河南省周口市商水县2016届九年级上学期期末数学试卷【解析版】
- 格式:doc
- 大小:821.00 KB
- 文档页数:27
河南省周口市商水县上学期期末考试九年级数学试卷(解析版)一、选择题〔每题3分,共30分。
以下各小题均有四个答案,其中只要一个是正确的,将正确答案的代号字母填入题后括号内。
)1.〔3分〕要使式子有意义,那么m的取值范围是〔〕A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1D.m≥﹣1且m≠1【剖析】依据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解得:m≥-1且m≠1.应选:D.【点评】此题考察的知识点为:分式有意义,分母不为0;二次根式的被开方数是非正数.2.〔3分〕以下调查最适宜于抽样调查的是〔〕A.某学校要对职工停止体魄反省B.烙饼徒弟要知道正在烤的饼熟了没有C.语文教员反省某先生作文中的错别字D.了解某先生一天早晨睡眠状况【剖析】普通来说,关于具有破坏性的调查、无法停止普查、普查的意义或价值不大时,应选择抽样调查,关于准确度要求高的调查,事关严重的调查往往选用普查【解答】解:A、某学校要对职工停止体魄反省,人数不多,很容易调查,故必需普查;B、数量较大,应用普查破坏性太强,适宜抽样调查;C、数量不大,很容易调查,因此采用普查适宜;D、人数较少,针对性较强,适宜片面调查.应选:B.【点评】此题主要考察了片面调查与抽样调查,由普查失掉的调查结果比拟准确,但所费人力、物力和时间较多,而抽样调查失掉的调查结果比拟近似.3.〔3分〕假定x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,那么a的值为〔〕A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣4【专题】计算题.【剖析】将x=-2代入关于x的一元二次方程x2-52ax+a2=0,再解关于a的一元二次方程即可.【解答】解:∵x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,∴4+5a+a2=0,∴〔a+1〕〔a+4〕=0,解得a1=-1,a2=-4,应选:B.【点评】此题主要考察了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可.4.〔3分〕一个袋子中装有6个黑球3个白球,这些球除颜色外,外形、大小、质地等完全相反,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为〔〕A.B.C.D.【剖析】让白球的个数除以球的总数即为摸到白球的概率.【解答】解:应选:B.【点评】此题考察了概率的基本计算,摸到白球的概率是白球数比总的球数.5.〔3分〕在研讨相似效果时,甲、乙同窗的观念如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,失掉新三角形,它们的对应边间距为1,那么新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,失掉新的矩形,它们的对应边间距均为1,那么新矩形与原矩形不相似.关于两人的观念,以下说法正确的选项是〔〕A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对【专题】数形结合.【剖析】甲:依据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:依据题意得:AB=CD=3,AD=BC=5,那么A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7【解答】解:甲:依据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵依据题意得:AB=CD=3,AD=BC=5,那么A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴新矩形与原矩形不相似.∴乙说法正确.应选:A.【点评】此题考察了相似三角形以及相似多边形的判定.此题难度不大,留意掌握数形结合思想的运用.6.〔3分〕如图,M是Rt△ABC的斜边BC上异于B、C的定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有〔〕A.1条B.2条C.3条D.4条【剖析】过点M作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只需再作一个直角就可以.【解答】解:∵截得的三角形与△ABC相似,∴过点M作AB的垂线,或作AC的垂线,或作BC的垂线,所得三角形满足题意∴过点M作直线l共有三条,应选:C.【点评】此题主要考察三角形相似判定定理及其运用.解题时,运用了两角法〔有两组角对应相等的两个三角形相似〕来判定两个三角形相似.7.〔3分〕在△ABC中,AB=12,AC=13,cos∠B=,那么BC边长为〔〕A.7 B.8 C.8或17 D.7或17【专题】分类讨论.【剖析】首先依据特殊角的三角函数值求得∠B的度数,然后分锐角三角形和钝角三角形区分求得BD和CD的长后即可求得线段BC的长.∴AD=BD=12,∵AC=13,∴由勾股定理得CD=5,∴BC=BD-CD=12-5=7;当△ABC为锐角三角形时,如图2,BC=BD+CD=12+5=17,应选:D.【点评】此题考察了解直角三角形的知识,能从中整理出直角三角形是解答此题的关键,难点为分类讨论,难点中等.8.〔3分〕二次函数y=ax2+bx+c的图象如下图,以下结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有〔〕A.①② B.①③ C.②③ D.①②③【剖析】依据抛物线与x轴有两个交点即可判别①正确,依据x=-1,y<0,即可判别②错误,依据对称轴x>1,即可判别③正确,由此可以作出判别.【解答】解:∵抛物线与x轴有两个交点,∴△>0,∴b2-4ac>0,∴4ac<b2,故①正确,∵x=-1时,y<0,∴a-b+c<0,∴a+c<b,故②错误,∴对称轴x>1,a<0,∴-b<2a,∴2a+b>0,故③正确.应选:B.【点评】此题考察二次函数图象与系数的关系,二次函数的性质等知识,解题的关键是熟练运用这些知识处置效果,属于中考常考题型.9.〔3分〕⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,那么AC的长为〔〕A.2cm B.4cm C.2cm或4cm D.2cm或4cm【专题】分类讨论.【剖析】先依据题意画出图形,由于点C的位置不能确定,故应分两种状况停止讨论.【点评】此题考察的是垂径定理,依据题意作出辅佐线,结构出直角三角形是解答此题的关键.10.〔3分〕如图,:正方形ABCD边长为1,E、F、G、H区分为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,那么s关于x的函数图象大致是〔〕A.B.C.D.【专题】代数几何综合题.【剖析】依据条件可知△AEH≌△BFE≌△CGF≌△DHG,设AE为x,那么AH=1-x,依据勾股定理EH2=AE2+AH2=x2+〔1-x〕2,进而可求出函数解析式,求出答案.【解答】解:∵依据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,∴可证△AEH≌△BFE≌△CGF≌△DHG.设AE为x,那么AH=1-x,依据勾股定理,得EH2=AE2+AH2=x2+〔1-x〕2即s=x2+〔1-x〕2.s=2x2-2x+1,∴所求函数是一个启齿向上,∴自变量的取值范围是大于0小于1.应选:B.【点评】此题需依据自变量的取值范围,并且可以思索求出函数的解析式来处置.二、填空题〔每题3分,共15分〕11.〔3分〕﹣tan60°=.12.〔3分〕将一条抛物线向上平移4个单位再向左平移2个单位后,失掉的新抛物线为y=x2+4x+4,那么原抛物线的解析式为.【专题】几何变换.【剖析】应用反向平移处置效果,先确定y=x2+4x+4的顶点坐标为〔-2,0〕,在把把点〔-2,0〕反向平移失掉〔0,-4〕,然后依据顶点式写出原抛物线解析式.【解答】解:y=x2+4x+4=〔x+2〕2,此抛物线的顶点坐标为〔-2,0〕,把点〔-2,0〕向下平移4个单位再向右平移2个单位所得对应点的坐标为〔0,-4〕,所以原抛物线解析式为y=x2-4.故答案为y=x2-4.【点评】此题考察了二次函数图象与几何变换:由于抛物线平移后的外形不变,故a不变,所以求平移后的抛物线解析式通常可应用两种方法:一是求出原抛物线上恣意两点平移后的坐标,应用待定系数法求出解析式;二是只思索平移后的顶点坐标,即可求出解析式.13.〔3分〕假设2x2+1与4x2﹣2x﹣5互为相反数,那么x的值为.【专题】因式分解.【剖析】依据条件把题转化为求一元二次方程的解的效果,然后用因式分解法求解比拟复杂,先移项,再提取公因式,可得方程因式分解的方式,即可求解.【解答】解:∵2x2+1与4x2-2x-5互为相反数,∴2x2+1+4x2-2x-5=0,∴6x2-2x-4=0,即3x2-x-2=0,∴〔x-1〕〔3x+2〕=0,.【点评】此题考察了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要依据方程的特点灵敏选用适宜的方法.14.〔3分〕从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=〔5﹣m2〕x和关于x的方程〔m+1〕x2+mx+1=0中m的值,恰恰使所得函数的图象经过第一、三象限,且方程有实数根的概率为.【专题】计算题.【剖析】依据函数的图象经过第一、三象限,舍去不契合题意的数值,再将契合题意的数值代入验证即可.【解答】解:∵所得函数的图象经过第一、三象限,∴5-m2>0,∴m2<5,∴3,0,-1,-2,-3中,3和-3均不契合题意,将m=0代入〔m+1〕x2+mx+1=0中得,x2+1=0,△=-4<0,无实数根;将m=-1代入〔m+1〕x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入〔m+1〕x2+mx+1=0中得,x2+2x-1=0,△=4+4=8>0,有实数根.15.〔3分〕如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,那么图中阴影局部的面积是.【剖析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影局部的面积=菱形ABCD的面积-扇形DEFG的面积,依据面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF是菱形的高,∴DF⊥AB,【点评】此题考察了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是处置效果的关键.三、解答题〔本大题共8个小题,总分值75分〕16.〔8分〕先化简,再求值:〔﹣〕÷,其中a=+1,b=﹣1.【专题】计算题;分式.【剖析】先计算括号内分式的减法、把除法转化为乘法,再约分即可化简原式,最后把a、b的值代入计算可得.【点评】此题主要考察分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法那么.17.〔9分〕如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.〔1〕求证:AC是⊙O的切线;〔2〕假定OB=10,CD=8,求BE的长.【专题】计算题;与圆有关的位置关系.【剖析】〔1〕衔接OD,由BD为角平分线失掉一对角相等,依据OB=OD,等边对等角失掉一对角相等,等量代换失掉一对内错角相等,进而确定出OD与BC平行,应用两直线平行同位角相等失掉∠ODA为直径,即可得证;〔2〕过O作OG垂直于BE,可得出四边形ODCG为矩形,在直角三角形OBG 中,应用勾股定理求出BG的长,由垂径定理可得BE=2BG.【解答】〔1〕证明:衔接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,那么AC为圆O的切线;〔2〕解:过O作OG⊥BC,衔接OE,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,应用勾股定理得:BG=6,∵OG⊥BE,OB=OE,∴BE=2BG=12.解得:BE=12.【点评】此题考察了切线的判定,相似三角形的判定与性质,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解此题的关键.18.〔9分〕某校为了解全校先生上学期参与社区活动的状况,学校随机调查了本校50名先生参与社区活动的次数,并将调查所得的数据整理如下:参与社区活动次数的频数、频率散布表活动次数x 频数频率0<x≤310 0.203<x≤6 a 0.246<x≤916 0.329<x≤12 6 0.1212<x≤15m b15<x≤18 2 n依据以上图表信息,解答以下效果:〔1〕表中a=,b=;〔2〕请把频数散布直方图补充完整〔画图后请标注相应的数据〕;〔3〕假定该校共有1200名先生,请估量该校在上学期参与社区活动超越6次的先生有多少人?【剖析】〔1〕直接应用表格中3<x≤6范围的频率求出频数a即可,再求出m的值,即可得出b的值;〔2〕应用〔1〕中所求补全条形统计图即可;〔3〕直接应用参与社区活动超越6次的先生所占频率乘以总人数进而求出答案.【解答】解:〔1〕由题意可得:a=50×0.24=12〔人〕,∵m=50-10-12-16-6-2=4,故答案为:12,0.08;〔2〕如下图:;〔3〕由题意可得,该校在上学期参与社区活动超越6次的先生有:1200×〔1-0.20-0.24〕=672〔人〕,答:该校在上学期参与社区活动超越6次的先生有672人.【点评】此题主要考察了频数散布直方图以及应用样本估量总体,正确将条形统计图和表格中数据相联络是解题关键.19.〔9分〕关于x的一元二次方程x2﹣〔2k+1〕x+k2+k=0.〔1〕求证:方程有两个不相等的实数根;〔2〕假定△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k的值.【专题】计算题;压轴题.【剖析】〔1〕先计算出△=1,然后依据判别式的意义即可失掉结论;〔2〕先应用公式法求出方程的解为x1=k,x2=k+1,然后分类讨论:AB=k,AC=k+1,当AB=BC或AC=BC时△ABC为等腰三角形,然后求出k的值.【解答】〔1〕证明:∵△=〔2k+1〕2-4〔k2+k〕=1>0,∴方程有两个不相等的实数根;即x1=k,x2=k+1,∵k<k+1,∴AB≠AC.当AB=k,AC=k+1,且AB=BC时,△ABC是等腰三角形,那么k=5;当AB=k,AC=k+1,且AC=BC时,△ABC是等腰三角形,那么k+1=5,解得k=4,综合上述,k的值为5或4.【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考察了三角形三边的关系以及等腰三角形的性质.20.〔9分〕如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米〔图为横截面〕,为了使堤坝愈加结实,一施工队欲改动堤坝的坡面,使得坡面的坡角∠ADB=50°,那么此时应将坝底向外拓宽多少米?〔结果保管到0.01米〕〔参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20〕【专题】几何图形效果.【剖析】过A点作AE⊥CD于E.在Rt△ABE中,依据三角函数可得AE,BE,在Rt△ADE中,依据三角函数可得DE,再依据DB=DE-BE即可求解.【解答】解:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DB=DE-BE≈6.58米.故此时应将坝底向外拓严惩约6.58米.【点评】考察了解直角三角形的运用-坡度坡角效果,两个直角三角形有公共的直角边,先求出公共边的处置此类标题的基本动身点.21.〔10分〕星光中学课外活动小组预备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.墙长为18米〔如下图〕,设这个苗圃园垂直于墙的一边的长为x米.〔1〕假定平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围;〔2〕垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;〔3〕当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.【剖析】〔1〕依据题意即可求得y与x的函数关系式为y=30-2x与自变量x的取值范围为6≤x<15;〔2〕设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,依据二次函数的最值效果,即可求得这个苗圃园的面积最大值;〔3〕依据题意得-2〔x-7.5〕2+112.5≥88,依据图象,即可求得x的取值范围.【解答】解:〔1〕y=30-2x〔6≤x<15〕.〔2〕设矩形苗圃园的面积为S那么S=xy=x〔30-2x〕=-2x2+30x,∴S=-2〔x-7.5〕2+112.5,由〔1〕知,6≤x<15,∴当x=7.5时,S最大值=112.5,即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.〔3〕∵这个苗圃园的面积不小于88平方米,即-2〔x-7.5〕2+112.5≥88,∴4≤x≤11,由〔1〕可知6≤x<15,∴x的取值范围为6≤x≤11.【点评】此题考察了二次函数的实践运用效果.解题的关键是依据题意构建二次函数模型,然后依据二次函数的性质求解即可.22.〔10分〕如图,正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延伸BE交DF于点G.〔1〕求证:△BDG∽△DEG;〔2〕假定EG•BG=4,求BE的长.【专题】证明题;几何综合题.【剖析】〔1〕依据旋转性质求出∠EDG=∠EBC=∠DBE,依据相似三角形的判定推出即可;〔2〕先求出BD=BF,BG⊥DF,求出BE=DF=2DG,依据相似求出DG的长,即可求出答案.【解答】〔1〕证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF,∴∠FDC=∠EBC,∵BE平分∠DBC,∴∠DBE=∠EBC,∴∠FDC=∠EBD,∵∠DGE=∠DGE,∴△BDG∽△DEG.〔2〕解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC,∵四边形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC,∴∠BEC=67.5°=∠DEG,∴∠DGE=180°-22.5°-67.5°=90°,即BG⊥DF,∵∠BDF=45°+22.5°=67.5°,∠F=90°-22.5°=67.5°,∴∠BDF=∠F,∴BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴BG×EG=DG×DG=4,∴DG2=4,∴DG=2,∴BE=DF=2DG=4.【点评】此题考察了相似三角形的性质和判定,正方形的性质,旋转的性质的运用,主要考察先生运用定理停止推理的才干,此题综合性比拟强,有一定的难度.23.〔11分〕如图,二次函数y=ax2+bx+c的图象与x轴交于两点,其中点A坐标〔﹣1,0 〕,点C〔0,5〕、D〔1,8〕在抛物线上,M为抛物线的顶点.〔1〕求抛物线的解析式;〔2〕求△MCB面积;〔3〕在抛物线上能否存在点P,使△PAB的面积等于△MCB的面积?假定存在,求出一切契合条件的点P的坐标;假定不存在,请说明理由.【剖析】〔1〕由A、C、D三点在抛物线上,依据待定系数法即可求出抛物线的解析式;〔3〕先由△PAB的面积等于△MCB的面积,求出AB边上的高即点P的纵坐标的相对值,再将点P的纵坐标代入抛物线的解析式,失掉一元二次方程,假设方程有实数根,那么在抛物线上存在点P,否那么不存在.【解答】解:〔1〕∵A〔-1,0〕,C〔0,5〕,D〔1,8〕三点在抛物线y=ax2+bx+c 上,故抛物线的解析式为y=-x2+4x+5;〔2〕过点M作MN∥y轴交BC轴于点N,那么△MCB的面积=△MCN的面积+△MNB的面积=∵y=-x2+4x+5=-〔x-5〕〔x+1〕=-〔x-2〕2+9,∴M〔2,9〕,B〔5,0〕,由B、C两点的坐标易求得直线BC的解析式为:y=-x+5,当x=2时,y=-2+5=3,那么N〔2,3〕,那么MN=9-3=6,〔3〕在抛物线上存在点P,使△PAB的面积等于△MCB的面积.理由如下:∵A〔-1,0〕,B〔5,0〕,∴AB=6,∵△PAB的面积=△MCB的面积,【点评】此题考察了解二次函数综合题的方法:先运用待定系数法求出二次函数的解析式,确定各特殊点的坐标,失掉有关线段的长,求出三角形的面积,再应用条件、函数的性质等知识去确定其他点的坐标.。
九年级上册周口数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3 B .2:3C .4:9D .16:812.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =3.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定4.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20205.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14 C .13 D .126.sin30°的值是( ) A .12B .22C 3D .17.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C .2D .28.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x = B .2425y x = C .225y x = D .245y x =9.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .3B .234C 1433D 223310.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 11.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的12.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°二、填空题13.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.14.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 15.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 16.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .17.数据8,8,10,6,7的众数是__________.18.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.19.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.20.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.21.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).22.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.23.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.24.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题25.已知二次函数216y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.26.已知二次函数y =ax 2+bx +c (a ≠0)中,函数y 与自变量x 的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x 轴对称的图像所对应的函数表达式 ;27.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DEAC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EFDF的值. (3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒?28.如图,在ABC ∆中,AB AC =.以AB 为直径的O 与BC 交于点E ,与AC 交于点D ,点F 在边AC 的延长线上,且12CBF BAC ∠=∠.(1)试说明FB 是O 的切线;(2)过点C 作CG AF ⊥,垂足为C .若4CF =,3BG =,求O 的半径;(3)连接DE ,设CDE ∆的面积为1S ,ABC ∆的面积为2S ,若1215S S =,10AB =,求BC 的长.29.已知关于x 的一元二次方程(a ﹣1)x 2﹣2x +1=0有两个不相等的实数根,求a 的取值范围.30.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率.31.如图,扇形OAB的半径OA=4,圆心角∠AOB=90°,点C是弧AB上异于A、B的一点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,过点C作弧AB所在圆的切线CG交OA的延长线于点G.(1)求证:∠CGO=∠CDE;(2)若∠CGD=60°,求图中阴影部分的面积.32.某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍,设B产品生产数量的增长率为x(0x ),若10月份该工厂的总收入增加了4.4x,求x的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为492 3 .故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.B解析:B【解析】【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】 解:由34a b=,得出,3b=4a, A.由等式性质可得:3b=4a ,正确; B.由等式性质可得:4a=3b ,错误; C. 由等式性质可得:3b=4a ,正确; D. 由等式性质可得:4a=3b ,正确. 故答案为:B. 【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.3.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.5.B解析:B 【解析】试题解析:可能出现的结果的结果有1种, 则所求概率1.4P = 故选B.点睛:求概率可以用列表法或者画树状图的方法.6.A解析:A 【解析】 【分析】根据特殊角的三角函数值计算即可. 【详解】 解:sin30°=12. 故选:A . 【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.7.A解析:A 【解析】 【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案. 【详解】 令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+, ∵20>,∴当5m =时,2PB 有最小值为:2,即PB , ∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点, ∴122OQ PB ==. 故选:A . 【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.8.C解析:C 【解析】 【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积. 【详解】作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE ∴∠BAC=∠DAE又∵AB=AD ,∠ACB=∠E=90° ∴△ABC ≌△ADE (AAS ) ∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a , CF=AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得, CF 2+DF 2=CD 2,即(3a )2+(4a )2=x 2, 解得:a=5x , ∴y=S 四边形ABCD =S 梯形ACDE =12×(DE+AC )×DF =12×(a+4a )×4a =10a 2=25x 2. 故选C . 【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.9.C解析:C 【解析】 【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6, ∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a = ∵BC ∥AD , ∴AD PDBE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C . 【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.12.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.二、填空题13.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=171【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴22+1741∴FE’=171+,故答案是:171+【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P 的位置是解题关键.14.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =.15.(6,4).【解析】【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.16.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,=cm,6∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.17.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8. 【点睛】 本题主要考查众数,掌握众数的概念是解题的关键. 18.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=25510BD AB ==.19.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2). 解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 20.120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°. 考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.21.【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的解析:60【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.22.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:22224223OA OH-=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163故答案为:3.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.23.2【解析】【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即解析:5【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时, =0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。
