1092.Theron,J.P.,Knoetze,J.H.,Sanderson,R.D.,Hunter,R.,Mequanint,K.,Franz,T.,et al.(2010).Modification,crosslinking and reactive electrospinning of a thermoplas-tic medical polyurethane for vascular graft applications.Acta Biomaterialia,6, 2434–2447.Tiwaria,S.K.,Tzezanab,R.,Zussmanb,E.,&Venkatramana,S.S.(2010).Optimizing partition-controlled drug release from electrospun core–shellfibers.Interna-tional Journal of Pharmaceutics,392,209–217.Toole,B.P.(2004).Hyaluronan:From extracellular glue to pericellular cue.Nature Reviews Cancer,4,528–539.Velde,K.V.,&Kiekens,P.(2004).Structure analysis and degree of substitution of chitin,chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state13C NMR.Carbohydrate Polymers,58,409–416.Wongsasulak,S.,Kit,K.M.,McClements,D.J.,Yoovidhya,T.,&Weiss,J.(2007).The effect of solution properties on the morphology of ultrafine electrospun egg albumene–PEO compositefibers.Polymer,48,448–457.Woon,W.,Fong,L.,Hung, C.H.,&Yuen,P.T.(2010).Effect of face velocity, nanofiber packing density and thickness onfiltration performance offilters with nanofibers coated on a substrate.Separation and Purification Technology, 71,30–37.Worrall,E.E.,Sudarisman,&Priadi,A.(2009).Sialivac:An intranasal homologous inactivated split virus vaccine containing bacterial sialidase for the control of avian influenza in poultry.Vaccine,27,4161–4168.Yang,F.,Murugan,R.,Ramakrishna,S.,Wang,X.,Ma,Y.X.,&Wang,S.(2004).Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering.Biomaterials,25,1891–1900.Yang, F.,Murugan,R.,Wang,S.,&Ramakrishna,S.(2005).Electrospinning of nano/micro scale poly(l-lactic acid)alignedfibers and their potential in neural tissue engineering.Biomaterials,26,2603–2610.Yoo,H.S.,Lee, E. A.,Yoon,J.J.,&Park,T.G.(2005).Hyaluronic acid modi-fied biodegradable scaffolds for cartilage tissue engineering.Biomaterials,26, 1925–1933.You,Y.,Youk,J.H.,Lee,S.W.,Min,B.M.,Lee,S.J.,&Park,W.H.(2006).Preparation of porous ultrafine PGAfibers via selective dissolution of electrospun PGA/PLA blendfibers.Materials Letters,60,757–760.Yui,T.,Kobayashi,H.,Kitamura,S.,&Imada,K.(1994).Conformational analysis of chitobiose and chitosan.Biopolymers,34,203–208.Zhang,Y.Z.,Venugopal,J.,Huang,Z.M.,Lim,C.T.,&Ramakrishna,S.(2006).Crosslinking of the electrospun gelatin nanofibers.Polymer,47,2911–2917. Zhou,Y.S.,Yang,D.Z.,Chen,X.M.,Xu,Q.,Lu,F.M.,&Nie,J.(2008).Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol)nanofibrous membrane as potential wound dressing for skin regeneration.Biomacromolecules,9,349–354.。