九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(4,﹣2)B.(﹣4,2)C.(﹣2,﹣4)D.(2,4)2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x﹣4)2=17 C.(x+4)2=15 D.(x﹣4)2=153.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B. C.D.4.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定5.在二次函数y=x2﹣2x+3的图象中,若y随x的增大而增大,则x的取值范围是()A.x<﹣1 B.x>﹣1 C.x<1 D.x>16.有x支球队参加篮球比赛,共比赛了21场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=21 B.x(x+1)=21 C.x(x﹣1)=42 D.x(x+1)=427.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.8.如果将抛物线y=x2+2先向左平移1个单位,再向下平移2个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2 B.y=(x+1)2C.y=x2+1 D.y=x2+39.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A按逆时针方向旋转到△AB'C'的位置,使得CC'∥AB,则∠BAB'=()A.30°B.35°C.40°D.50°10.如图,在扇形OAB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D 在OB上,点E在OB的延长线上,若正方形CDEF的边长为2,则图中阴影部分的面积为()A.π﹣2 B.2π﹣2 C.4π﹣4 D.4π﹣8二、填空题(本大题共6小题,每小题4分,共24分)11.点P(2,﹣3)关于原点的对称点P′的坐标为.12.一元二次方程x2﹣16=0的解是.13.抛物线y=x2+2x+1的顶点坐标是.14.若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.15.用一根长为16cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.16.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.设二次函数的图象的顶点坐标为(﹣2,2),且过点(1,1),求这个函数的关系式.18.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.19.在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为4的等腰直角三角形.(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.21.已知关于的方程x2+2x+m﹣2=0.(1)若该方程有两个不相等的实数根,求实数m的取值范围;(2)当该方程的一个根为1时,求m的值及方程的另一根.22.在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AF=6,EF=2,求⊙O 的半径长.25.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)设P(x,y),PD的长度为l,求l与x的函数关系式,并求l的最大值;(3)当△ADP是直角三角形时,求点P的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(4,﹣2)B.(﹣4,2)C.(﹣2,﹣4)D.(2,4)【考点】二次函数图象上点的坐标特征.【分析】先确定出二次函数图象的对称轴为y轴,再根据二次函数的对称性解答.【解答】解:∵二次函数y=ax2的对称轴为y轴,∴若图象经过点P(﹣2,4),则该图象必经过点(2,4).故选:D.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y轴是解题的关键.2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x﹣4)2=17 C.(x+4)2=15 D.(x﹣4)2=15【考点】解一元二次方程﹣配方法.【分析】先移项,再两边配上一次项系数一半的平方可得.【解答】解:∵x2﹣8x﹣1=0,∴x2﹣8x=1,∴x2﹣8x+16=1+16,即(x﹣4)2=17,故选:B.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.3.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定【考点】圆周角定理;坐标与图形性质.【分析】根据圆周角定理即可得.【解答】解:∵∠ACB与∠AOB所对的弧是同一段弧,且∠AOB=90°,∴∠ACB=∠AOB=90°,故选:B.【点评】本题主要考查圆周角定理,熟练掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.5.在二次函数y=x2﹣2x+3的图象中,若y随x的增大而增大,则x的取值范围是()A.x<﹣1 B.x>﹣1 C.x<1 D.x>1【考点】二次函数的性质.【分析】抛物线y=x2﹣2x+3中的对称轴是直线x=1,开口向上,x>1时,y随x的增大而增大.【解答】解:∵a=1>0,∴二次函数图象开口向上,又∵对称轴是直线x=﹣=1,∴当x>1时,函数图象在对称轴的右边,y随x的增大而增大.故选D.【点评】本题考查了二次函数y=ax2+bx+c(a≠0)的性质:当a<0,抛物线开口向下,对称轴为直线x=﹣,在对称轴左边,y随x的增大而增大.6.有x支球队参加篮球比赛,共比赛了21场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=21 B.x(x+1)=21 C.x(x﹣1)=42 D.x(x+1)=42【考点】由实际问题抽象出一元二次方程.【分析】设这次有x队参加比赛,由于赛制为单循环形式(2016•海南)三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.【点评】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.如果将抛物线y=x2+2先向左平移1个单位,再向下平移2个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2 B.y=(x+1)2C.y=x2+1 D.y=x2+3【考点】二次函数图象与几何变换.【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【解答】解:抛物线y=x2+1的顶点坐标为(0,2),向左平移1个单位,向下平移2个单位后的抛物线的顶点坐标为(﹣1,0),所以,平移后的抛物线的解析式为y=(x+1)2.故选B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式9.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A按逆时针方向旋转到△AB'C'的位置,使得CC'∥AB,则∠BAB'=()A.30°B.35°C.40°D.50°【考点】旋转的性质.【分析】由平行线的性质可求得∠C′CA的度数,然后由旋转的性质得到AC=AC′,然后依据等腰三角形的性质可知∠AC′C的度数,依据三角形的内角和定理可求得∠CAC′的度数,从而得到∠BAB′的度数.【解答】解:∵CC′∥AB,∴∠C′CA=∠CAB=65°.∵由旋转的性质可知;AC=AC′,∴∠ACC′=∠AC′C=65°.∴∠CAC′=180°﹣65°﹣65°=50°.∴∠BAB′=50°.故选D.【点评】本题主要考查的是旋转的性质,得到∠C′CA=65°以及AC=AC′是解题的关键.10.如图,在扇形OAB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D 在OB上,点E在OB的延长线上,若正方形CDEF的边长为2,则图中阴影部分的面积为()A.π﹣2 B.2π﹣2 C.4π﹣4 D.4π﹣8【考点】扇形面积的计算;正方形的性质.【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积,依此列式计算即可求解.【解答】解:连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,∴∠COD=45°,∴OC=CD=2,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=×π×(2)2﹣×22=π﹣2.故选:A.【点评】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.二、填空题(本大题共6小题,每小题4分,共24分)11.点P(2,﹣3)关于原点的对称点P′的坐标为(﹣2,3).【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】由关于原点对称的点,横坐标与纵坐标都互为相反数,即可求出答案.【解答】解:因为关于原点对称的点,横坐标与纵坐标都互为相反数,所以:点(2,﹣3)关于原点的对称点的坐标为(﹣2,3).故答案为:(﹣2,3).【点评】考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.一元二次方程x2﹣16=0的解是x1=﹣4,x2=4.【考点】解一元二次方程﹣直接开平方法.【专题】计算题.【分析】方程变形后,开方即可求出解.【解答】解:方程变形得:x2=16,开方得:x=±4,解得:x1=﹣4,x2=4.故答案为:x1=﹣4,x2=4【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根的定义是解本题的关键.13.抛物线y=x2+2x+1的顶点坐标是(﹣1,0).【考点】二次函数的性质.【专题】计算题.【分析】把a、b、c的值直接代入顶点的公式中计算即可.【解答】解:∵a=1,b=2,c=1,∴﹣=﹣=﹣1,==0,故答案是(﹣1,0).【点评】本题考查了二次函数的性质,解题的关键是掌握顶点的计算公式.14.若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.【考点】三角形的外接圆与外心;等边三角形的性质.【分析】首先连接OB,OC,过点O作OD⊥BC于D,由⊙O是等边△ABC的外接圆,即可求得∠OBC的度数,然后由三角函数的性质即可求得OD的长,又由垂径定理即可求得等边△ABC的边长.【解答】解:连接OB,OC,过点O作OD⊥BC于D,∴BC=2BD,∵⊙O是等边△ABC的外接圆,∴∠BOC=×360°=120°,∵OB=OC,∴∠OBC=∠OCB===30°,∵⊙O的半径为2,∴OB=2,∴BD=OB•cos∠OBD=2×cos30°=2×=,∴BC=2BD=2.∴等边△ABC的边长为2.故答案为:2.【点评】本题考查了垂径定理,圆的内接等边三角形,以及三角函数的性质等知识.此题难度不大,解题的关键是掌握数形结合思想的应用与辅助线的作法.15.用一根长为16cm的铁丝围成一个矩形,则围成矩形面积的最大值是16cm2.【考点】二次函数的应用.【分析】先根据题意列出函数关系式,再求其最值即可.【解答】解:设矩形的一边长为xcm,所以另一边长为(8﹣x)cm,其面积为s=x(8﹣x)=﹣x2+8x=﹣(x﹣4)2+16,∴周长为16cm的矩形的最大面积为16cm2.故答案为:16.【点评】此题考查的是二次函数在实际生活中的应用及求二次函数的最大(小)值有三种方法:第一种可由图象直接得出;第二种是配方法;第三种是公式法.常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.16.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为1或5.【考点】旋转的性质;正方形的性质.【专题】压轴题.【分析】题目里只说“旋转”,并没有说顺时针还是逆时针,而且说的是“直线BC上的点”,所以有两种情况,即一个是逆时针旋转,一个顺时针旋转,根据旋转的性质可知.【解答】解:旋转得到F1点,∵AE=AF1,AD=AB,∠D=∠ABC=90°,∴△ADE≌△ABF1,∴F1C=1;旋转得到F2点,同理可得△ABF2≌△ADE,∴F2B=DE=2,F2C=F2B+BC=5.【点评】本题主要考查了旋转的性质.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.设二次函数的图象的顶点坐标为(﹣2,2),且过点(1,1),求这个函数的关系式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】由于已知抛物线的顶点坐标,则可设顶点式y=a(x+2)2+2,然后把点(1,1)代入求出a的值即可.【解答】解:设这个函数的关系式为y=a(x+2)2+2,把点(1,1)代入y=a(x+2)2+2得9a+2=1,解得a=﹣,所以这个函数的关系式为y=﹣(x+2)2+2.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.18.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.【考点】一元二次方程的解.【专题】计算题.【分析】根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可.【解答】解:把x=﹣1代入x2+2ax+a2=0得1﹣2a+a2=0,解得a1=a2=1,所以a的值为1.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为4的等腰直角三角形.(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.【考点】作图—应用与设计作图;等腰直角三角形;扇形面积的计算;圆锥的计算.【分析】(1)根据题意作出图形即可;(2根据勾股定理得到AB=,由(1)可知CD平分∠ACB,根据等腰三角形的性质得到CD⊥AB,根据弧长的公式即可得到结论.【解答】解:(1)如图所示:扇形CEF为所求作的图形;(2)∵△ABC是等腰直角三角形,且AC=BC=4,∴AB=,由(1)可知CD平分∠ACB,∴CD⊥AB,∴CD=,设圆锥底面的半径长为r,依题意得:2πr=,∴r=,答:所制作圆锥底面的半径长为.【点评】本题考查了作图﹣应用与设计作图,等腰直角三角形的性质,弧长的计算,正确的作出图形是解题的关键.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.【考点】列表法与树状图法.【分析】(1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.【解答】解:(1)画树状图如下:由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;(2)由(1)可知两人再次成为同班同学的概率==.【点评】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.21.已知关于的方程x2+2x+m﹣2=0.(1)若该方程有两个不相等的实数根,求实数m的取值范围;(2)当该方程的一个根为1时,求m的值及方程的另一根.【考点】根与系数的关系;根的判别式.【分析】(1)由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围;(2)设方程的另一根为x1,由根与系数的关系即可得出关于m、x1的二元一次方程组,解之即可得出结论.【解答】解:(1)依题意得:△=b2﹣4ac=22﹣4×1×(m﹣2)=12﹣4m>0,解得:m<3.∴若该方程有两个不相等的实数根,实数m的取值范围为m<3.(2)设方程的另一根为x1,由根与系数的关系得:,解得:,∴m的值为﹣1,该方程的另一根为﹣3.【点评】本题考查了根与系数的关系、根的判别式以及解二元一次方程组,解题的关键是:(1)熟练掌握“当△>0时,方程有两个不相等的实数根”;(2)利用根与系数的关系找出关于m、x1的二元一次方程组.22.在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.【考点】一元二次方程的应用;分式方程的应用.【分析】(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x﹣80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.【解答】解:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x﹣80)元,根据题意得=,解得x=400.经检验,x=400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y,根据题意得400(1﹣y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去).答:平均每次降价10%.【点评】本题考查了一元二次方程与分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.【考点】旋转的性质;勾股定理;菱形的性质.【专题】计算题;证明题.【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE 为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CF;(2)解:∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=﹣1.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.24.如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AF=6,EF=2,求⊙O 的半径长.【考点】切线的性质;等腰三角形的判定与性质.【分析】(1)根据切线的性质得OC⊥AD,而AD⊥DP,则肯定判断OC∥AD,根据平行线的性质得∠DAC=∠OCA,加上∠OAC=∠OCA,所以∠OAC=∠DAC;(2)根据圆周角定理由AB为⊙O的直径得∠ACB=90°,则∠BCE=45°,再利用圆周角定理得∠BOE=2∠BCE=90°,则∠OFE+∠OEF=90°,易得∠CFP+∠OEF=90°,再根据切线的性质得到∠OCF+∠PCF=90°,而∠OCF=∠OEF,根据等角的余角相等得到∠PCF=∠CFP,于是可判断△PCF是等腰三角形;(3)连结OE.由AB为⊙O的直径,得到∠ACB=90°,根据角平分线的定义得到∠BCE=45°,设⊙O 的半径为r,则OF=6﹣r,根据勾股定理列方程即可得到结论.【解答】(1)证明:∵PD为⊙O的切线,∴OC⊥DP,∵AD⊥DP,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=∠DAC,∴AC平分∠DAB;(2)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°,∴∠BOE=2∠BCE=90°,∴∠OFE+∠OEF=90°,而∠OFE=∠CFP,∴∠CFP+∠OEF=90°,∵OC⊥PD,∴∠OCP=90°,即∠OCF+∠PCF=90°,而∠OCF=∠OEF,∴∠PCF=∠CFP,∴△PCF是等腰三角形;(3)解:连结OE.∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°,∴∠BOE=90°,即OE⊥AB,设⊙O 的半径为r,则OF=6﹣r,在Rt△EOF中,∵OE2+OF2=EF2,∴r2+(6﹣r)2=(2)2,解得,r1=4,r2=2,当r1=4时,OF=6﹣r=2(符合题意),当r2=2时,OF=6﹣r=4(不合题意,舍去),∴⊙O的半径r=4.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和等腰三角形的判定.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.25.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)设P(x,y),PD的长度为l,求l与x的函数关系式,并求l的最大值;(3)当△ADP是直角三角形时,求点P的坐标.【考点】二次函数综合题.【分析】(1)设y=a(x﹣2)2﹣1,将C(0,3)代入求得a的值,从而得到抛物线的解析式;(2)令y=0,得x2﹣4x+3=0,求得方程方程的解,从而可得到点A、B的坐标,设直线AC的函数关系式为y=mx+n,将A(3,0),C(0,3)代入可求得m、n的值,故此可得到AC的解析式为y=﹣x+3上,设D(x,﹣x+3),P(x,x2﹣4x+3),然后依据l=D y ﹣P y列出l与x的函数关系式,依据二次根式的性质可求得PD的最大值;(3)①当点P为直角顶点时,点P与点B重合,②当点A为直角顶点时,可证明∠DAO=∠PAO,然后可证明点D与P关于x轴对称,设D(x,﹣x+3),P(x,x2﹣4x+3),依据关于x轴对称点的纵坐标互为相反数可列出关于x的方程,从而可求得x的值,故此可求得点P的坐标.【解答】解:(1)∵抛物线的顶点为Q(2,﹣1),∴设y=a(x﹣2)2﹣1,将C(0,3)代入上式得3=a(0﹣2)2﹣1,解得:a=1,∴y=(x﹣2)2﹣1,即y=x2﹣4x+3.(2)令y=0,得x2﹣4x+3=0,解得x1=1,x2=3,∵点A在点B的右边,∴A (3,0),B(1,0)设直线AC的函数关系式为y=mx+n,将A(3,0),C(0,3)代入上式得,,解得:,∴y=﹣x+3.∵D在y=﹣x+3上,P在y=x2﹣4x+3上,且PD∥y轴,∴D(x,﹣x+3),P(x,x2﹣4x+3),∴l=PD=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x=∴当时,l取得最大值为.(3)分两种情况:①当点P为直角顶点时,如图1,点P与点B重合,由(2)可知B(1,0),∴P(1,0).②当点A为直角顶点时,如图2,∵OA=OC,∠AOC=90°,∴∠OAD=45°,当∠DAP=90°时,∠OAP=45°,∴AO平分∠DAP,又∵PD∥y轴,∴PD⊥AO,∴P与D关于x轴对称,∵D(x,﹣x+3),P(x,x2﹣4x+3),∴(﹣x+3)+(x2﹣4x+3)=0,整理得x2﹣5x+6=0,∴x1=2,x2=3(舍去),当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1,∴P的坐标为P(2,﹣1).∴满足条件的P点坐标为P(1,0),P(2,﹣1).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数、一次函数的解析式,二次函数的性质、依据l=D y﹣P y列出l与x的函数关系式是解答问题(2)的关键,证得点D与P关于x轴对称,利用关于x轴对称点的特点列出关于x的方程是解答问题(3)的关键.。
九年级上册周口数学全册期末复习试卷(培优篇)(Word 版 含解析) 一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.有一组数据5,3,5,6,7,这组数据的众数为( )A .3B .6C .5D .73.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .105C .33D .10104.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .10 5.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.6.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25 C .35 D .45 7.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.8.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .9.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定10.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50° 11.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .12 12.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的 13.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④14.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .215.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( )A .点M 在⊙C 上B .点M 在⊙C 内 C .点M 在⊙C 外D .点M 不在⊙C 内二、填空题16.一元二次方程290x 的解是__.17.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号) 18.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________19.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm .20.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.21.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.22.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.23.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.24.点P 在线段AB 上,且BP AP AP AB=.设4AB cm =,则BP =__________cm . 25.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.26.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.27.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.28.已知234x y z x z y+===,则_______ 29.如图,在△ABC 中,P 是AB 边上的点,请补充一个条件,使△ACP ∽△ABC ,这个条件可以是:___(写出一个即可),30.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题31.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE=ED ;(2)若AB=10,∠CBD=36°,求AC 的长.32.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A 类(12≤m ≤15),B 类(9≤m ≤11),C 类(6≤m ≤8),D 类(m ≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为 ,扇形统计图中A 类所对的圆心角是 度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C 类的有多少名?33.解方程:(1)x 2﹣2x ﹣1=0;(2)(2x ﹣1)2=4(2x ﹣1).34.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y (件)与销售单价 x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?35.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .四、压轴题36.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 .问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.37.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为(5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒; ()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.38.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点.(1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.39.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GD GO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F .(1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,求出∠DFB =∠FEC ,证△DBF ∽△FCE ,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =5,∵沿DE 折叠A 落在BC 边上的点F 上,∴△ADE ≌△FDE ,∴∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,CE =y ,AE =5﹣y ,∵BF =2,BC =5,∴CF =3,∵∠C =60°,∠DFE =60°,∴∠EFC +∠FEC =120°,∠DFB +∠EFC =120°,∴∠DFB =∠FEC ,∵∠C =∠B ,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.C解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.3.A解析:A【解析】【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【详解】解:如图作CD⊥AB于D,,tanA=12 CDAD==,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.A解析:A【解析】【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可.【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2,∵弦AB CD ⊥,∴AE=BE=4,由勾股定理得出:()22242r r =+-,解得:r=5,故答案为:A.【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答. 5.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.6.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是25. 故选B.考点:概率. 7.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 8.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.9.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.10.B解析:B【解析】【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.11.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.12.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.13.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD=,∴CD AE=,CAD ACE∴∠=∠,∴=,PC PAAB是直径,∴∠=︒,ACQ90∠+∠=︒,∴∠+∠=︒,90CAP CQPACP QCP90∴∠=∠,PCQ PQC∴==,PC PQ PAACQ∠=︒,90∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BAD90AFP ADB∠=∠,∴∆∆∽,APF ABD∴AP AF=,AB AD∴⋅=⋅,AP AD AF AB∠=∠=︒,AFC ACB∠=∠,90CAF BAC∴∆∆∽,ACF ABC可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∴∆∆∽,可得2CAQ CBA=⋅,AC CQ CB∴⋅=⋅.故④正确,AP AD CQ CB故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.14.D解析:D【解析】【分析】先证明△ABD 为等腰直角三角形得到∠ABD =45°,BD =2AB ,再证明△CBD 为等边三角形得到BC =BD =2AB ,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,从而得到下面圆锥的侧面积.【详解】∵∠A =90°,AB =AD ,∴△ABD 为等腰直角三角形,∴∠ABD =45°,BD =2AB ,∵∠ABC =105°,∴∠CBD =60°,而CB =CD ,∴△CBD 为等边三角形,∴BC =BD =2AB ,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,∴下面圆锥的侧面积=2×1=2.故选D .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.15.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268 ,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.二、填空题16.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键. 17.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P是线段AB的黄金分割点(AP>BP)∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.18.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵C 解析:32【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵CF 是⊙O 的切线,∴AF=EF ,BC=EC ,∴FC=AF+DC ,设AF=x ,则,DF=2-x ,∴CF=2+x ,在RT △DCF 中,CF 2=DF 2+DC 2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.19.2-2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=12AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则=)21cm,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的12,难度一般.20.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.21.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算. 22.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==,∴12 EG BEAG AF==,∴211,24BEG BEGABG AFGS SEG BES AG S AF∆∆∆∆⎛⎫====⎪⎝⎭,∵1BEGS∆=,∴2ABGS∆=,4AFGS∆=,∴6ABF ABG AFGS S S∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 23.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BDAB==.24.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(625)-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.25.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,解析:5【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC =, ∴3AB =∴5AB =【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.26.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC =. 【详解】解:这个条件为:∠B=∠P∵∠PAB =∠QAC ,∴∠PAQ=∠BAC∵∠B=∠P ,∴△APQ ∽△ABC ,故答案为:∠B=∠P 或∠C=∠Q 或AP AQ AB AC =. 【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键. 27.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m +1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.28.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.29.∠ACP=∠B (或).【解析】【分析】由于△ACP 与△ABC 有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解析:∠ACP=∠B (或AP AC AC AB =). 【解析】【分析】由于△ACP 与△ABC 有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB ,∴当∠ACP=∠B 时,△ACP ∽△ABC ; 当AP AC AC AB=时,△ACP ∽△ABC . 故答案为:∠ACP=∠B (或AP AC AC AB =). 【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.30.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题31.(1)证明见解析;(2)2ACπ=【解析】【分析】【详解】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.详证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴AC BD=,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AC=7252 180ππ⨯=.点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.32.(1)50,72;(2)作图见解析;(3)90.【解析】【分析】(1)用A类学生的人数除以A类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C类的的学生所占得百分比即可得答案.【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C 类的有90名.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.33.(1)x =22;(2)x =52或x =12. 【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x 2﹣2x ﹣1=0,∴x 2﹣2x +1=2,∴(x ﹣2)2=2,∴x =2.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0, ∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.34.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b+⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.35.(1)见解析;(2)-2【解析】【分析】(1)连接AO 并延长至1A ,使1AO 2AO =,同理作出点B ,C 的对应点,再顺次连接即可;(2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可.【详解】(1)如图;(2)根据题意可得出()13,2A --,()12,0B -,()11,0C -, 设11A B 与x 轴的夹角为α,∴()111tan tan 180αtan α2A BC ∠=-=-=-. 【点睛】本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键.四、压轴题36.(1)4;(2)52;(3)600(2+1). 【解析】 【分析】(1)如图①中,证明△EOB ≌△FOC 即可解决问题;(2)如图②中,连接BD ,取AC 的中点O ,连接OB ,OD .利用四点共圆,证明∠DBQ =∠DAC =45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC 绕点D 顺时针旋转90°得到△EDA ,首先证明AB +BC +BD =(2+1)BD ,当BD 最大时,AB +BC +BD 的值最大. 【详解】解:(1)如图①中,∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°, ∵∠EOF =90°, ∴∠EOF =∠BOC , ∴∠EOB =∠FOC , ∴△EOB ≌△FOC (SAS ), ∴S △EOB =S △OFC , ∴S 四边形OEBF =S △OBC =14•S 正方形ABCD =4, 故答案为:4;(2)如图②中,连接BD ,取AC 的中点O ,连接OB ,OD .。
1-x CBE∠tan 2015—2016学年度上学期期中学情调研试卷九年级数学注意事项: 1、本试卷分试题和答题卡两部分。
共三大题,满分120分,考试时间100分钟。
2、考生应首先阅读答题卡上的文字信息,将姓名、准考证号填写清楚,在对应方框内粘贴好条形码。
3、考生在答题卡上作答,选择题用2B 铅笔将对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
其余题目请用黑色水笔在答题卡上相应区域作答,在试题卷上作答无效。
4、考试结束,考生将答题卡交回,试卷不再上交。
一、选择题(每小题3分,共24分。
) 1. 若式子在实数范围内有意义,则x 的取值范围是【 】A. x<1B. x ≥1 C .x ≤-1 D. x<-12.一元二次方程022=--x x 的解是【 】A. 2,121==x xB. 2,121-==x xC. 2,121-=-=x x D . 2,121=-=x x3.一元二次方程0542=+-x x 的根的情况是 【 】A .有两个不相等的实数根 B. 有两个相等的实数根C. 只有一个实数根 D . 没有实数根4.如图,线段AB 两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为 【 】 A. (3,3) B. (4,3) C. (3,1) D. (4,1)5.如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF 等于 【 】A. 7B. 8C. 7.5D. 8.56.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1.8 m ,窗户下沿到地面的距离BC =1 m ,EC =1.2 m ,那么窗户的高AB 为 【 】A. 2.16mB. 1.86mC. 1.6mD. 1.5m7.在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O 、A 的对应点分别为点O 1、A 1.若点O (0,0)、A (1,4),则点O 1、A 1的坐标分别是 【 】A. (-2,0)(1,4) B . (-2,0)(-1,4) C. (0,0)(1,4) D. (0,0)(3,4)8.如图,直角三角形纸片的两直角边长分别为6和8,现按照如图那样折叠,使点A 与点B重合,折痕为DE ,则的值是【 】 A.724 B. 37 C.247 D.31 二、填空题(每小题3分,共21分)9.的结果是___________.10.已知45=b a ,则ba b a -+=_____________. 11. 已知锐角A 满足关系式03sin 7sin 22=+-A A ,则sinA 的值为________.12. 若最简二次根式10352--+a b a 和1133+-b a 是同类二次根式,则a+b 的值为__.13.若关于x 的方程x 2+(k+3)x+k=0的一个根是-2,则另一个根是 .14.如图,在△ABC 中,AB=AC=17,BC=16,M 是△ABC 的重心,则AM 的长度为 ___________.15. 如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是__________ .三、解答题(本大题共8个小题,满分75分)16.(8分)计算(每小题4分):(1) (2) ︒+⋅+-45cos 22182217.(8分)用适当的方法解下列方程(1)x 2-10x+9=0 (2)(x+2)(x-5)=118.(9分)如图,D 是△ABC 外一点,E 是BC 边上一点,∠1=∠2,∠3=∠4.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.19.(9分)已知关于x 的方程x 2+ax+a-2=0.(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.20.(9分)如图所示,在△ABC 中,∠C=90°,点D 、E 分别在AC 、AB 上,BD 平分∠ABC ,DE ⊥AB ,AE=6,53cosA .求:(1)DE 、CD 的长;(2)tan ∠DBC 的值。
河南省周口市2016届九年级上学期期末数学试卷’一、选择题(每小题3分,共24分)1.若关于的x方程x2+3x+a=0有一个根为﹣1,则a的值为()A.﹣4 B.﹣2 C.2 D.﹣42.抛物线y=x2﹣2x﹣3与x轴的交点为A,B,则AB=()A.1 B.2 C.3 D.43.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)4.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球5.经过矩形ABCD顶点A、D的圆与BC边相切,圆的半径为5,AD=8,则AB=()A.22 B.8 C.2或8 D.4或66.如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.247.如图,在△ABC中,AB=AC,∠A=36°,CD平分∠ACB交AB于点D,若CA=4,则CB的长是()A.2+2 B.+1 C.﹣1 D.2﹣28.如图,点A在由函数y=(﹣1)2(x﹣3n)(x﹣3n﹣3)(3n≤x<3n+3,为自然数)的图象组成的平滑曲线上,点B 在x轴上,且AB⊥x轴,若点B从原点O出发,沿x轴向右以每秒1个单位长的速度运动,则第2016秒时,点A的坐标是()A. B. C. D.二、填空题(每小题3分,共21分)9.若关于x的一元二次方程x2+2x+a=0有实数根,则a的取值范围是.10.抛物线y=ax2+bx+2经过点(﹣2,3),则3b﹣6a=.11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是.12.如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是.13.如图,AB是⊙O的直径,弦CD⊥AB,连接AC,∠CAB=22.5°,CD=2cm,则⊙O的半径为cm.14.如图,点A、B在函数y=(k>0,x>0)的图象上,将该函数图象向上平移1个单位长度得到一条新的曲线,点A,B的对应点分别为A′、B′.若A(m,4),B′(6,3),则曲线线段AB扫过的阴影部分的面积为.15.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,E为边AB的中点,点D是BC边上的动点,把△ACD沿AD 翻折,点C落在C′处,若△AC′E是直角三角形,则CD的长为.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:÷(﹣a),其中a是方程x2+2x+1=0的根.17.已知关于x的一元二次方程x2+2mx﹣1+m2=0.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值.18.如图,AB是半圆O的直径,点C是半圆上的一个动点,∠BAC的角平分线交圆弧于点D,半圆O在点D处的切线与直线AC交于点E.(1)求证:△ADE∽△ABD;(2)填空:①若ED:DB=:2,则AE:AB=;②连接OC、CD,当∠BAC的度数为时,四边形BDCO是菱形.19.某中学计划召开“感恩的心”主题教育活动,需要从2名男生和1名女生中选拔主持人.(1)小明认为,因为选出的主持人不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选人主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.20.某商场有A、B两种商品,A商品每件售价25元,B商品每件售价30元,B商品每件的成本是20元.根据市场调查“若按上述售价销售,该商场每天可以销售B商品100件,若销售单价毎上涨1元,B商品每天的销售量就减少5件.(1)请写出B商品每天的销售利润y(元)与销售单价(x)元之间的函数关系?(2)当销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?21.如图,已知抛物线y=﹣x2+x+2与x轴交于A、B两点(A左、右B),与y轴交于点C.(1)求证:△ABC是直角三角形;(2)在直线BC上方的抛物线上是否存在点P使得△PBC的面积等于△OBC的面积?并说明理由.22.如图1,在△ABC中,∠C=90°,点D在BC上,DE⊥AB于点E,点M是AD的中点,连接CM、EM.(1)问题发现:①线段CM、EM的数量关系是;②∠CME、∠CAB的数量关系是.(2)拓展探究:将△BED绕着点B旋转到图2的位置时,小明猜想(1)中的结论①②仍然成立,并尝试取AB的中点G和BD的中点F.作了△CGM和△MFE,请你证明小明的猜想.(3)问题解决:已知∠B=30°,BD=AC=4,当△BED旋转至A、D、E三点共线时,直接写出线段CM的长.23.如图,在平面直角坐标系xOy中,矩形OABC的OA、OC两边在坐标轴上,点B(4,2),D、E分别为BC、OA的中点,边AB、BC与双曲线y=(x>0)交于点F、G,点P在双曲线上点F、G两点之间,过点P作x轴的垂线交BC于点H,交直线CE于点I,连接DP、PA.设点P的横坐标为m.(1)请直接写出直线CE的解析式;(2)探索点P的位置时,小明发现:当点P在与G重合或D、P、I共线时,PD=PI.进而猜想:对于任意一点P.PD=PI 也成立.请你判断该猜想是否正确,并说明理由;(3)当m为何值时,AP+PI最小,并求出这个最小值.河南省周口市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.若关于的x方程x2+3x+a=0有一个根为﹣1,则a的值为()A.﹣4 B.﹣2 C.2 D.﹣4【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,把x=﹣1代入方程得到关于a的一次方程,然后解此一次方程即可.【解答】解:把x=﹣1代入方程x2+3x+a=0得1﹣3+a=0,解得a=2.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.抛物线y=x2﹣2x﹣3与x轴的交点为A,B,则AB=()A.1 B.2 C.3 D.4【考点】抛物线与x轴的交点.【专题】计算题.【分析】根据抛物线与x轴的交点问题,通过解方程x2﹣2x﹣3=0可得到A点和B点坐标,然后求两点间的距离即可.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以A点坐标为(﹣1,0),B点坐标为(3,0),所以AB=3﹣(﹣1)=4.故选D.【点评】本题考查了抛物线与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.3.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,可得关于原点的对称点,根据点的坐标向左平移减,可得答案.【解答】解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),故选:C.【点评】本题考查了点的坐标,关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减.4.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【考点】随机事件.【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选A.【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,5.经过矩形ABCD顶点A、D的圆与BC边相切,圆的半径为5,AD=8,则AB=()A.22 B.8 C.2或8 D.4或6【考点】切线的性质.【分析】本题要分当AD,BC在圆心的同侧和圆心的异侧两种情况分别讨论,如图连接OE,并反向延长交AD于点F,连接OA,由在矩形ABCD中,过A,D两点的⊙O与BC边相切于点E,易得四边形CDFE是矩形,由垂径定理可求得AF的长,由勾股定理可求出OF的长,进而可求出AB的长.【解答】解:当AD,BC在圆心的异侧时,连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴AB=EF,∵AD=8,∴AF=DF=4,∵AO=5,∴OF==3,∴AB=EF=3+5=8;当AD,BC在圆心的同侧时,可得AB=5﹣3=2,故选C.【点评】此题考查了切线的性质、垂径定理、矩形的性质以及勾股定理.注意准确作出辅助线是解此题的关键.6.如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24【考点】反比例函数图象上点的坐标特征;坐标与图形性质;待定系数法求一次函数解析式.【专题】代数几何综合题;待定系数法.【分析】根据已知点横坐标得出其纵坐标,进而求出直线AB的解析式,求出直线AB与x轴横坐标交点,即可得出△AOC 的面积.【解答】解:∵反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,∴x=﹣1,y=6;x=﹣3,y=2,∴A(﹣1,6),B(﹣3,2),设直线AB的解析式为:y=kx+b,则,解得:,则直线AB的解析式是:y=2x+8,∴y=0时,x=﹣4,∴CO=4,∴△AOC的面积为:×6×4=12.故选:C.【点评】此题主要考查了反比例函数图象上点的坐标特征以及待定系数法求一次函数解析式,得出直线AB的解析式是解题关键.7.如图,在△ABC中,AB=AC,∠A=36°,CD平分∠ACB交AB于点D,若CA=4,则CB的长是()A.2+2 B.+1 C.﹣1 D.2﹣2【考点】黄金分割.【分析】根据题意得到△ABC是黄金三角形,根据黄金分割的概念以及黄金比值计算即可.【解答】解:∵△ABC中,AB=AC,∠A=36°,∴△ABC是黄金三角形,∴BC=AC=2﹣2,故选:D.【点评】本题考查的是黄金三角形的知识以及黄金分割的概念,掌握叫做黄金比是解题的关键.8.如图,点A在由函数y=(﹣1)2(x﹣3n)(x﹣3n﹣3)(3n≤x<3n+3,为自然数)的图象组成的平滑曲线上,点B 在x轴上,且AB⊥x轴,若点B从原点O出发,沿x轴向右以每秒1个单位长的速度运动,则第2016秒时,点A的坐标是()A. B. C. D.【考点】二次函数图象与几何变换.【专题】规律型.【分析】根据函数的解析式求得函数与x轴的交点为(3n,0),(3n+3,0),即可求得相邻两交点的距离为3,因为2016÷3=672,是整数,即可求得当x=2016时,y的值为0,从而求得点A的坐标.【解答】解;∵函数y=(﹣1)2(x﹣3n)(x﹣3n﹣3)(3n≤x<3n+3,为自然数),∴函数图象与x轴的交点为(3n,0),(3n+3,0),∵3n+3﹣3n=3,2016÷3=672,∴当x=2016时,y的值为0,∴A的坐标为,故选A.【点评】本题考查了二次函数图象与几何变换,求得图象与x轴的相邻两交点之间的距离是解题的关键.二、填空题(每小题3分,共21分)9.若关于x的一元二次方程x2+2x+a=0有实数根,则a的取值范围是a≤1.【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2﹣4ac≥0.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故答案为a≤1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.抛物线y=ax2+bx+2经过点(﹣2,3),则3b﹣6a=.【考点】二次函数图象上点的坐标特征.【分析】先把点(﹣2,3)代入y=ax2+bx+2得:4a﹣2b+2=3,即2b﹣4a=﹣1,再利用等式的性质在两边同乘以,即可解答.【解答】解:把点(﹣2,3)代入y=ax2+bx+2得:4a﹣2b+2=3,2b﹣4a=﹣1,3b﹣6a=﹣,故答案为:﹣.【点评】本题考查了二次函数图象上点的坐标特征,把点的坐标代入函数解析式求出a、b的关系式是解题的关键,主要利用了整体思想.11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是10.【考点】利用频率估计概率.【分析】根据在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,n=10.故估计n大约有10个.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.解题的关键是根据黄球的频率得到相应的等量关系.12.如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是(0,﹣1).【考点】坐标与图形变化-旋转.【分析】根据旋转的性质,找两组对应点的垂直平分线的交点即为旋转中心.【解答】解:由图可知,对应点A、D与对应点B、E的连线的垂直平分线相交于点(0,﹣1),所以,这点的坐标是(0,﹣1).故答案为:(0,﹣1).【点评】本题考查了坐标与图形变化﹣旋转,熟练掌握旋转变换的性质,特别是旋转中心的确定方法是解题的关键.13.如图,AB是⊙O的直径,弦CD⊥AB,连接AC,∠CAB=22.5°,CD=2cm,则⊙O的半径为cm.【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】连接OC,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=1cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=cm,故答案为:.【点评】此题考查了垂径定理,等腰直角三角形的判定与性质,圆周角定理;熟练掌握垂径定理,证明△COE是等腰直角三角形是解本题的关键.14.如图,点A、B在函数y=(k>0,x>0)的图象上,将该函数图象向上平移1个单位长度得到一条新的曲线,点A,B的对应点分别为A′、B′.若A(m,4),B′(6,3),则曲线线段AB扫过的阴影部分的面积为3.【考点】反比例函数的性质.【分析】根据平移的性质和反比例函数图象上点的坐标特征进行解答.【解答】解:依题意得:B(6,2).则k=6×2=12.所以该函数解析式为:y=.把A(m,4)代入得到:4=,故m=3.所以A(3,4),则图中阴影部分的面积为:1×(6﹣3)=3.故答案是:3.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.15.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,E为边AB的中点,点D是BC边上的动点,把△ACD沿AD 翻折,点C落在C′处,若△AC′E是直角三角形,则CD的长为2或.【考点】翻折变换(折叠问题).【分析】在图1中构造正方形ACMN,在RT△DEM中即可解决问题,在图2中也要证明四边形ACDC′是正方形解决问题.【解答】解:如图1,当∠AC′E=90°时,作EM⊥BC垂足为M,作AN⊥ME于N.∵∠C=∠EMB=90°,∴EM∥AC,∵AE=EB,∴MB=MC=BC=2,∴EM=AC=1,∵∠C=∠CMN=∠N=90°,∴四边形ACMN是矩形,∵AC=CM=2,∴四边形ACMN是正方形,在RT△ABC中,∵AC=2,BC=4,∴AB==2,AE=,在RT△AC′E中,∵AE=,AC′=AC=2,∴C′E==1,设CD=C′D=x,在RT△EDM中,∵DE=1+x,EM=1,DM=2﹣x,∴DE2=DM2+EM2,∴(1+x)2=(2﹣x)2+12,∴x=.如图2,当∠AC′E=90°时,∵∠AC′D=90°,∴C′、E、D共线,在RT△AC′E中,∵AE=,AC′=AC=2,∴EC′==1,∵ED=1,∴EC′=ED,∵AE=EB,∠AEC′=∠BED,EC′=ED,∴△AC′E≌△BDE,∴∠BDE=∠C′=90°,∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′是矩形,∴AC=AC′,∴四边形ACDC′是正方形,∴CD=AC=2,故答案为2或.【点评】本题考查图形翻折、正方形、勾股定理、全等三角形等知识,构造正方形是解决这个题目的关键.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:÷(﹣a),其中a是方程x2+2x+1=0的根.【考点】分式的化简求值;解一元二次方程-配方法.【分析】先根据分式混合运算的法则把原式进行化简,再根据a是方程x2+2x+1=0的根得出a2+2a=﹣1代入原式进行计算即可.【解答】解:原式=÷=•=,∵a是方程x2+2x+1=0的根,∴a2+2a=﹣1,原式=1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.已知关于x的一元二次方程x2+2mx﹣1+m2=0.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值.【考点】根的判别式;一元二次方程的解.【分析】(1)根据a=1,b=2m,c=﹣1+m2,求出△=b2﹣4ac的值,进而作出判断;(2)把x=1代入方程列出m的一元二次方程,因式分解法解方程即可.【解答】(1)证明:∵a=1,b=2m,c=﹣1+m2,∴△=b2﹣4ac=(2m)2﹣4(﹣1+4m2)=4>0,∴对于任意实数m,方程总有两个不相等的实数根;(2)当x=1时,m2+2m=0,解得m等于0或﹣2.【点评】本题主要考查了根的判别式以及一元二次方程的解的知识,解答本题的关键是掌握根的判别式△与根个数的关系以及解一元二次方程的方法步骤,此题难度不大.18.如图,AB是半圆O的直径,点C是半圆上的一个动点,∠BAC的角平分线交圆弧于点D,半圆O在点D处的切线与直线AC交于点E.(1)求证:△ADE∽△ABD;(2)填空:①若ED:DB=:2,则AE:AB=3:4;②连接OC、CD,当∠BAC的度数为60°时,四边形BDCO是菱形.【考点】圆的综合题.【分析】(1)连接OD,根据切线的性质得到OD⊥DE,根据角平分线的定义和已知以及平行线的判定得到OD∥AE,得到∠E=90°,根据相似三角形的判定定理证明;(2)作DG⊥AB于G,根据相似三角形的面积比等于相似比的平方求出△ADE与△ABD的面积比,根据三角形的面积公式计算即可;(3)根据菱形的判定定理和等边三角形的性质解答即可.【解答】(1)证明:如图1,连接OD,∵AD是∠BAC的角平分线,∴∠EAD=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠EAD=∠ODA,∴OD∥AE,∵DE是圆O的切线,∴OD⊥DE,∴∠E=90°,∵AB是半圆O的直径,∴∠ADB=90°,∴∠EAD=∠DAB,∠E=∠ADB,∴△ADE∽△ABD;(2)①如图2,作DG⊥AB于G,∵AD是∠BAC的角平分线,∠E=90°,DG⊥AB,∴DE=DG,∵△ADE∽△ABD,ED:DB=:2,∴△ADE与△ABD的面积比为3:4,即=,∴AE:AB=3:4;②如图3,当四边形BDCO是菱形时,∴BD=OC,CD∥OB,当CD∥OB时,BD=AC,则△AOC为等边三角形,故∠BAC=60°时,四边形BDCO是菱形.故答案为:①3:4;②60°.【点评】本题考查的是圆的切线的性质、角平分线的性质、相似三角形的判定和性质以及菱形的判定,掌握圆的切线垂直于过切点的半径、相似三角形的面积比等于相似比的平方是解题的关键.19.某中学计划召开“感恩的心”主题教育活动,需要从2名男生和1名女生中选拔主持人.(1)小明认为,因为选出的主持人不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选人主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.【考点】列表法与树状图法.【分析】(1)根据概率的意义解答即可;(2)画出树状图,然后根据概率的意义列式计算即可得解.【解答】解:(1)不同意他的说法.理由如下:∵有2名男生和1名女生,∴主持人是男生的概率=,主持人是女生的概率=;(2)画出树状图如下:一共有6种情况,恰好是1名男生和1名女生的有4种情况,所以,P(恰好是1名男生和1名女生)==.【点评】本题考查了列表法与树状图,用到的知识点为:概率=所求情况数与总情况数之比.20.某商场有A、B两种商品,A商品每件售价25元,B商品每件售价30元,B商品每件的成本是20元.根据市场调查“若按上述售价销售,该商场每天可以销售B商品100件,若销售单价毎上涨1元,B商品每天的销售量就减少5件.(1)请写出B商品每天的销售利润y(元)与销售单价(x)元之间的函数关系?(2)当销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?【考点】二次函数的应用;二次函数的最值;根据实际问题列二次函数关系式.【专题】应用题;函数思想;二次函数的应用.【分析】(1)根据题意表示出B商品的销售量,依据:B商品利润=B商品单件利润×B商品每天的销售量,列出函数关系式;(2)将(1)函数关系式配方得其顶点式,依据顶点式可知最大利润.【解答】解:(1)根据题意,当B商品的销售单价为x元时,其每天销售量为:100﹣5(x﹣30)件,则B商品每天的销售利润y=(x﹣20)[100﹣5(x﹣30)]=﹣5x2+350x﹣5000,故B商品每天的销售利润y(元)与销售单价(x)元之间的函数关系式为:y=﹣5x2+350x﹣5000;(2)由y=﹣5x2+350x﹣5000得:y=﹣5(x﹣35)2+1125,∵﹣5<0,∴当x=35时,y取得最大值,最大值为1125,答:当销售单价为35元时,B商品每天的销售利润最大,最大利润是1125元.【点评】本题主要考查二次函数的应用,找到等量关系并依据等量关系列出解析式是关键.21.如图,已知抛物线y=﹣x2+x+2与x轴交于A、B两点(A左、右B),与y轴交于点C.(1)求证:△ABC是直角三角形;(2)在直线BC上方的抛物线上是否存在点P使得△PBC的面积等于△OBC的面积?并说明理由.【考点】抛物线与x轴的交点.【专题】计算题.【分析】(1)先通过解方程﹣x2+x+2=0得A(﹣1,0),B(4,0),再求自变量为0时的函数值得到C(0,2),接着根据两点间的距离公式计算出AC2=5,AB2=25,BC2=20,然后利用勾股定理的逆定理可证明△ABC为直角三角形;(2)过P作PD⊥x轴交BC于点D,如图,先利用待定系数法求出直线BC的解析式为y=﹣x+2,利用抛物线上点的坐标特征,设P(t,﹣t2+t+2),0<t<3,则D(t,﹣t+2),于是可表示出PD=﹣t2+2t,然后利用S△PCB=S△PDB+S△PDC得到S△PCB=﹣t2+4t,而S△OBC=4,所以﹣t2+4t=4,再求方程得t=2,所以可判断在直线BC上方的抛物线上存在点P 使得△PBC的面积等于△OBC的面积.【解答】(1)证明:当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则A(﹣1,0),B(4,0),当x=0时,y=﹣x2+x+2=2,则C(0,2),所以AC2=12+22=5,AB=4﹣(﹣1)=5,即AB2=25,BC2=42+22=20,因为AC2+BC2=AB2,所以△ABC为直角三角形;(2)解:存在.理由如下:过P作PD⊥x轴交BC于点D,如图,设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,所以直线BC的解析式为y=﹣x+2,设P(t,﹣t2+t+2),0<t<3,则D(t,﹣t+2),所以PD=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t因为S△PCB=S△PDB+S△PDC=×4×(﹣t2+2t)=﹣t2+4t,S△OBC=×2×4=4,所以﹣t2+4t=4,解得t=2,此时P点坐标为(2,3),所以在直线BC上方的抛物线上存在点P使得△PBC的面积等于△OBC的面积.【点评】本题考查了抛物线与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.解决(2)小题的关键把△BPC化为两个三角形计算面积.22.如图1,在△ABC中,∠C=90°,点D在BC上,DE⊥AB于点E,点M是AD的中点,连接CM、EM.(1)问题发现:①线段CM、EM的数量关系是CM=ME;②∠CME、∠CAB的数量关系是∠CME=2∠CAB.(2)拓展探究:将△BED绕着点B旋转到图2的位置时,小明猜想(1)中的结论①②仍然成立,并尝试取AB的中点G和BD的中点F.作了△CGM和△MFE,请你证明小明的猜想.(3)问题解决:已知∠B=30°,BD=AC=4,当△BED旋转至A、D、E三点共线时,直接写出线段CM的长.【考点】几何变换综合题.【分析】(1)运用直角三角形斜边中线等于斜边一半,进行分析即可;(2)运用直角三角形斜边中线等于斜边一半和中位线定理证明全等三角形,进一步得出结论;(3)运用30°的三角函数求出AB,BE,和AE的长度结合前面结论进一步求解即可.【解答】解:(1)①CM=ME;②∠CME=2∠CAB;(2)∵AB的中点G和BD的中点F,点M是AD的中点,∴CG=BG,MG∥BD,MG=DB=BF,EF=DB=BF,MF=AB=BG,∴∠CGA=2∠ABC,CG=MF,MG=EF,∵∠CGM=∠CGA+∠AGM=2∠ABC+∠ABD,∠MFE=∠MFD+∠DFE=∠ABD+2∠DBE,而∠ABC=∠DBE,∴∠CGM=∠MFE.在△CGM和△MFE中,,∴△CGM≌△MFE.∴CM=ME,∠EMF=∠MCG.∴∠CME=∠CMG+∠GMF+∠EMF=∠CMG+∠MGA+∠MCG=180°﹣∠AGC=2∠BAC.(3)∵∠B=30°,BD=AC=4,∴AB=8,BE=2,DE=2,如图1,AE==2,CM=ME=(AE+DE)=(2+2)=+1,如图2,AE==2CM=ME=(AE﹣DE)=(2﹣2)=﹣1,综上所述:线段CM的长为:+1或﹣1.【点评】此题主要考查图形的旋转综合问题,知道直角三角形斜边中线等于斜边一半会产生等腰三角形,会用三角形外角的性质,会解直角三角形,能数练证明三角形期全等是解题的关键.23.如图,在平面直角坐标系xOy中,矩形OABC的OA、OC两边在坐标轴上,点B(4,2),D、E分别为BC、OA的中点,边AB、BC与双曲线y=(x>0)交于点F、G,点P在双曲线上点F、G两点之间,过点P作x轴的垂线交BC于点H,交直线CE于点I,连接DP、PA.设点P的横坐标为m.(1)请直接写出直线CE的解析式;(2)探索点P的位置时,小明发现:当点P在与G重合或D、P、I共线时,PD=PI.进而猜想:对于任意一点P.PD=PI 也成立.请你判断该猜想是否正确,并说明理由;(3)当m为何值时,AP+PI最小,并求出这个最小值.【考点】反比例函数综合题.【分析】(1)先求出C、E的坐标,再利用待定系数法求出直线CE的解析式即可;(2)设P(m,n),根据点P在双曲线y=(x>0)上得出mn=2,用mn表示出PI,DH,PH的长,再根据勾股定理得出PD的长,进而可得出结论;(3)连接DA,根据AP+PI=AP+PD≥DA可知A、P、D共线时取等号,直线DA的方程为y=﹣x+4,联立方程组求出m的值即可得出结论.【解答】解:(1)∵矩形OABC的OA、OC两边在坐标轴上,点B(4,2),E为OA的中点,∴C(0,2),E(2,0),∴设直线CE的解析式为y=kx+b(k≠0),∴,解得,∴直线CE的解析式为y=﹣x+2;(2)设P(m,n),∵点P在双曲线y=(x>0)上,∴mn=2,PI=n﹣(﹣m+2)=m+n﹣2,DH2=(2﹣m)2,PH2=(2﹣n)2,∴PD2=DH2+PH2=(m﹣2)2+(2﹣n)2=(m+n﹣2)2,即PD=m+n﹣2.∴PD=PI;(3)连接DA,∵AP+PI=AP+PD≥DA,∴A、P、D共线时取等号.直线DA的方程为y=﹣x+4,联立方程组,解得m=2+或m=2﹣(舍去).∴当m=2+时,AP+PI有最小值=AD===2.【点评】本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点、矩形的性质及用待定系数法求一次函数的解析式、勾股定理等知识,难度适中.。
九年级上册周口数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .23.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=4.若x=2y ,则xy的值为( )A .2B .1C .12D .135.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .196.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25 C .35 D .457.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤8.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43B .23C .33D .329.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C 2D .210.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 1 2y5 03-4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .411.方程2x x的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-112.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为()A.12×108B.1.2×108C.1.2×109D.0.12×109二、填空题13.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.14.如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.15.已知∠A=60°,则tan A=_____.16.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(53,0)、B(0,4),则点B2020的横坐标为_____.17.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.18.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.19.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________. 20.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.21.若32x y =,则x y y+的值为_____. 22.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.23.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)24.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题25.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A .(1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P 是抛物线上的一动点,以P 为圆心、PM 为半径的圆与x 轴相交于E 、F 两点,若PEF ∆的面积为26,请直接写出点P 的坐标. 26.如图,分别以△ABC 的边AC 和BC 为腰向外作等腰直角△DAC 和等腰直角△EBC ,连接DE .(1)求证:△DAC ∽△EBC ; (2)求△ABC 与△DEC 的面积比.27.如图是输水管的切面,阴影部分是有水部分,其中水面AB 宽10cm ,水最深3cm ,求输水管的半径.28.市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x =45时,y =10;x =55时,y =90.在销售过程中,每天还要支付其他费用500元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式; (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元? 29.解方程(1)(x +1)2﹣25=0 (2)x 2﹣4x ﹣2=030.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP = 时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)31.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.32.如图示,在平面直角坐标系中,二次函数26y ax bx =++(0a ≠)交x 轴于()4,0A -,()2,0B ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)点D 是第二象限内的点抛物线上一动点 ①求ADE ∆面积最大值并写出此时点D 的坐标; ②若1tan 3AED ∠=,求此时点D 坐标; (3)连接AC ,点P 是线段CA 上的动点.连接OP ,把线段PO 绕着点P 顺时针旋转90︒至PQ ,点Q 是点O 的对应点.当动点P 从点C 运动到点A ,则动点Q 所经过的路径长等于______(直接写出答案)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【详解】∵四边形ABCD内接于⊙O,∠A=400,∴∠C=1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.3.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 4.A解析:A【解析】【分析】将x=2y代入xy中化简后即可得到答案.【详解】将x=2y代入xy得:22x yy y==,故选:A.【点睛】此题考查代数式代入求值,正确计算即可. 5.B解析:B【解析】试题分析:∵DE∥BC,∴AD DEAB BC=,∵13ADAB=,∴31DEBC=.故选B.考点:平行线分线段成比例.6.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.解析:B 【解析】 【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可. 【详解】解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.8.C解析:C 【解析】 【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO , ∴1DO 2=,32AD =, ∴223BD 2OB OD =-=, ∴BC 3= ∴1333322ABCS=⨯=. 故选:C . 【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.解析:A 【解析】 【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案. 【详解】 令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+, ∵20>,∴当5m =时,2PB 有最小值为:2,即PB , ∵A 、B 为抛物线的对称点,对称轴为y 轴, ∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A . 【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.10.B解析:B 【解析】 【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点. 11.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x =,方程整理,得,x 2-x=0因式分解得,x (x-1)=0,于是,得,x=0或x-1=0,解得x 1=0,x 2=1,故选:C .【点睛】本题考查了解一元二次方程,因式分解法是解题关键.12.B解析:B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】120 000 000=1.2×108,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题13.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.14.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.15.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB2222513433 OB OA⎛⎫=+=+=⎪⎝⎭,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.17.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.18.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x 1x- 解得x =13, ∴阴影部分面积为:S △ABC =12×13×1=16, 故答案为:16. 【点睛】 本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.19.50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.20.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.21..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键. 解析:52. 【解析】【分析】 根据比例的合比性质变形得: 325.22x y y ++==【详解】∵32xy=,∴325.22 x yy++==故答案为:5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.22.140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.23.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=×6π×5=15πcm2. 故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2. 故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键. 24.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.三、解答题25.(1)0b =,1c =-;(2)()0,4M ;(3)()4,1P 或()4,1-或()0,1-【解析】【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b ,c 的二元一次方程组求解即可(2) 过点C 作CD l ⊥,过点A 作AE l ⊥.证明△CMD 相似于△AME ,再根据对应线段成比例求解即可(3)根据题意设点P 的纵坐标为y ,首先根据三角形面积得出EF 与y 的关系,再利用勾股定理得出EF与y的关系,从而得出y的值,再代入抛物线解析式求出x的值,得出点坐标.【详解】解:(1)把()4,1A和()0,1-代入218y x bx c=++得:1241b cc=++⎧⎨-=⎩解方程组得出:1bc=⎧⎨=-⎩所以,b=,1c=-(2)由已知条件得出C点坐标为2310,2C⎛⎫⎪⎝⎭,设()0,M n.过点C作CD l⊥,过点A作AE l⊥.两个直角三角形的三个角对应相等,∴CMD AME∆∆∽∴CD MDAE ME=∴2310214nn-=-∵解得:4n=∴()0,4M(3)设点P的纵坐标为y,由题意得出,1262EF y⨯⨯=46EF=∵MP与PE都为圆的半径,∴MP=PE∴()2228y84()2EFy y++-=+整理得出,∴EF46=∵46EFy=∴y=±1,∴当y=1时有,21118x =-,解得,x 4=±; ∴当y=-1时有,21118x -=-,此时,x=0 ∴综上所述得出P 的坐标为:()4,1P 或()4,1-或()0,1-【点睛】本题是一道关于二次函数的综合题目,考查的知识点有二元一次方程组的求解、相似三角形的性质等,巧妙利用数形结合是解题的关键.26.(1)见解析;(2)12 【解析】【分析】(1)利用等腰直角三角形的性质证明△DAC ∽△EBC ;(2)依据△DAC ∽△EBC 所得条件,证明△ABC 与△DEC 相似,通过面积比等于相似比的平方得到结果.【详解】(1)证明:∵△EBC 是等腰直角三角形∴BC =BE ,∠EBC =90°∴∠BEC =∠BCE =45°.同理∠DAC =90°,∠ADC =∠ACD =45°∴∠EBC =∠DAC =90°,∠BCE =∠ACD =45°.∴△DAC ∽△EBC .(2)解:∵在Rt △ACD 中, AC 2+AD 2=CD 2,∴2AC 2=CD 2∴AC CD =, ∵△DAC ∽△EBC ∴AC BC =DC EC , ∴EC BC =DC AC, ∵∠BCE =∠ACD∴∠BCE -∠ACE =∠ACD -∠ACE ,即∠BCA =∠ECD ,∵在△DEC 和△ABC 中,EC BC =DC AC,∠BCA =∠ECD , ∴△DEC ∽△ABC , ∴S △ABC :S △DEC =2DC AC ⎛⎫ ⎪⎝⎭=12. 【点睛】本题考查了相似三角形的判定和性质,以及相似三角形的面积比等于相似比的平方,解题的关键在于利用(1)中的相似推导出第二对相似三角形.27.173cm【解析】【分析】设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,由垂径定理可求出BD 的长,再根据最深地方的高度是3cm得出OD的长,根据勾股定理即可求出OB的长.【详解】解:设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,则AD=BD=12AB=12×10=5cm,∵最深地方的高度是3cm,∴OD=r﹣3,在Rt△OBD中,OB2=BD2+OD2,即2r=52+(r﹣3)2,解得r=173(cm),∴输水管的半径为173cm.【点睛】本题考查了垂径定理,构造圆中的直角三角形,灵活利用垂径定理是解题的关键. 28.(1)y=﹣2x+200(30≤x≤60);(2)W=﹣2x2+260x﹣6500;(3)当销售单价为60元时,该公司日获利最大为1900元.【解析】【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单个利润×销售量-500列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【详解】(1)设y=kx+b,∵x=45时,y=10;x=55时,y=90,∴45110 5590k bk b+=⎧⎨+=⎩,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)∵售价为x元/千克,进价为30元/千克,日销量y=﹣2x+200,每天支付其他费用500元,∴W=(x﹣30)(﹣2x+200)﹣500=﹣2x2+260x﹣6500,(3)∵W=﹣2x2+260x﹣6500=﹣2(x﹣65)2+1950,∴抛物线的对称轴为x=65,∵-2<0,∴抛物线开口向下,x<65时,y随x的增大而增大,∵30≤x≤60,∴x=60时,w有最大值为-2(60-65)2+1950=1900(元),∴当销售单价为60元时,该公司日获利最大为1900元.【点睛】本题考查二次函数和一次函数的综合应用,考查了待定系数法求一次函数解析式及二次函数的性质,熟练掌握二次函数的性质是解题关键.29.(1)x1=4,x2=﹣6;(2)x1=,x2=2【解析】【分析】(1)利用直接开平方法解出方程;(2)先求出一元二次方程的判别式,再解出方程.【详解】解:(1)(x+1)2﹣25=0,(x+1)2=25,x+1=±5,x=±5﹣1,x1=4,x2=﹣6;(2)x2﹣4x﹣2=0,∵a=1,b=﹣4,c=﹣2,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣2)=24>0,∴x=,即x1=,x2=2.【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题关键.30.(1)2mn;(2)见解析.【解析】 【分析】 (1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB ∽△ABC 成立,∠A 是公共角,则AB AC AC AP =,即m n n AP =,∴AP=2m n. (2)解:作∠DEQ =∠F,如图点Q 就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.31.5%【解析】【分析】根据题意,列出方程即可求出x 的值.【详解】根据题意,得2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+整理,得2200x x -=解这个方程,得15%x =,20x =(不合题意,舍去)所以x 的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.32.(1)233642y x x =--+;(2)①503,点D 坐标为220,33⎛⎫- ⎪⎝⎭;②197975D -+-⎝⎭;(3)226【解析】【分析】(1)根据点坐标代入解析式即可得解;(2)①由A 、E 两点坐标得出直线AE 解析式,设点D 坐标为()22,336t t t --+,过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --,然后构建ADE ∆面积与t 的二次函数,即可得出ADE ∆面积最大值和点D 的坐标;②过点M 作MN AE ⊥,在AME ∆中,由1tan 2MAE ∠=,1tan 3MEA ∠=,AE =M 的坐标,进而得出直线ME 的解析式,联立直线ME 和二次函数,即可得出此时点D 的坐标;(3)根据题意,当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),动点Q 所经过的路径是直线QQ′,求出两点之间的距离即可得解.【详解】(1)依题意得:016460426a b a b =-+⎧⎨=++⎩,解得3432a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴233642y x x =--+ (2)①∵()4,0A -,()0,2E -∴设直线AE 为y kx b =+将A 、E 代入,得042k b b =-+⎧⎨-=⎩∴122k b ⎧=-⎪⎨⎪=-⎩ ∴直线1:22AE y x =-- 设点D 坐标为()22,336t t t --+,其中20t -<<过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --∴2328DF t t =--+ ∴()2214328ADE S t t ∆=⋅⨯--+ 即:26416ADE S t t ∆=--+ 由函数知识可知,当13t =-时,()max 503ADE S ∆=,点D 坐标为220,33⎛⎫- ⎪⎝⎭ ②设DE 与OA 相交于点M过点M 作MN AE ⊥,垂足为N在AME ∆中,1tan 2MAE ∠=,1tan 3MEA ∠=,AE =设MN t =,则2AN t =,3NE t =∴2325t t +=∴25t = ∴52AM t ==∴()2,0M -∴:2ME y x =--∴2233642y x y x x =--⎧⎪⎨=--+⎪⎩∴232320x x +-=∴11973x -+=(舍去),21973x --= 当1973x --=时,9753y -= ∴197975,33D ⎛⎫-+- ⎪ ⎪⎝⎭(3)当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),如图所示:∴动点Q 所经过的路径是直线QQ′,∴()()226464226QQ =-+++=′故答案为26【点睛】此题主要考查二次函数以及动点综合问题,解题关键是找出合适的坐标,即可解题.。
2016-2017学年河南省周口市商水县九年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)如果是二次根式,那么实数x应满足的条件是()A.x≥2 B.x≠2 C.x>2 D.x<22.(3分)当m为何值时,关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根是0()A.m=2 B.m≠2 C.m=±2 D.m=﹣23.(3分)用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是()A.(x+1)2=4 B.(x﹣1)2=4 C.(x﹣1)2=16 D.(x+1)2=164.(3分)如图,在△ABC中,∠C=90°,sinA=,则tanB等于()A.B.C.D.5.(3分)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O 为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣2,1)或(2,﹣1) D.(﹣8,4)或(8,﹣4)6.(3分)关于x的一元二次方程x2+kx+4k2﹣3=0的两个实数根分别是x1,x2,且满足x1+x2=x1•x2,则k的值为()A.﹣1 B.C.﹣1或 D.不存在7.(3分)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.48.(3分)已知直线l 1∥l2∥l3∥l4,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)计算的结果为.10.(3分)已知3x﹣4y=0(x,y均不可为0),则等于.11.(3分)如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为.12.(3分)如图,O是△ABC的重心,AO、BO的延长线分别交BC、AC于点E、D,若AB=12,则DE的长为.13.(3分)某品牌手机经过一、二两个季度连线两次降价,每部售价由2799元降到了2199元,设平均每个季度降价的百分率为x,根据题意列出的方程是.14.(3分)已知△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+1)x+k2+k=0的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,则k 的值为.15.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S2,则S1+S2的值为.三、解答题(本题共8小题,满分75分)16.(8分)计算:(1)(+)•(﹣)•+(2)﹣×+2sin45°.17.(10分)用适当的方法解下列方程(1)2x2﹣10x=3(2)3x(x﹣2)=2(2﹣x)18.(9分)如图,在△ABC中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.(1)求BD•cos∠HBD的值;(2)若∠CBD=∠A,求AB的长.19.(9分)如图是一位同学用手电来测量某古城墙高度的示意图,点F处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=15米.你能求出该古城墙的高度吗?(平面镜的厚度忽略不计)20.(9分)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A 1B1C1与△A2B2C2的面积相比,即S:S=(不写解答过程,直接写出结果).21.(9分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.22.(10分)某小区在绿化工程中有一块长为20m、宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.23.(11分)一块直角三角形木板的一条直角边AB长为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面,甲、乙两位同学的加工方法分别如下所示,请你用学过的知识说明哪位同学的加工方法符合要求.(加工损耗忽略不计,计算结果中的分数可保留)2016-2017学年河南省周口市商水县九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)如果是二次根式,那么实数x应满足的条件是()A.x≥2 B.x≠2 C.x>2 D.x<2【解答】解:由题意得:2﹣x<0,解得:x>2,故选:C.2.(3分)当m为何值时,关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根是0()A.m=2 B.m≠2 C.m=±2 D.m=﹣2【解答】解:将x=0代入方程得:m2﹣4=0,解得:m=2或m=﹣2,∵m﹣2≠0即m≠2,∴m=﹣2,故选:D.3.(3分)用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是()A.(x+1)2=4 B.(x﹣1)2=4 C.(x﹣1)2=16 D.(x+1)2=16【解答】解:∵x2﹣2x=3,∴x2﹣2x+1=3+1,即(x﹣1)2=4,故选:B.4.(3分)如图,在△ABC中,∠C=90°,sinA=,则tanB等于()A.B.C.D.【解答】解:cosA==,cotA==.由A+B=90°,得tanB=cotA=,故选:A.5.(3分)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O 为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣2,1)或(2,﹣1) D.(﹣8,4)或(8,﹣4)【解答】解:∵点E(﹣4,2),以原点O为位似中心,相似比为,把△EFO 缩小,∴点E的对应点E′的坐标是:(﹣2,1)或(2,﹣1).故选:C.6.(3分)关于x的一元二次方程x2+kx+4k2﹣3=0的两个实数根分别是x1,x2,且满足x1+x2=x1•x2,则k的值为()A.﹣1 B.C.﹣1或 D.不存在【解答】解:∵方程x2+kx+4k2﹣3=0的两个实数根分别是x1,x2,∴x1+x2=﹣k,x1•x2=4k2﹣3,∵x1+x2=x1•x2,∴﹣k=4k2﹣3,解得:k1=﹣1,k2=.∵△=k2﹣4(4k2﹣3)=﹣15k2+12≥0,解得:﹣≤k≤.∴k=.故选:B.7.(3分)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4【解答】解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.8.(3分)已知直线l1∥l2∥l3∥l4,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于()A.B.C.D.【解答】解:如图,过点C作CE⊥l4于点E,延长EC交l1于点F.在矩形ABCD中,∠BCD=90°,∵∠α+∠BCE=90°,∠BCE+∠DCF=180°﹣90°=90°,∴∠α=∠DCF,又∵∠BEC=∠CFD=90°,∴△BEC∽△CFD,∴=,即=,∴BE=h.在Rt△BCE中,∵∠BEC=90°,∴tanα===.故选:C.二、填空题(每小题3分,共21分)9.(3分)计算的结果为2.【解答】解:原式===2.故答案为:2.10.(3分)已知3x﹣4y=0(x,y均不可为0),则等于.【解答】解:∵3x﹣4y=0(x,y均不可为0),∴=,设x=4k,y=3k,∴==,故答案为:.11.(3分)如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为.【解答】解:∵DE∥BC,∴=,∵AD=1,BD=2,∴AB=3,∴=,故答案为:.12.(3分)如图,O是△ABC的重心,AO、BO的延长线分别交BC、AC于点E、D,若AB=12,则DE的长为6.【解答】解:∵O是△ABC的重心,AO、BO的延长线分别交BC、AC于点E、D,∴DE∥AB,2DE=AB,∵AB=12,∴DE=6,故答案为:613.(3分)某品牌手机经过一、二两个季度连线两次降价,每部售价由2799元降到了2199元,设平均每个季度降价的百分率为x,根据题意列出的方程是2799(1﹣x)2=2199.【解答】解:依题意得:两次降价后的售价为2799(1﹣x)2=2199,故答案为:2799(1﹣x)2=2199.14.(3分)已知△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+1)x+k2+k=0的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,则k 的值为5或4.【解答】解:△=(2k+1)2﹣4(k2+k)=1,所以x=,解得x1=k+1,x2=k,当k+1=5时,解得k=4,此时△ABC是等腰三角形当k=5时,此时△ABC是等腰三角形,即k为值为5或4.故答案为5或4.15.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为17.【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又AD=AC+CD=6,∴CD=2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故答案为:17.三、解答题(本题共8小题,满分75分)16.(8分)计算:(1)(+)•(﹣)•+(2)﹣×+2sin45°.【解答】解:(1)(+)•(﹣)•+ =[()2﹣()2]•+=+=;(2)﹣×+2sin45°=﹣﹣+2×=2﹣﹣7+=2﹣7.17.(10分)用适当的方法解下列方程(1)2x2﹣10x=3(2)3x(x﹣2)=2(2﹣x)【解答】解:(1)2x2﹣10x﹣3=0,△=(﹣10)2﹣4×2×(﹣3)=4×31,x==,所以x1=,x2=;(2)3x(x﹣2)+2(2x﹣2)=0,(x﹣2)(3x+2)=0,x﹣2=0或3x+2=0,所以x1=2,x2=﹣.18.(9分)如图,在△ABC中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.(1)求BD•cos∠HBD的值;(2)若∠CBD=∠A,求AB的长.【解答】解:(1)∵DH∥AB,∴∠BHD=∠ABC=90°,∴△ABC∽△DHC,∴=3,∴CH=1,BH=BC+CH,在Rt△BHD中,cos∠HBD=,∴BD•cos∠HBD=BH=4.(2)∵∠CBD=∠A,∠ABC=∠BHD,∴△ABC∽△BHD,∴,∵△ABC∽△DHC,∴,∴AB=3DH,∴,解得DH=2,∴AB=3DH=3×2=6,即AB的长是6.19.(9分)如图是一位同学用手电来测量某古城墙高度的示意图,点F处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=15米.你能求出该古城墙的高度吗?(平面镜的厚度忽略不计)【解答】解:根据题意,容易得到:△ABP∽△PDC,故=,∵AB=1.2米,BP=1.8米,PD=15米,∴=,解得:CD=10(米),答:该古城墙的高度是10米.20.(9分)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A 1B1C1与△A2B2C2的面积相比,即S:S=1:4(不写解答过程,直接写出结果).【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为:1:2,则S:S=1:4.故答案为:1:4.21.(9分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.22.(10分)某小区在绿化工程中有一块长为20m、宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.【解答】解:设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56,解得:x1=2,x2=(不合题意,舍去).答:人行道的宽为2米.23.(11分)一块直角三角形木板的一条直角边AB长为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面,甲、乙两位同学的加工方法分别如下所示,请你用学过的知识说明哪位同学的加工方法符合要求.(加工损耗忽略不计,计算结果中的分数可保留)【解答】解:∵直角边AB长为1.5米,面积为1.5平方米,S=AB•BC,△ABC即×1.5•BC=1.5,∴BC=2m,AC=m,在甲的方法(图a)中,设正方形的边长为y,∵DE∥AB,∴=即:=,解得y=m,在乙的方法(图b)中,过点B作BM⊥AC于点M.设正方形的边长为x,∴直角△ABC中,AC边上的高BM==1.2m.∵四边形DEFG是正方形,∴DE∥AC,∴△BDE∽△BCA,∴==,即=,解得:x=m.∵<,∴甲的方法符合要求.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aa B E挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
河南省周口市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2019·花都模拟) 下列图形是中心对称图形的是()A .B .C .D .2. (1分)在期末体育考核中,成绩分为优秀、合格、不合格三个档次,某班有40名学生,达到优秀的有18人,合格的有17人,则这次体育考核中,不合格人数的频率是()A . 0.125B . 0.45C . 0.425D . 1.253. (1分) (2019九上·孝南月考) 如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是弧AC上的点,若∠BOC=40°,则∠D的度数为()A . 100°B . 110°C . 120°D . 130°4. (1分)如果关于的一元二次方程有实数根,则的取值范围是()A .B . 且C .D . 且5. (1分) (2016九上·北京期中) 如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为()A . 125°B . 130°C . 135°D . 140°6. (1分)思考下列命题:(1)等腰三角形一腰上的高线等于腰长的一半,则顶角为75度;(2)两圆圆心距小于两圆半径之和,则两圆相交;(3)在反比例函数y= 2 x 中,如果函数值y<1时,那么自变量x>2;(4)圆的两条不平行弦的垂直平分线的交点一定是圆心;(5)三角形的重心是三条中线的交点,而且一定在这个三角形的内部;其中正确命题的有几个()A . 1B . 2C . 3D . 47. (1分) (2019九上·东台期中) 过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为()A .B . x(x﹣1)=380C . 2x(x﹣1)=380D . x(x+1)=3808. (1分)如果抛物线y=ax2+bx+c经过点(-1,0)和(3,0),那么它的对称轴是直线()A . x= 0B . x = 1C . x = 2D . x = 39. (1分)(2019·东湖模拟) 如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=5,则BC的长是()A . 5B . 5C . 5 ﹣10D . 10﹣510. (1分)如图,抛物线y=ax2+bx+c的对称轴是x=,小亮通过观察得出了下面四条信息:①c<0,②abc<0,③a-b+c>0,④2a-3b=0.你认为其中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分) (2018八下·长沙期中) 当m=________时,关于x的方程是一元二次方程;12. (1分)如图,MN是⊙O的直径,若∠A=10°,∠PMQ=40°,以PM为边作圆的内接正多边形,则这个正多边形是________ 边形.13. (1分)(2018·嘉兴模拟) 把抛物线先向左平移1个单位,再向下平移2个单位,平移后抛物线的表达式是________.14. (1分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,banjing=6,则的长为________.15. (1分) ________叫做弧.16. (1分) (2020八上·广元期末) 一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0 )→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是________三、解答题 (共7题;共14分)17. (3分)解方程:x2﹣1=2(x+1).18. (2分) (2019八下·谢家集期中) 如图,在的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.19. (1分) (2018九上·大石桥期末) 某校9年2班有2名男生和3名女生报名参加志愿者活动。
2016-2017学年河南省周口市商水县九年级(上)第一次月考数学试卷一、选择题:(本大题共10小题,每小题4分,共40分)1.下列根式中属最简二次根式的是()A.B.C.D.2.若|x+2|+,则xy的值为()A.﹣8 B.﹣6 C.5 D.63.下列计算正确的是()A.B.C. D.4.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数 B.m≠1 C.m≠﹣1 D.m>15.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=66.若关于x的方程有实数根,则k的取值范围为()A.k≥0 B.k>0 C.k≥D.k>7.某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5% B.9% C.9.5% D.10%8.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.9.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)10.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张二、填空题:(本大题共5小题,每小题4分,共20分)11.当x时,二次根式在实数范围内有意义.12.若(x2+y2)2﹣3(x2+y2)﹣70=0,则x2+y2=.13.方程x2=x的解是.14.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“”交通标志(不画图案,只填含义)15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF 交AD于点H,那么DH的长是.三、解答题:(本大题共8小题,共90分)16.计算下列各题(1)2﹣6+3(2)(+1)2(2﹣3).17.解下列方程:(1)2x2+3x﹣1=0(2)3(x﹣1)2=x(x﹣1)18.先化简,再求值:,其中a=.19.先阅读,后解答:=像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;的有理化因式是.(2)将下列式子进行分母有理化:①=;②=.③已知,,比较a与b的大小关系.20.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,问出发多少秒钟时△DPQ的面积等于31cm2?21.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣3,0),B(0,0),C(﹣3,4),将△ABC绕B点逆时针旋转90°,得到△A′B′C′.请画出△A′B′C′并写出△A′B′C′的三个顶点的坐标.22.已知关于x的一元二次方程(a+c)x2+bx+=0有两个相等的实数根,试判断以a、b、c为三边长的三角形的形状,并说明理由.23.如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG,DE.(1)观察猜想BG与DE之间的关系,并证明你的猜想;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.2016-2017学年河南省周口市商水县九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分) 1.下列根式中属最简二次根式的是( )A .B .C .D .【考点】最简二次根式. 【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A 、是最简二次根式,故此选项正确;B 、=,故不是最简二次根式,故此选项错误;C 、=2,故不是最简二次根式,故此选项错误;D 、=a(a >0),故不是最简二次根式,故此选项错误.故选:A .2.若|x +2|+,则xy 的值为( )A .﹣8B .﹣6C .5D .6【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】已知任何数的绝对值一定是非负数,二次根式的值一定是一个非负数,由于已知的两个非负数的和是0,根据非负数的性质得到这两个非负数一定都是0,从而得到一个关于x 、y 的方程组,解方程组就可以得到x 、y 的值,进而求出xy 的值.【解答】解:∵|x +2|≥0,≥0,而|x +2|+=0,∴x +2=0且y ﹣3=0, ∴x=﹣2,y=3,∴xy=(﹣2)×3=﹣6. 故选:B .3.下列计算正确的是( )A .B .C .D .【考点】二次根式的混合运算.【分析】根据二次根式的加法、乘法、除法法则即可判断.【解答】解:A、2和4不是同类二次根式,不能合并,选项错误;B、和不是同类二次根式,不能合并,选项错误;C、÷==3,选项正确;D、==3,选项错误.故选C.4.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数 B.m≠1 C.m≠﹣1 D.m>1【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足二次项系数不为0,所以m+1≠0,即可求得m的值.【解答】解:根据一元二次方程的定义得:m+1≠0,即m≠﹣1,故选C.5.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.6.若关于x的方程有实数根,则k的取值范围为()A.k≥0 B.k>0 C.k≥D.k>【考点】根的判别式;二次根式有意义的条件.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.还要根据二次根式的意义可知k≥0,然后确定最后k的取值范围.【解答】解:∵关于x的方程有实数根,∴△=b2﹣4ac=(﹣3)2+4=9k+4≥0,解得:k≥,又∵方程中含有∴k≥0,故本题选A.7.某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5% B.9% C.9.5% D.10%【考点】一元二次方程的应用.【分析】降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是(1﹣x),那么第二次后的价格是(1﹣x)2,即可列出方程求解.【解答】解:设平均每次降价的百分率是x,则100×(1﹣x)2=81,解之得x=0.1或1.9(不合题意,舍去).则x=0.1=10%答:平均每次降价的百分率是10%.故选:D.8.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.【考点】利用旋转设计图案.【分析】根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,找到关键点,分析选项可得答案.【解答】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.故选D.9.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)【考点】坐标与图形变化-旋转.【分析】利用网格结构找出点B绕点D顺时针旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【解答】解:如图,点B绕点D顺时针旋转90°到达点B′,点B′的坐标为(4,0).故选:D.10.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张【考点】中心对称图形.【分析】本题主要考查了中心对称图形的定义,根据定义即可求解.【解答】解:观察两个图中可以发现,所有图形都没有变化,所以旋转的扑克是成中心对称的第一张和第二张.故选A.二、填空题:(本大题共5小题,每小题4分,共20分)11.当x≥3时,二次根式在实数范围内有意义.【考点】二次根式有意义的条件.【分析】因为式为二次根式,所以被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式的性质,被开方数大于或等于0,可知:x﹣3≥0,解得:x≥3.12.若(x2+y2)2﹣3(x2+y2)﹣70=0,则x2+y2=10.【考点】换元法解一元二次方程.【分析】设x2+y2=t,原方程可化为t2﹣3t﹣70=0,求得t的值,再得出答案即可.【解答】解:设x2+y2=t,原方程可化为t2﹣3t﹣70=0,解得t1=10,t2=﹣7,∵x2+y2≥0,∴x2+y2=10,故答案为10.13.方程x2=x的解是x1=0,x2=1.【考点】解一元二次方程-因式分解法.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=114.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“靠左侧通道行驶”交通标志(不画图案,只填含义)【考点】生活中的旋转现象.【分析】根据旋转的定义,可得旋转后的图形,根据题意中所给的含义,易得答案.【解答】解:根据旋转的意义,可得旋转后的图形是,结合题意中所给图形的含义,可得答案为靠左侧通道行驶.15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是.【考点】正方形的性质;旋转的性质;解直角三角形.【分析】连接CH,可知△CFH≌△CDH(HL),故可求∠DCH的度数;根据三角函数定义求解.【解答】解:连接CH.∵四边形ABCD,四边形EFCG都是正方形,且正方形ABCD绕点C旋转后得到正方形EFCG,∴∠F=∠D=90°,∴△CFH与△CDH都是直角三角形,在Rt△CFH与Rt△CDH中,∵,∴△CFH≌△CDH(HL).∴∠DCH=∠DCF=(90°﹣30°)=30°.在Rt△CDH中,CD=3,∴DH=tan∠DCH×CD=.故答案为:.三、解答题:(本大题共8小题,共90分)16.计算下列各题(1)2﹣6+3(2)(+1)2(2﹣3).【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,然后合并同类二次根式即可;(2)首先利用完全平方公式计算第一个式子,然后利用平方差公式即可求解.【解答】解:(1)原式=4﹣2+12=14;(2)原式=(3+2)(2﹣3)=(2)2﹣9=8﹣9=﹣1.17.解下列方程:(1)2x2+3x﹣1=0(2)3(x﹣1)2=x(x﹣1)【考点】解一元二次方程-因式分解法.【分析】(1)利用公式法求出x的值即可;(2)把方程左边化为两个因式积的形式,再求出x的值即可.【解答】解:(1)∵△=9+8=17,∴x=,∴x1=,x2=;(2)方程左边可化为3(x﹣1)2﹣x(x﹣1)=0,因式分解得,(x﹣1)(2x﹣3)=0,故x﹣1=0或2x﹣3=0,解得x1=1,x2=.18.先化简,再求值:,其中a=.【考点】分式的化简求值.【分析】本题需先根据分式的运算顺序和法则分别进行计算,再把a=的值代入即可求出答案.【解答】解:,=×,=,把a=代入上式得:=,=4﹣7.19.先阅读,后解答:=像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;的有理化因式是﹣2.(2)将下列式子进行分母有理化:①=;②=3﹣.③已知,,比较a与b的大小关系.【考点】分母有理化.【分析】(1)的有理化因式是它本身, +2的有理化因式符合平方差公式的特点的式子.据此作答;(2)①分子、分母同乘以最简公分母即可;②分子、分母同乘以最简公分母3﹣,再化简即可;③把a的值通过分母有理化化简,再比较.【解答】解:(1)根据与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,的有理化因式是:,的有理化因式是:﹣2,故答案为:,﹣2;(2)①==,②==3﹣;③∵a===2﹣,b=2﹣,∴a=b .20.如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,问出发多少秒钟时△DPQ 的面积等于31cm 2?【考点】矩形的性质;一元二次方程的应用;三角形的面积.【分析】设出发秒x 时△DPQ 的面积等于31平方厘米,根据三角形的面积公式列出方程可求出解.【解答】解:设出发秒x 时△DPQ 的面积等于31cm 2.∵S 矩形ABCD ﹣S △APD ﹣S △BPQ ﹣S △CDQ =S △DPQ …∴… 化简整理得 x 2﹣6x +5=0…解这得x 1=1,x 2=5…均符合题意.答:出发1秒或5秒钟时△DPQ 的面积等于31cm 2. …21.在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别是A (﹣3,0),B (0,0),C (﹣3,4),将△ABC 绕B 点逆时针旋转90°,得到△A ′B ′C ′.请画出△A ′B ′C ′并写出△A ′B ′C ′的三个顶点的坐标.【考点】作图-旋转变换.【分析】将△ABC的A,C点绕B点逆时针旋转90°,找到对应点,顺次连接得到△A′B′C′.【解答】解:A′(0,﹣3)、B′(0,0)、C′(﹣4,﹣3).22.已知关于x的一元二次方程(a+c)x2+bx+=0有两个相等的实数根,试判断以a、b、c为三边长的三角形的形状,并说明理由.【考点】根的判别式.【分析】根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可.【解答】解:△ABC是直角三角形,理由是:∵关于x的方程(a+c)x2+bx+=0有两个相等的实数根,∴△=0,即b2﹣4(a+c)()=0,∴a2=b2+c2,∴△ABC是直角三角形.23.如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG,DE.(1)观察猜想BG与DE之间的关系,并证明你的猜想;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;旋转的性质.【分析】(1)猜想BG⊥BD,且BG=DE,证明:延长BG与DE交于H点,则根据∠DGH+∠GDH=90°可以证明∠DHG=90°,即BG⊥DE;(2)存在,△BCG和△DCE可以通过旋转重合.求证△BCG≌△DCE即可.【解答】证明:(1)猜想:BG⊥BD,且BG=DE.延长BG与DE交于H点,在直角△BCG中,BG=,在直角△DCE中,DE=,∵BC=DC,CG=CE,∴BG=DE.在△BCG和△DCE中,,∴△BCG≌△DCE,∴∠BGC=∠DEC,BG=DE,又∵∠BGC=∠DGH,∠DEC+∠CDE=90°,∴∠DGH+∠GDH=90°,∴∠DHG=90°,故BG⊥DE,且BG=DE.(2)存在,△BCG≌△DCE,(1)中已证明,且△BCG和△DCE有共同顶点C,则△DCE沿C点旋转向左90°与△BCG重合.2016年12月20日。
九年级上册周口数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin a AO β=C .tan BC a β=D .cos a BD β= 2.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个3.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③ 4.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,2 5.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°6.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =7.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( )A .12B .13C .14D .158.关于2,6,1,10,6这组数据,下列说法正确的是( )A .这组数据的平均数是6B .这组数据的中位数是1C .这组数据的众数是6D .这组数据的方差是10.29.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( )A .()2241y x =--B .()2241y x =+-C .()2241y x =-+D .()2241y x =++ 10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位 11.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π-C .3π-D .3π-12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252 B .25C .251 D 52二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.14.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .15.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.16.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm .17.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.18.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.19.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)20.在平面直角坐标系中,抛物线2y x 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.21.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.22.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.23.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.24.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.三、解答题25.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?26.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x 的代数式表示DF = ;(2)x 为何值时,区域③的面积为180平方米;(3)x 为何值时,区域③的面积最大?最大面积是多少?27.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DE AC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EF DF的值. (3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒?28.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.29.为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)30.一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.(1)从袋中任意摸出一个球,摸到标号为偶数的概率是;(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.31.已知二次函数y=ax2+bx﹣16的图象经过点(﹣2,﹣40)和点(6,8).(1)求这个二次函数图象与x轴的交点坐标;(2)当y>0时,直接写出自变量x的取值范围.32.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是ABC的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是AC的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C 、在Rt △BCD 中,tan ∠BDC=BC DC , ∴ tan β=BC a∴BC=atan β,故C 选项正确; D 、在Rt △BCD 中,cos ∠BDC=DC DB , ∴ cos β=a BD ∴cos a BD β=,故D 选项正确. 故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.2.C解析:C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.3.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2b a->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大;故①正确;根据二次函数的系数,可得图像大致如下,由于对称轴x=2b a的值未知, ∴当x=1时,y=a+b+c 的值无法判断,故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax 2+bx +c =-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.C解析:C【解析】【分析】分两种情况讨论,当m=0和m ≠0,函数分别为一次函数和二次函数,由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点;②若m ≠0,则函数y=mx 2+2x+1,是二次函数.根据题意得:b 2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.5.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.【详解】∵BC的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=AC BC,∴∠ADC=12∠BOC=25°.故选B.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.6.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.7.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105.【详解】解:()21P 105==次品 . 故选:D .【点睛】 本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.8.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】 本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.9.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 10.C解析:C 【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π 故选B . 12.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得42AP == .故选A. 二、填空题13.8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.14.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.15.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.16.2-2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AP=AB ,代入运算即可.【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×=cm,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则=)21cm,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的12,难度一般.17.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB ∥EF ,∴△ABC ∽△FEC∴AB EF =BC CE, ∴12=x 1x- 解得x =13, ∴阴影部分面积为:S △ABC =12×13×1=16, 故答案为:16. 【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答. 18.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算.19.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】根据黄金分割比为12计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有AC=12AB=12×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.20.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.21.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 22.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可. 由题意得,解得 考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x 轴只有一个公共点;时,抛物线与x 轴没有公共点.23.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB=22=10,68∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.24.或【解析】【分析】分点C在优弧AB上和劣弧AB上两种情况讨论,根据切线的性质得到∠OAC的度数,再根据圆周角定理得到∠AOC的度数,再利用三角形内角和定理得出α与β的关系.【详解】解析:αβ=或180αβ+︒=【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC= 90°-α=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴αβ=.综上:α与β的关系是180αβ+︒=或αβ=. 故答案为:αβ=或180αβ+︒=.本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.三、解答题25.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x,根据题意得,5000(1+x)2=7200解得,x1=0.2=20%,x2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.26.(1)48-12x;(2)x为1或3;(3)x为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以2可得DF的长度;(2)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x(48-12x)=180,解得x1=1,x2=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-12x)=-60x2+240x=-60(x-2)2+240∵-60<0,∴当x=2时,S有最大值,最大值为240答:x为2时,区域③的面积最大,为240平方米本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.27.(1)DC =;(2)23EF DF =;(3)当DM =DM <<时,满足条件的点P 只有一个.【解析】【分析】(1)由角平分线定义得30DAC ∠=︒,在Rt ADC ∆中,根据锐角三角函数正切定义即可求得DC 长.(2)由题意易求得BC =BD =ASA 得DFM AGM ∆≅∆,根据全等三角形性质得DF AG =,根据相似三角形判定得~BFE BGA ∆∆,由相似三角形性质得EF BE BD AG AB BC==,将DF AG =代入即可求得答案.(3)由圆周角定理可得CQG ∆是顶角为120°的等腰三角形,再分情况讨论:①当Q 与DE 相切时,结合题意画出图形,过点Q 作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG ,设Q 半径为r ,由相似三角形的判定和性质即可求得DM 长;②当Q 经过点E 时,结合题意画出图形,过点C 作CK AB ⊥,设Q 半径为r ,在Rt EQK ∆中,根据勾股定理求得r ,再由相似三角形的判定和性质即可求得DM 长;③当Q 经过点D 时,结合题意画出图形,此时点M 与点G 重合,且恰好在点A 处,由此可得DM 长.【详解】(1)解:∵AD 平分BAC ∠,60BAC ∠=︒, ∴1302DAC BAC ∠=∠=︒.在Rt ADC ∆中,tan 30DC AC =⋅︒=(2)解:易得,BC =,BD =由DE AC ,得EDA DAC ∠=∠,DFM AGM ∠=∠.∵AM DM =,∴DFM AGM ∆≅∆,∴AG DF =.由DE AC ,得~BFE BGA ∆∆, ∴EF BE BD AG AB BC==∴432363EF EF BD DF AG BC ==== (3)解:∵60CPG ∠=︒,过C ,P ,G 作外接圆,圆心为Q ,∴CQG ∆是顶角为120°的等腰三角形.①当Q 与DE 相切时,如图1,过Q 点作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG设Q 的半径QP r =则12QH r =,1232r r +=, 解得433r =. ∴43343CG =⨯=,2AG =. 易知DFMAGM ∆∆,可得43DM DF AM AG ==,则47DM AD = ∴1637DM =. ②当Q 经过点E 时,如图2,过C 点作CK AB ⊥,垂足为K .设Q 的半径QC QE r ==,则33QK r =.在Rt EQK ∆中,()221332r r +-=,解得1439r =, ∴14143393CG =⨯= 易知DFMAGM ∆∆,可得1435DM = ③当Q 经过点D 时,如图3,此时点M 与点G 重合,且恰好在点A 处,可得43DM =综上所述,当1637DM =143435DM <P 只有一个. 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.28.(1)y=﹣(x ﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0) 【解析】【分析】 (1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)设直线AC 的解析式为y =kx +b ,与x 轴交于D ,得到y =2x−1,求得BD 于是得到结论;(3)设出N 点坐标,可表示出M 点坐标,从而可表示出MN 、ON 的长度,当△MON 和△ABC 相似时,利用三角形相似的性质可得MN ON AB BC =或MN ON BC AB=,可求得N 点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1,即y=﹣x 2+2x ,联立抛物线和直线解析式可得22-2y x x y x ⎧=+⎨=⎩﹣, 解得20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴B (2,0),C (﹣1,﹣3); (2)设直线AC 的解析式为y=kx+b ,与x 轴交于D ,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b =+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N 点坐标为(53,0)或(73,0); ②当或MN ON BC AB =时,∴=,即|x||﹣x+2|=3|x|, ∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的。
2016年河南省周口市商水县中考数学模拟试卷试题解析一、选择题(每小题3分,共24分)1.﹣的相反数是()A.﹣B.C.﹣D.【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选B.2.某公司去年的营业额为四亿零七百万元,这个数据用科学记数法可表示为()A.4.07×107元B.4.07×108元C.4.07×109元D.4.07×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:四亿零七百万=4 0700 0000=4.07×108,故选:B.3.如图所示的几何体的左视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得左视图为:.故选D.4.如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°【考点】平行线的性质.【分析】延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,延长∠1的边与直线b相交,∵a∥b,∴∠4=180°﹣∠1=180°﹣130°=50°,由三角形的外角性质,∠3=∠2+∠4=90°+50°=140°,故选:C.5.不等式组的解集在数轴上表示为()A.B. C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选A.6.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,12【考点】众数;中位数.【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【解答】解:原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数==11,众数为12.故选C.7.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°【考点】多边形内角与外角;三角形内角和定理.【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.8.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A .()2014B .()2015C .()2015D .()2014【考点】正方形的性质. 【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案. 【解答】方法一:解:如图所示:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3… ∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B 2C 2=()1,同理可得:B 3C 3==()2,故正方形A n B n C n D n 的边长是:()n ﹣1.则正方形A 2015B 2015C 2015D 2015的边长是:()2014. 故选:D .方法二:∵正方形A 1B 1C 1D 1的边长为1, ∠B 1C 1O=60°, ∴D 1E 1=B 2E 2=, ∵B 1C 1∥B 2C 2∥B 3C 3… ∴∠E 2B 2C 2=60°,∴B 2C 2=,同理:B 3C 3=×=…∴a 1=1,q=,∴正方形A 2015B 2015C 2015D 2015的边长=1×.二、填空题(每小题3分,共21分)9.计算:|﹣4|﹣()﹣2= ﹣.【考点】实数的运算;负整数指数幂.【分析】分别根据负整数指数幂的计算法则、绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=4﹣﹣4=﹣.故答案为:﹣.10.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20 .【考点】平行四边形的性质.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.11.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为20 个.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:设暗箱里白球的数量是n,则根据题意得: =0.2,解得:n=20,故答案为:20.12.如图,一次函数y=kx+2与反比例函数y=(x>0)的图象交于点A,与y轴交于点M,与x轴交于点N,且AM:MN=1:2,则k= .【考点】反比例函数与一次函数的交点问题.【分析】利用相似三角形的判定与性质得出A点坐标,进而代入一次函数解析式得出答案.【解答】解:过点A作AD⊥x轴,由题意可得:MO∥AO,则△NOM∽△NDA,∵AM:MN=1:2,∴==,∵一次函数y=kx+2,与y轴交点为;(0,2),∴MO=2,∴AD=3,∴y=3时,3=,解得:x=,∴A(,3),将A点代入y=kx+2得:3=k+2,解得:k=.故答案为:.13.一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4s落地,则足球距地面的最大高度是19.6 m.【考点】二次函数的应用.【分析】首先由题意得:t=4时,h=0,然后再代入函数关系h=at2+19.6t可得a 的值,然后再利用函数解析式计算出h的最大值即可.【解答】解:由题意得:t=4时,h=0,因此0=16a+19.6×4,解得:a=﹣4.9,∴函数关系为h=﹣4.9t2+19.6t,足球距地面的最大高度是: =19.6(m),故答案为:19.6.14.如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为2π﹣3.(结果保留π)【考点】扇形面积的计算;等边三角形的判定与性质;相交两圆的性质.【分析】根据题意得出一部分弓形的面积,得出=﹣S进而得出即可.【解答】解:连接O1O2,过点O1作O1C⊥AO2于点C,由题意可得:AO1=O1O2=AO2=,∴△AO1O2是等边三角形,∴CO1=O1O2sin60°=,∴S=××=,==,∴=﹣S=﹣,∴图中阴影部分的面积为:4(﹣)=2π﹣3.故答案为:2π﹣3.15.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为2,或,或.【考点】勾股定理;等腰三角形的判定;正方形的性质.【分析】分情况讨论:(1)当PB为腰时,若P为顶点,则E点和C点重合,求出PB长度即可;若B为顶点,则E点为CD中点;(2)当PB为底时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;①由题意得出BM=BP=,证明△BME∽△BAP,得出比例式,即可求出BE;②设CE=x,则DE=4﹣x,根据勾股定理得出方程求出CE,再由勾股定理求出BE 即可.【解答】解:分情况讨论:(1)当PB为腰时,若P为顶点,则E点与C点重合,如图1所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,∵P是AD的中点,∴AP=DP=2,根据勾股定理得:BP===2;若B为顶点,则根据PB=BE′得,E′为CD中点,此时腰长PB=2;(2)当PB为底边时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;①当E在AB上时,如图2所示:则BM=BP=,∵∠BME=∠A=90°,∠MEB=∠ABP,∴△BME∽△BAP,∴,即,∴BE=;②当E在CD上时,如图3所示:设CE=x,则DE=4﹣x,根据勾股定理得:BE2=BC2+CE2,PE2=DP2+DE2,∴42+x2=22+(4﹣x)2,解得:x=,∴CE=,∴BE===;综上所述:腰长为:2,或,或;故答案为:2,或,或.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.【考点】分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=÷=•=,∵|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,即a=3,b=2,则原式=1.17.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.【考点】切线的性质;菱形的判定与性质;相似三角形的判定与性质.【分析】(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.【解答】(1)证明:如图1,连接OD、OE、ED.∵BC与⊙O相切于一点D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即10r=6(10﹣r).解得r=,∴⊙O的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC•AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.18.某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有50 人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是72°;(4)如果该校初二年级的总人数是480人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;(2)利用(1)中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体进而利用“优秀”所占比例求出即可.【解答】解:(1)由扇形统计图和条形统计图可得:参加这次跳绳测试的共有:20÷40%=50(人);故答案为:50;(2)由(1)的优秀的人数为:50﹣3﹣7﹣10﹣20=10,如图所示:;(3)“中等”部分所对应的圆心角的度数是:×360°=72°,故答案为:72°;(4)该校初二年级跳绳成绩为“优秀”的人数为:480×=96(人).答:该校初二年级跳绳成绩为“优秀”的人数为96人.19.已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.【解答】解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1•x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.20.如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.【考点】解直角三角形的应用-方向角问题.【分析】(1)要求B到C的时间,已知其速度,则只要求得BC的路程,再利用路程公式即可求得所需的时间;(2)过C作CD⊥OA,垂足为D,设相会处为点E.求出OC=OB•cos30°=60,CD=OC=30,OD=OC•cos30°=90,则DE=90﹣3v.在直角△CDE中利用勾股定理得出CD2+DE2=CE2,即(30)2+(90﹣3v)2=602,解方程求出v=20或40,进而求出相遇处与港口O的距离.【解答】解:(1)∵∠CBO=60°,∠COB=30°,∴∠BCO=90°.在Rt△BCO中,∵OB=120,∴BC=OB=60,∴快艇从港口B到小岛C的时间为:60÷60=1(小时);(2)过C作CD⊥OA,垂足为D,设相会处为点E.则OC=OB•cos30°=60,CD=OC=30,OD=OC•cos30°=90,∴DE=90﹣3v.∵CE=60,CD2+DE2=CE2,∴(30)2+(90﹣3v)2=602,∴v=20或40,∴当v=20km/h时,OE=3×20=60km,当v=40km/h时,OE=3×40=120km.21.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a 折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b 折,设游客为x 人,门票费用为y 元,非节假日门票费用y 1(元)及节假日门票费用y 2(元)与游客x (人)之间的函数关系如图所示.(1)a= 6 ,b= 8 ;(2)直接写出y 1、y 2与x 之间的函数关系式;(3)导游小王6月10日(非节假日)带A 旅游团,6月20日(端午节)带B 旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A 、B 两个旅游团各多少人?【考点】一次函数的应用.【分析】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a 的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b 的值;(2)利用待定系数法求正比例函数解析式求出y 1,分x ≤10与x >10,利用待定系数法求一次函数解析式求出y 2与x 的函数关系式即可;(3)设A 团有n 人,表示出B 团的人数为(50﹣n ),然后分0≤n ≤10与n >10两种情况,根据(2)的函数关系式列出方程求解即可.【解答】解:(1)由y 1图象上点(10,480),得到10人的费用为480元,∴a=×10=6;由y 2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,800+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.22.如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.(1)点F在边BC上.①如图1,连接DE,AF,若DE⊥AF,求t的值;②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得=?若存在,求出t的值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)①利用正方形的性质及条件,得出△ABF≌△DAE,由AE=BF列式计算.②利用△EBF∽△DCF,得出=,列出方程求解.(2)①0<t≤2时如图3,以点B为原点,BC为x轴,BA为y轴建立坐标系,先求出EF所在的直线和BG所在的直线函数关系式,再利用勾股定理求出BG,运用=,求出点O的坐标,把O的坐标代入EF所在的直线函数关系式求解.②当t>2时如图4,以点B为原点,BC为x轴,BA为y轴建立坐标系,先求出EF所在的直线和BG所在的直线函数关系式,再利用勾股定理求出BG,运用=,求出点O的坐标,把O的坐标代入EF所在的直线函数关系式求解.【解答】解:(1)①如图1∵DE⊥AF,∴∠AOE=90°,∴∠BAF+∠AEO=90°,∵∠ADE+∠AEO=90°,∴∠BAF=∠ADE,又∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠DAE=90°,在△ABF和△DAE中,,∴△ABF≌△DAE(ASA)∴AE=BF,∴1+t=2t,解得t=1.②如图2,∵四边形ABCD是正方形,∴AB=BC=CD=4,∵BF=2t,AE=1+t,∴FC=4﹣2t,BE=4﹣1﹣t=3﹣t,当△EBF∽△DCF时,=,∴=,解得,t=,t=(舍去),故t=.当△EBF∽△FCD时,=,∴=,∴t2﹣3t+3=0,方程没有实数根,所以当t=时,△EBF与△DCF相似;(2)①0<t≤2时,如图3,以点B为原点,BC为x轴,BA为y轴建立坐标系,A的坐标(0,4),G的坐标(2,4),F点的坐标(2t,0),E的坐标(0,3﹣t)EF所在的直线函数关系式是:y=x+3﹣t,BG所在的直线函数关系式是:y=2x,∵BG==2∵=,∴BO=,OG=,设O的坐标为(a,b),解得∴O的坐标为(,)把O的坐标为(,)代入y=x+3﹣t,得=×+3﹣t,解得,t=(舍去),t=,②当3≥t>2时如图4,以点B为原点BC为x轴,BA为y轴建立坐标系,A的坐标(0,4),G的坐标(2,4),F点的坐标(4,2t﹣4),E的坐标(0,3﹣t),EF所在的直线函数关系式是:y=x+3﹣t,BG所在的直线函数关系式是:y=2x,∵BG==2∵=,∴BO=,OG=,设O的坐标为(a,b),解得∴O的坐标为(,)把O的坐标为(,)代入y=x+3﹣t,得=×+3﹣t,解得:t=.综上所述,存在t=或t=,使得=.23.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?【考点】二次函数综合题.【分析】(1)运用待定系数法和对称轴的关系式求出a、b的即可;(2)由待定系数法求出直线AC的解析式,由抛物线的解析式构成方程组就可以求出B点的坐标,由相似三角形的性质及旋转的性质就可以得出E的坐标;(3)分情况讨论当点B落在FD的左下方,点B,D重合,点B落在OD的右上方,由三角形的面积公式和菱形的性质的运用就可以求出结论.【解答】解:(1)∵y=ax2+bx(a≠0)的图象经过点A(1,4),且对称轴是直线x=﹣,∴,解得:,∴二次函数的解析式为y=x2+3x;(2)如图1,∵点A(1,4),线段AD平行于x轴,∴D的纵坐标为4,∴4=x2+3x,∴x1=﹣4,x2=1,∴D(﹣4,4).设直线AC的解析式为y=kx+b,由题意,得,解得:,∴y=2x+2;当2x+2=x2+3x时,解得:x1=﹣2,x2=1(舍去).∴y=﹣2.∴B(﹣2,﹣2).∴DO=4,BO=2,BD=2,OA=.∴DO2=32,BO2=8,BD2=40,∴DO2+BO2=BD2,∴△BDO为直角三角形.∵△EOD∽△AOB,∴∠EOD=∠AOB,,∴∠AOB﹣∠AOD=∠EOD﹣∠AOD,∴∠BOD=∠AOE=90°.即把△AOB绕着O点顺时针旋转90°,OB落在OD上B′,OA落在OE上A1∴A1(4,﹣1),∴E(8,﹣2).作△AOB关于x轴的对称图形,所得点E的坐标为(2,﹣8).∴当点E的坐标是(8,﹣2)或(2,﹣8)时,△EOD∽△AOB;(3)由(2)知DO=4,BO=2,BD=2,∠BOD=90°.若翻折后,点B落在FD的左下方,如图2.S△HFP =S△BDP=S△DPF=S△B′PF=S△DHP=S△B′HF,∴DH=HF,B′H=PH,∴在平行四边形B ′FPD 中,PD=B ′F=BF=BD=;若翻折后,点B ,D 重合,S △HFP =S △BDP ,不合题意,舍去.若翻折后,点B 落在OD 的右上方,如图3,S △HFP =S △BDP =S △BPF =S △DPF =S △B ′PF =S △DHF =S △B ′HP∴B ′P=BP ,B ′F=BF ,DH=HP ,B ′H=HF ,∴四边形DFPB ′是平行四边形,∴B ′P=DF=BF ,∴B ′P=BP=B ′F=BF ,∴四边形B ′FBP 是菱形,∴FD=B ′P=BP=BD=,根据勾股定理,得OP 2+OB 2=BP 2,∴(4﹣PD )2+(2)2=()2,解得PD=3,PD=5>4(舍去),综上所述,PD=或PD=3时,将△BPF 沿边PF 翻折,使△BPF 与△DPF 重叠部分的面积是△BDP 的面积的.2016年6月27日。
河南省周口市商水县2016届九年级数学上学期期末考试试题一、选择题:每小题3分,共24分,下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠1B.x≤2且x≠1C.x≠1 D.x≤﹣22.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.03.从总体中抽取一部分数据作为样本去估计总体的某种属性,下面叙述正确的是()A.样本容量越大,样本平均数就越大B.样本容量越大,样本的标准差就越大C.样本容量越小,样本平均标准差就越大D.样本容量越大,对总体的估计就越准确4.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=35.小刚掷一枚质地匀的正方体体骰子,骰子的,六个面分别刻有l到6的点数,则这个骰子向上一面点数大于3的概率为()A.B.C.D.6.在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.7.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.58.如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是()A.B.C.D.二、填空题:每小题3分,共21分.9.计算:﹣×= .10.如图,已知:DE∥BC,AB=14,AC=18,AE=10,则AD的长为.11.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是.12.把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c= .13.如图,一位同学身高1.6米,晚上站在路灯下,他在地面上的影长是2米,若他沿着影长的方向移动2米站立时,影长增加了0.5米,则路灯的高度是米.14.如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A,C为圆心,以的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为cm2(结果保留π)15.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m= .三、解答题:本大题共8小题,满分75分.16.先化简,再求值(1﹣)÷,其中x=2sin45°+1.17.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点,连接EF.(1)求证:△AEF∽△A BD;(2)填空:①若BC=8,AC=5,则EF= ;②若四边形BDFE的面积为6,则△ABD的面积为.18.入冬以来,我国中东部地区遭遇多次大范围雾霾天气,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随即调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾气排放pD 工厂造成污染120E 其他60请根据图表中提供的信息解答下列问题:(1)填空:m= ,n= .(2)扇形统计图中,表示D组的扇形圆心角的度数是;(3)若该市人口约为60万人,请你估计其中持D组“观点”的市民人数;(4)若在这次接受调查的市民中,随机抽查一人,抽中持C组“观点”的人概率是多少?19.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.20.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)21.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)22.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O得切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是⊙O的切线.23.如图,在平面直角坐标系中,直线y=﹣x﹣与x轴交于点A,与y轴交于点C,抛物线y=ax2﹣x+c(a≠0)经过A,B,C三点.(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;(2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由;(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.河南省周口市商水县2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题:每小题3分,共24分,下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠1B.x≤2且x≠1C.x≠1 D.x≤﹣2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x﹣1≠0,解得x≥﹣2且x≠1.故选:A.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.0【考点】一元二次方程的一般形式.【专题】计算题.【分析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m的值即可.【解答】解:根据题意,知,,解方程得:m=2.故选:B.【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.从总体中抽取一部分数据作为样本去估计总体的某种属性,下面叙述正确的是()A.样本容量越大,样本平均数就越大B.样本容量越大,样本的标准差就越大C.样本容量越小,样本平均标准差就越大D.样本容量越大,对总体的估计就越准确【考点】用样本估计总体.【分析】用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,对于同一个总体,样本容量越大,估计的越准确.【解答】解:∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的越准确.故选:D.【点评】此题考查了抽样和样本估计总体的实际应用,注意在一个总体中抽取一定的样本估计总体,估计的是否准确,只与样本在总体中所占的比例有关.4.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3【考点】抛物线与x轴的交点.【分析】关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m为常数)的图象与x轴的两个交点的横坐标.【解答】解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故选B.【点评】本题考查了抛物线与x轴的交点.解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x2﹣3x+m=0的两实数根.5.小刚掷一枚质地匀的正方体体骰子,骰子的,六个面分别刻有l到6的点数,则这个骰子向上一面点数大于3的概率为()A.B.C.D.【考点】概率公式.【专题】计算题.【分析】让骰子中大于3的数个数除以数的总个数即为所求的概率.【解答】解:根据等可能条件下的概率的公式可得:小刚掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则向上的一面的点数大于3的概率为=.故选A.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.【考点】解直角三角形.【专题】计算题.【分析】在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.【解答】解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B【点评】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.7.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.5【考点】垂径定理;勾股定理;相交弦定理.【分析】根据垂径定理和相交弦定理求解.【解答】解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×( 2R﹣1),由此得2R=3,所以AB=3故选B.【点评】本题主要考查:垂径定理、勾股定理或相交弦定理.8.如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是()A.B.C.D.【考点】动点问题的函数图象.【专题】数形结合.【分析】利用三角形相似求出y关于x的函数关系式,根据函数关系式进行分析求解.【解答】解:∵BC=4,BE=x,∴CE=4﹣x.∵AE⊥EF,∴∠AEB+∠CEF=90°,∵∠CEF+∠CFE=90°,∴∠AEB=∠CFE.又∵∠B=∠C=90°,∴Rt△AEB∽Rt△EFC,∴,即,整理得:y=(4x﹣x2)=﹣(x﹣2)2+∴y与x的函数关系式为:y=﹣(x﹣2)2+(0≤x≤4)由关系式可知,函数图象为一段抛物线,开口向下,顶点坐标为(2,),对称轴为直线x=2.故选:A.【点评】本题考查了动点问题的函数图象问题,根据题意求出函数关系式是解题关键.二、填空题:每小题3分,共21分.9.计算:﹣×= .【考点】二次根式的混合运算.【专题】计算题.【分析】先根据二次根式的乘法法则运算,然后化简后合并即可.【解答】解:原式=3﹣=3﹣2=.故答案为:.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.如图,已知:DE∥BC,AB=14,AC=18,AE=10,则AD的长为.【考点】平行线分线段成比例.【专题】计算题.【分析】根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵DE∥BC,∴=,∵AB=14,AC=18,AE=10,∴=,解得:AD=,故答案为:.【点评】本题考查了对平行线分线段成比例定理的应用,主要检查相似能否熟练的运用定理进行推理,注意:对应线段成比例,题目较好,难度不大.11.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是12 .【考点】位似变换.【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【解答】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为:12.【点评】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.12.把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c= 11 .【考点】二次函数图象与几何变换.【分析】因为抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,得到图象的解析式是y=x2﹣3x+5,所以y=x2﹣3x+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=ax2+bx+c的图象,先由y=x2﹣3x+5的平移求出y=ax2+bx+c的解析式,再求a+b+c=11.【解答】解:∵y=x2﹣3x+5=(x﹣)2+,当y=x2﹣3x+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=ax2+bx+c的图象,∴y=(x﹣+3)2++2=x2+3x+7;∴a+b+c=11.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.13.如图,一位同学身高1.6米,晚上站在路灯下,他在地面上的影长是2米,若他沿着影长的方向移动2米站立时,影长增加了0.5米,则路灯的高度是8 米.【考点】相似三角形的应用;中心投影.【分析】可设路灯高为x米,人高为y米,利用线段之间的比例进而求解线段的长度.【解答】解:设路灯高为x米,人高为y米,如图所示,当人在A点时,影长AB=2米,当人在B点时,影长BC=(2+0.5)米,所以①,②,则解得.即路灯的高度为8米.【点评】熟练掌握平行线分线段成比例的应用.14.如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A,C为圆心,以的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为24﹣πcm2(结果保留π)【考点】扇形面积的计算.【分析】根据阴影部分的面积等于△ABC的面积﹣扇形DAE与扇形DCF的面积的和,根据扇形面积公式即可求得扇形DAE与扇形DCF的面积的和.【解答】解:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC==10cm,△ABC的面积是:AB•BC=×8×6=24cm2.∴S阴影部分=×6×8﹣cm2故阴影部分的面积是:24﹣πcm2.故答案是:24﹣πcm2【点评】本题主要考查了扇形的面积的计算,正确求得扇形DAE与扇形DCF的面积的和是解题的关键.15.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m= 2 .【考点】二次函数图象与几何变换.【专题】压轴题.【分析】根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.【解答】解:∵一段抛物线:y=﹣x(x﹣3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的解析式与x轴的交点坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为:y13=﹣(x﹣36)(x﹣39),当x=37时,y=﹣(37﹣36)×(37﹣39)=2.故答案为:2.【点评】此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.三、解答题:本大题共8小题,满分75分.16.先化简,再求值(1﹣)÷,其中x=2sin45°+1.【考点】分式的化简求值;特殊角的三角函数值.【分析】先通分,再把除法转化成乘法,然后约分,最后求出x的值,再把它代入原式,进行计算即可.【解答】解:(1﹣)÷=•=,当x=2sin45°+1=2×+1=+1时,原式===.【点评】此题考查了分式的化简求值,用到的知识点是分式的化简步骤和特殊角的三角函数值,关键是把分式化到最简,然后代值计算.17.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点,连接EF.(1)求证:△AEF∽△ABD;(2)填空:①若BC=8,AC=5,则EF= 1.5 ;②若四边形BDFE的面积为6,则△ABD的面积为8 .【考点】相似三角形的判定与性质.【分析】(1)首先判定△ADC是等腰三角形,然后利用等腰三角形的性质得到点F是AD的中点,然后得到EF是△ABD的中位线,进而可证明△AEF∽△ABD;(2)①因为EF是△ABD的中位线,所以BD=2EF,求出BD的长即可得到EF的长;②根据(1)证得的平行可以判定△AEF∽ABD,然后利用相似三角形面积的比等于相似比的平方求的△ABD的面积.【解答】17.(1)证明:∵CF平分∠ACB,∴∠ACF=∠BCF,又∵DC=AC,∴CF是△ACD的中线,∴点F是AD的中点,又∵E是AB的中点,∴EF是△ABD的中位线,∴EF∥BD,∴△AEF∽△ABD;(2)①∵E F是△ABD的中位线,∴EF=BD,∵BC=8,AC=5,DC=AC,∴BD=BC﹣CD=3,∴EF=1.5,故答案为1.5;②∵△AEF∽△ABD,∴S△AEF:S△ABD=1:4,∴S△AEF:S四边形BDFE=1:3,∵四边形BDFE的面积为6,∴S△AEF=2,∴S△ABD=S△AEF+S四边形BDFE=2+6=8,故答案为:8.【点评】本题主要考查等腰三角形的判定和性质、三角形中位线的定义和性质、相似三角形的判定和性质,解题的关键在于求证EF为中位线,S△AEF:S△ABD=1:4.18.入冬以来,我国中东部地区遭遇多次大范围雾霾天气,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随即调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾气排放pD 工厂造成污染120E 其他60请根据图表中提供的信息解答下列问题:(1)填空:m= 40 ,n= 100 .(2)扇形统计图中,表示D组的扇形圆心角的度数是108°;(3)若该市人口约为60万人,请你估计其中持D组“观点”的市民人数;(4)若在这次接受调查的市民中,随机抽查一人,抽中持C组“观点”的人概率是多少?【考点】扇形统计图;用样本估计总体;概率公式.【分析】(1)首先由A组人数为80,占总数的20%,求得总人数,然后根据百分比的定义即可求得;(2)360°乘以D组观点的人数所占总人数的百分比即可求得;(3)利用样本估计总体的思想,用总人数60万乘以持D组“观点”的市民所占的百分比即可求解;(4)利用概率公式即可直接求解.【解答】解:(1)总人数为:80÷20%=400,m=400×10%=40,n=400﹣80﹣40﹣120﹣60=100,故答案为40,100;(2)扇形统计图中表示D组的扇形圆心角为:360°×=108°.故答案为108°;(3)60×=18(万);(4)持C组“观点”的人概率是P==.答:抽中持“C”组观点的人的概率是.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【考点】根的判别式.【专题】计算题.【分析】(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.【解答】(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.20.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.【解答】解:(1)过B作BG⊥DE于G,Rt△ABH中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.【点评】此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.21.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.【点评】本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.22.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O得切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是⊙O的切线.【考点】切线的判定.【分析】(1)根据切线判定知道EB⊥BC,而AD⊥BC,从而可以确定AD∥BE,那么△BFC∽△DGC,又G是AD的中点,就可得出结论BF=EF.(2)要证PA是⊙O的切线,就要证明∠PAO=90°,连接AO,AB,根据(1)的结论和BE是⊙O的切线和直角三角形的等量代换,就可得出结论.【解答】解:(1)∵BC是⊙O的直径,BE是⊙O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE,∴△BFC∽△DGC,△FEC∽△GAC,∴=,=,∴=,∵G是AD的中点,∴DG=AG,∴BF=EF.(2)连结AO,AB,∵BC是⊙O的直径,∴∠BAC=90°.在Rt△BAE中,由(1)知F是斜边BE的中点,∴AF=FB=EF,∴∠FBA=∠FAB又∵OA=OB,∴∠ABO=∠BAO∵BE是⊙O的切线,∴∠EBO=90°∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°∴PA是⊙O的切线.【点评】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.23.如图,在平面直角坐标系中,直线y=﹣x﹣与x轴交于点A,与y轴交于点C,抛物线y=ax2﹣x+c(a≠0)经过A,B,C三点.(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;(2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由;(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)抛物线解析式中有两个待定系数a,c,根据直线AC解析式求点A、C坐标,代入抛物线解析式即可;(2)分析不难发现,△ABP的直角顶点只可能是P,根据已知条件可证AC2+BC2=AB2,故点C满足题意,根据抛物线的对称性,点C关于抛物线对称轴的对称点也符合题意;(3)由于B,F是定点,BF的长一定,实际上就是求BM+FM最小,找出点B关于直线AC的对称点B',连接B'F,交AC于点M,点M即为所求,由(2)可知,BC⊥AC,延长BC到B',使BC=B'C,利用中位线的性质可得B'的坐标,从而可求直线B'F的解析式,再与直线AC的解析式联立,可求M 点坐标.【解答】方法一:解:(1)∵直线y=﹣x﹣与x轴交于点A,与y轴交于点C∴点A(﹣1,0),C(0,﹣)∵点A,C都在抛物线上,∴∴∴抛物线的解析式为y=x2﹣x﹣∴顶点F(1,﹣).(2)存在:p1(0,﹣),p2(2,﹣).(3)存在理由:解法一:延长BC到点B′,使B′C=BC,连接B′F交直线AC于点M,则点M就是所求的点,∵过点B′作B′H⊥AB于点H,∵B点在抛物线y=x2﹣x﹣上,∴B(3,0),在Rt△BOC中,tan∠OBC=∴∠OBC=30°,BC=2在Rt△B′BH中,B′H=BB′=2BH=B′H=6,∴OH=3,∴B′(﹣3,﹣2).设直线B′F的解析式为y=kx+b,∴,解得,∴y=.,解得,∴M()∴在直线AC上存在点M,使得△MBF的周长最小,此时M().解法二:过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点,连接BH交AC于点M,则点M即为所求.过点F作FG⊥y轴于点G,则OB∥FG,BC∥FH,∴∠BOC=∠FGH=90°,∠BCO=∠FHG∴∠HFG=∠CBO同方法一可求得B(3,0)在Rt△BOC中,tan∠OBC=∴∠OBC=30°,可求得GH=GC=∴GF为线段CH的垂直平分线,可证得△CFH为等边三角形∴AC垂直平分FH即点H为点F关于AC对称点,∴H(0,﹣)设直线BH的解析式为y=kx+b,由题意得,,解得,∴y=,,解得,∴M(),∴在直线AC上存在点M,使得△MBF的周长最小,此时M().方法二:(1)略.(2)设P(t,),A(﹣1,0),B(3,0),∵PA⊥PB,∴K PA×K PB=﹣1,=﹣1,∴(t+1)(t﹣3)=﹣3,∴t1=0,t2=2,∴P1(0,﹣),P2(2,﹣).(3)∵AC⊥BC,∴点B关于AC的对称点B′,∴,,∵B(3,0),C(0,﹣),∴B′(﹣3,﹣2),F(1,﹣),∴l B′F:y=x﹣,l AC:y=﹣x﹣,∴两直线交点坐标M(,﹣).(4)设线段AC下移t个单位,则A′(﹣1,﹣t),C′(0,﹣﹣t),∵F(1,﹣),过点F作x轴的垂线,∴C′关于x=1的对称点为C″(2,﹣﹣t),∴当FC′+FA′最短时,C″,F,A′三点共线,∴K C″F=K A′F,∴,∴t=.【点评】考查代数几何的综合运用能力,体现数学知识的内在联系和不可分割的特点.。
九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程x2=x的实数根是()A. 0或1B. 0C. 1D. ±12.令函数f(x)=-x2+2x+m(m是常数),当x取-1,1,2时,对应的函数值f(-1),f(1),f(2)大小关系是()A. f(-1)<f(1)<f(2)B. f(-1)<f(2)<f(1)C. f(2)<f(1)<f(-1)D. f(1)<f(2)<f(-1)3.在直角坐标系中,正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),则另一条对角线的端点坐标为()A. (3,0),(-1,2)B. (1,1),(-1,2)C. (1,1),(3,0)D. (2,0),(0,2)4.如图,A,B在半径为的⊙O上,将沿着弦AB翻折,若∠AOB=150°,则图中月牙(阴影)的面积等于()A. π-3B. π+3C. 2π-3D. π5.下列事件中,是必然事件的是()A. 任意掷一枚骰子一定出现奇数点B. 彩票中奖率20%,买5张一定中奖C. 晚间天气预报说明天有小到中雪D. 在13个同学中至少有2人生肖相同6.如图,已知点A(4,0),B(0,3),点P在线段AB上(不与端点重合),反比例函数y=的图象经过点P,则k的取值范围是()A. k>3B. 0≤k≤3C. 0<k≤3D. k≥37.在直角坐标系中,已知点A(6,-3),以原点O为位似中心,相似比为,把线段OA缩小为OA′,则点A′的坐标为()A. (2,-1),(-2,-1)B. (-2,1),(2,1)C. (2,1),(-2,-1)D. (2,-1),(-2,1)8.如图,△ABC的顶点是正方形网格的格点,则cos A=()A. B. C. D.9.如图,在正方形ABCD中,点E是BC边上的动点,过点E作AE的垂线交CD边于点F,设BE=x,FD=y,y关于x的函数关系图象如图所示,则m=()A. 1.5B. 2C. 2.5D. 310.方程有无实数解,可以通过构造函数,利用函数图象有无交点来判断.一元三次方程x3+2x+1=0的实数解的个数是()A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,共15.0分)11.sin30°•cos45°•tan60°=______.12.在平面直角坐标系中,把抛物线y=-2x2向下平移2个单位长度,再向左平移1个单位长度,得到的新抛物线解析式为______.13.已知点A(1,m),B(2,n)在反比例函数y=-的图象上,则m与n的大小关系为______.14.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是______.15.如图,∠MON=90°,点A,B分别在射线OM,ON上,AB=4,点C是线段AB的中点,△A′OC与△AOC关于直线OC对称.A′O与AB相交于点D.当△A′DC是直角三角形时,△OAB的面积等于______.三、解答题(本大题共8小题,共75.0分)16.已知关于x的方程3x2-6x+3p=0,其中p是常数.请用配方法解这个一元二次方程.17.某商品投放市场试售:以每件65元销售时,每星期可卖出250件;以每件70元销售时,每星期可卖出200件.设每件售价x(元),销售量为y(件),销售总利润为w(元).(1)若销售量与商品价格存在一次函数关系,请求出它们的关系式;(2)在(1)的函数关系下,若商品的进价为每件40元,如何定价才能使利润最大?18.有4张看上去无差别的卡片,上面分别写着1,2,3,4.小华随机抽取1张,记下数字为x,小芳在剩余的3张卡片中随机取出1张,记下数字为y,这样确定了点M的坐标.(1)画出树状图或列表,写出点M所有可能的坐标;(2)求点M在函数的图象上的概率.19.如图,在一次数学应用活动中,小明沿一条南北公路向北行走,在A处,他测得左边建筑C在北偏西30°方向,右边建筑D在北偏东30°方向;从A出向北40米行至B处,他又测得左边建筑物C在北偏西60°方向,右边建筑物D在北偏东45°方向.请根据以上数据求两建筑物C、D到这条南北公路的距离.(参考数据:≈1.732≈1.414,结果精确到0.1米)20.如图,PA⊥x轴于点A,连接OP,PA,PO分别与反比例函数y=(k>0)的图象交于点B,C.(1)求证:=;(2)已知P(4,3),PB=PC,求k的值.21.如图,点I是△ABC的内心,AI的延长线交BC于点D,与△ABC的外接圆相交于点E,连接BE.(1)求证:BE=IE;(2)若AD=6,DE=2,求AI的长.22.(1)问题发现(1)如图1,△ABC和△CDE均为等边三角形,直线AD和直线BE交于点F.填空:①∠AFB的度数是______;②线段AD,BE之间的数量关系为______;(2)类比探究如图2,△ABC和△CDE均为等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE=EC,直线AD和直线BE交于点F.请判断∠AFB的度数及线段AD,BE之间的数量关系,并说明理由.(3)解决问题如图3,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点D在AB边上,DE⊥AC于点E,AE=3,将△ADE绕着点A在平面内旋转,请直接写出直线DE经过点B时,点C到直线DE的距离.23.如图,在平面直角坐标系中,直线y=kx-4k+4与抛物线y=x2-x交于A、B两点.(1)直线总经过定点,请直接写出该定点的坐标;(2)点P在抛物线上,当k=-时,解决下列问题:①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.答案和解析1.【答案】A【解析】解:方程整理得:x2-x=0,分解因式得:x(x-1)=0,解得:x=0或x=1,故选:A.方程利用因式分解法求出解即可.此题考查了解一元一次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.2.【答案】B【解析】解:当x=-1时,f(-1)=-3+m;当x=1时,f(1)=1+m;当x=2时,f(2)=m.∵-3+m<m<1+m,∴f(-1)<f(2)<f(1).故选:B.把x=-1、1、2分别代入f(x)=-x2+2x+m中进行比较即可.本题主要考查二次函数图象上点坐标求法,同时考查了新定义问题,读懂题意是解题的关键.3.【答案】A【解析】解:∵正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),设A(2,3),C(0,-1),对角线AC,BD交于O,∴直线AC的解析式为y=2x-1,∵AO=CO,BO=DO,∴O(1,1),∵AC⊥BD,∴设直线BD的解析式为y=-x+b,把O(1,1)代入得,b=,∴直线BD的解析式为y=-x+,设B(m,n),∴n=-m+①,∵OC2=OB2,∴1+4=(1-m)2+(1-n)2②,联立①②组成的方程组解得:,或,∴另一条对角线的端点坐标为(3,0),(-1,2),故选:A.正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),设A(2,3),C(0,-1),对角线AC,BD交于O,求得直线AC的解析式为y=2x-1,求得O(1,1),设直线BD的解析式为y=-x+b,得到BD的解析式为y=-x+,设B(m,n),解方程组即可得到结论.本题考查了正方形的性质,待定系数法求函数的解析式,坐标与图形的性质,正确的理解题意是解题的关键.4.【答案】B【解析】解:如图,作BD⊥AO交AO于点D.∵OA=OB,∠AOB=150°,∴∠DOB=30°,∵OB=,∴BD=OB=,S阴=S圆O-2•S弓形AmB=π•()2-2(-××)=6π-5π+3=π+3,故选:B.根据S阴=S圆O-2•S弓形AmB计算即可.本题考查圆心角,弧,弦之间的关系,翻折变换,扇形的面积等知识,解题的关键是学会用分割法求阴影部分的面积,属于中考常考题型.5.【答案】D【解析】解:A、任意掷一枚骰子一定出现奇数点,是随机事件;B、彩票中奖率20%,买5张一定中奖,是随机事件;C、晚间天气预报说明天有小到中雪,是随机事件;D、在13名同学中至少有2人生肖相同,是必然事件,故选:D.根据理解必然事件、不可能事件、随机事件的概念进行解答即可.本题考查的是理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.【答案】C【解析】解:设直线AB解析式y=mx+n∴解得:m=-,n=3,∴直线AB解析式为y=-x+3,∵反比例函数y=的图象与直线AB交于点P,∴-x+3=,∴x2-3x+k=0,∴△=9-3k≥0,∴k≤3,∵反比例函数图象在第一象限,∴k>0,∴0<k≤3,故选:C.由题意可求直线AB解析式,由直线AB与反比例函数图象交点在第一象限可求k的取值范围.本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,熟练运用判别式求参数的范围是本题的关键.7.【答案】D【解析】解:∵点A的坐标为(-6,3),以原点为位似中心将△ABO缩小,位似比为,∴点A的对应点的坐标为:(-6×,3×)或(-6×(-),3×(-)),即(-2,1)或(2,-1),故选:D.根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k解答.本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.8.【答案】B【解析】解:如图,连接BD,∵AD2=12+22=5,BD2=12+22=5,AB2=12+32=10,∴AD2+BD2=AB2,∴△ABD是直角三角形,且AD=BD,∴∠A=45°,则cos A=,故选:B.连接BD,先利用勾股定理逆定理得出△ABD是直角三角形,且AD=BD,从而得知∠A=45°,据此可得答案.本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.熟练掌握勾股定理和三角函数的定义是解决此类问题的关键.9.【答案】B【解析】解:设正方形的边长为a,则CF=a-y.∵∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF.又∠B=∠C,所以△ABE∽ECF.∴,即,整理得y=x2-x+a.当x=时,y有最小值.从所给函数图象上看,当x=m时,y有最小值3,所以,解得a=4.所以x=m==2.故选:B.设正方形的边长为a,则CF、EC均可用a表示,证明△ABE∽△ECF,写出比例式找到y与x之间的函数式,根据二次函数的最值求法,结合所给函数图象,求出a值,而后可求m值.本题主要考查动点问题产生的函数图象、相似三角形的判定和性质,解题的关键是动中找静,会阅读图象信息.10.【答案】B【解析】解:设:函数y=x3+2x+1,先用如下表格求出函数y的值,依据表格画出函数画出函数的部分图象如下:从图象可以看出:函数与x轴的交点只有一个,即一元三次方程有一个根,故选:B.设:函数y=x3+2x+1,先用表格求出函数y的值,依据表格画出函数的部分图象,从图象看函数与x轴的交点个数,即可求解.本题考查的是函数的图象,此类依据表格画出函数的部分图象,从图象看函数与x轴的交点个数即可.11.【答案】【解析】解:原式=××=.故答案为:.直接利用特殊角的三角函数值分别代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12.【答案】y=-2(x+1)2-2【解析】解:将抛物线y=-2x2向下平移2个单位长度,得到的抛物线的解析式是:y=-2x2-2,再向左平移1个单位长度,得到的抛物线的解析式是:y=-2(x+1)2-2.故答案是:y=-2(x+1)2-2.根据平移的规律:左加右减,上加下减,求出得到的抛物线的解析式即可.此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.13.【答案】m<n【解析】解:∵反比例函数y=-中k=-2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.由反比例函数y=-可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.【答案】20【解析】解:设白球的个数为x个,∵共有黄色、白色的乒乓球50个,白球的频率稳定在60%,∴=60%,解得x=30,∴布袋中白色球的个数很可能是50-30=20(个).故答案为:20.先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据白球的频率得到相应的等量关系,列出方程.15.【答案】2或2【解析】解:∵△A′DC是直角三角形,∴①如图1,当∠A′CD=90°时,过O作OH⊥AB于H,∴OH∥A′C,∴∠HOD=∠A′,∵∠AOB=90°,OH⊥AB,∴∠BOH=∠BAO,∵点C是线段AB的中点,∴OC=AC,∴∠COA=∠CAO,∵△A′OC与△AOC关于直线OC对称,∴∠A′=∠CAO,∠A′OC=∠AOC,∴∠BOH=∠HOD=∠DOC=∠COA,∴∠HOC=∠AOB=45°,∵AB=4,∴OC=2,∴OH=,∴△OAB的面积等于×4×=2;②如图2,当∠A′DC=90°,∴OA′⊥AB,∴∠BOD=∠BAO,∵△A′OC与△AOC关于直线OC对称,∴∠A′=∠BAO,∠A′OC=∠AOC,∴∠BOD=∠A′,∵点C是线段AB的中点,∴OC=AC=A′C,∴∠A′=∠A′OC,∴∠BOD=∠DOC=∠AOC=∠AOB=30°,∴∠OAB=30°,∵AB=4,∴OB=2,OA=2,∴△OAB的面积等于OB•OA=×2×2=2,综上所述,△OAB的面积等于2或2.故答案为:2或2.①如图1,当∠A′CD=90°时,过O作OH⊥AB于H,根据轴对称的性质和直角三角形的性质推出∠BOH=∠HOD=∠DOC=∠COA,求得∠HOC=∠AOB=45°,于是得到结论;②如图2,当∠A′DC=90°,根据轴对称的性质和直角三角形的性质得到∠BOD=∠DOC=∠AOC=∠AOB=30°,求得∠OAB=30°,于是得到结论.本题考查的是解直角三角形,轴对称的性质,等腰三角形的判定和性质,正确的理解题意是解题的关键.16.【答案】解:x2-2x=-p,x2-2x+1=1-p,(x-1)2=1-p,当1-p>0,即p<1时,x-1=±,所以x1=1+,x2=1-;当1-p=0,即p=1时,x-1=0,所以x1=x2=1;当1-p<0,即p<1时,方程无实数根.【解析】先配方得到(x-1)2=1-p,再讨论:当1-p>0,即p<1时,利用直接开平方法解方程;当1-p=0,即p=1时,x-1=0,所以x1=x2=1;当1-p<0,即p<1时,方程无实数根.本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.17.【答案】解:(1)设一次函数的解析式为y=kx+b,则,解得,∴一次函数的解析式为y=-10x+900;(2)根据题意得,w=(x-40)(-10x+900)=-10x2+1300x-36000=-10(x-65)2+6250,当x=65时,w有最大值,最大值为6250,所以,定价为每件65元时,利润最大,最大利润为6250元.【解析】(1)设一次函数的解析式为y=kx+b,根据题意列方程组即可得到结论;(2)根据题意得到函数关系式,根据二次函数的性质即可得到结论.本题主要考查了二次函数的实际应用,正确理解题意确定不同范围内的函数表达式是解决问题的关键.18.【答案】解:(1)根据题意画树状图如下:共有12种可能的坐标:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3);(2)在12种等可能结果中,在函数的图象上的点有(2,1),(3,2),(4,3)这3种结果,∴点M在函数y=x-1的图象上的概率为=.【解析】(1)直接用树状图列出各种可能出现的结果数,然后写出点M所有可能的坐标即可;(2)根据(1)写出的可能结果中,找出所有符合条件的点,然后根据概率公式即可得出答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.【答案】解:过点C作CE⊥AB于点E,过点D作DF⊥AB于点F,,在Rt△ACE中,可得AE=,在Rt△CBE中,BE=,则-=AB=40米,解得:CE=20≈34.6米;同理:求得DF=20(+1)≈54.6米.答:C、D距公路的距离为34.6米、54.6米.【解析】过点C作CE⊥AB于点E,过点D作DF⊥AB于点F,分别求出AE、AF的长度,继而根据AB=40米,可得出方程,解出即可.本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数值的知识求出相关线段的长度,难度一般.20.【答案】(1)作CD⊥x轴于点D,连接OB,∴CD∥AB,S△OCD=S△AOB=k,∴△OCD∽△OPA∴∴=(2)∵P(4,3),∴AP=3,OA=4,∴OP==5设PB=PC=m,则AB=3-m,OC=5-m,由(1)得:解得:m=0(舍去),m=∴k=4×(3-)=【解析】(1)作CD⊥x轴于点D,连接OB,可得CD∥AB,由相似三角形的性质可得,即可证=;(2)设PB=PC=m,则AB=3-m,OC=5-m,代入(1)的结论中可求m的值,即可求k 的值.本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,勾股定理,熟练运用相似三角形的性质是本题的关键.21.【答案】(1)证明:连接BI,∵点I是△ABC的内心,∴∠ABI=∠IBD,∠BAE=∠EAC,∵∠EBC=∠EAC,∴∠BIE=∠BAI+∠ABI,∠EBI=∠EBC+∠IBD,∴∠BIE=∠EBI,∴BE=IE(2)∵∠EBC=∠EAC=∠BAE,∠BED=∠AEB,∴△EBD∽△EAB.∴,∴BE2=DE×AE=2×(2+6)=16,∴IE=BE=4,∴AI=AD+DE-IE=6+2-4=4.【解析】(1)连接BI,利用内心条件和外角性质可证明∠BIE=∠EBI,即可得出BE=IE;(2)证明△EBD∽△EAB,求得BE的长,进而得出AI的长.本题考查三角形的内心概念和性质,相似三角形的判定和性质,等腰三角形的判定.解题的关键是正确理解三角形内心是三角形三条角平分线的交点.22.【答案】60°AD=BE【解析】解:(1)如图1中,∵△ABC和△CDE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ACD=∠CBF,设BC交AF于点O.∵∠AOC=∠BOF,∴∠BFO=∠ACO=60°,∴∠AFB=60°,故答案为60°,AD=BE.(2)结论:∠AFB=45°,AD=BE.理由:如图2中,∵∠ABC=∠DEC=90°,AB=BC,DE=EC,∴∠ACD=45°+∠BCD=∠BCE,==,∴△ACD∽△BCE,∴==,∠CBF=∠CAF,∵∠AFB+∠CBF=∠ACB+∠CAF,∴∠AFB=∠ACB=45°.(3)如图3中,∵AEB=∠ACB=90°,∴A,B,C,E四点共圆,∴∠CEB=∠CAB=30°,∠ABD=∠ACE,∵∠FAE=∠BAC=30°,∴∠BAD=∠CAE,∴△BAD∽△CAE,∴==cos30°=,∴EC=BD,在Rt△ADE中,∵DE=,∠DAE=30°,∴AE=DE=3,∴BE==4,∴BD=BE-DE=4-,∴CE=BD=2-,∵∠BEC=30°,∴点C到直线DE的距离等于CE•sin30°=-.如图4中,当D,EB在同一直线上时,同法可知BD=DE+EB=4+,CE=BD=2+,点C到直线DE的距离等于CE•sin30°=+.综上所述,点C到直线DE的距离等于±.(1)证明△ACD≌△BCE(SAS),即可解决问题.(2)结论:∠AFB=45°,AD=BE.证明△ACD∽△BCE,可得==,∠CBF=∠CAF,由此即可解决问题.(3)分两种情形分别求解即可解决问题.本题考查几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.23.【答案】解:(1)∵y=kx-4k+4=k(x-4)+4,即k(x-4)=y-4,而k为任意不为0的实数,∴x-4=0,y-4=0,解得x=4,y=4,∴直线过定点(4,4);(2)当k=-时,直线解析式为y=-x+6,解方程组得或,则A(6,3)、B(-4,8);①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2-x),则Q(x,-x+6),∴PQ=(-x+6)-(x2-x)=-(x-1)2+,∴S△PAB=(6+4)×PQ=-(x-1)2+=20,解得x1=-2,x2=4,∴点P的坐标为(4,0)或(-2,3);②设P(x,x2-x),如图2,由题意得:AO=3,BO=4,AB=5,∵AB2=AO2+BO2,∴∠AOB=90°,∵∠AOB=∠PCO,∴当=时,△CPO∽△OAB,即=,整理得4|x2-x|=3|x|,解方程4(x2-x)=3x得x1=0(舍去),x2=7,此时P点坐标为(7,);解方程4(x2-x)=-3x得x1=0(舍去),x2=1,此时P点坐标为(1,-);当=时,△CPO∽△OBA,即=,整理得3|x2-x|=4|x|,解方程3(x2-x)=4x得x1=0(舍去),x2=,此时P点坐标为(,);解方程3(x2-x)=-4x得x1=0(舍去),x2=-,此时P点坐标为(-,)综上所述,点P的坐标为:(7,)或(1,-)或(-,)或(,).【解析】(1)变形为不定方程k(x-4)=y-4,然后根据k为任意不为0的实数得到x-4=0,y-4=0,然后求出x、y即可得到定点的坐标;(2)通过解方程组得A(6,3)、B(-4,8);①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2-x),则Q(x,-x+6),则PQ=(-x+6)-(x2-x),利用三角形面积公式得到S△PAB=-(x-1)2+=20,然后解方程求出x即可得到点P的坐标;②设P(x,x2-x),如图2,利用勾股定理的逆定理证明∠AOB=90°,根据三角形相似的判定,由于∠AOB=∠PCO,则当=时,△CPO∽△OAB,即=;当=时,△CPO∽△OBA,即=,然后分别解关于x的绝对值方程即可得到对应的点P的坐标.本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和相似三角形的判定方法;会利用待定系数法求抛物线解析式,通过解方程组求两函数图象的交点坐标,会解一元二次方程;理解坐标与图形性质;会运用分类讨论的思想解决思想问题.。
河南省驻马店市2016届九年级上学期期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.一元二次方程x2+2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=22.下列图形中,是中心对称但不是轴对称图形的为()A. B.C.D.3.已知抛一枚均匀的硬币,正面朝上的概率为.有下列四种说法:①连续抛一枚均匀硬币2次必有一次正面朝上;②连续抛一枚均匀硬币10次都可能正面朝上;③大量反复抛一枚均匀的硬币,平均每100次出现正面朝上50次;④通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的.其中错误的说法有()A.1种B.2种C.3种D.4种4.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0B.方程ax2+bx+c=0的两根是x1=﹣1,x2=3C.不等式ax2+bx+c<0的解集是﹣1<x<3D.当x>0时,y随x的增大而减小5.已知点A(﹣2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<06.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=7.如图,AB是⊙O的直径,CD为弦,CD⊥AB且交于点E,则下列结论中不成立的是()A.∠A=∠D B.C.∠ACB=90°D.∠COB=3∠D8.如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD 的边于M、N两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)9.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为.10.一个正五边形绕它的中心至少要旋转度,才能和原来五边形重合.11.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为.12.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)2+3,由此可知铅球推出的距离是m.13.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.14.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是(保留π).15.如图所示,将抛物线y=﹣x2平移得到抛物线m,抛物线m经过点A(6,0)和原点O,它的顶点为P,它的对称轴与抛物线y=﹣x2交于点Q,则图中阴影部分的面积为.三、解答题(共8小题,满分75分)16.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.17.如图,已知反比例函数y1=(k<0)的图象与一次函数y2=ax+1(a≠0)的图象相交于A、B两点,AC⊥x轴于点C,若△OAC的面积为1,且A点的横坐标为﹣1.(1)求反比例函数与一次函数的表达式;(2)直接写出B点的坐标,并结合图象指出当x为何值时,反比例函数y1的值小于一次函数y2的值.18.为进一步增强学生体质,据悉,我市从起,2016届中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X1)、排球(记为X2)、足球(记为X3)中任选一项.(1)每位考生将有种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.19.如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA、PB,切点分别为A、B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当的长为cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.20.有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是;(2)下表是y与x的几组对应值.1 2 3 …x …﹣3 ﹣2 ﹣1﹣﹣m …y …﹣﹣﹣求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可).21.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.22.请从以下A、B两题中任选一题解答,若两题都做,按A题给分.A.如图1,△ABC和△FED均为等腰直角三角形,AC与BE重合,AB=AC=EF=3,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB重合时,旋转停止.现不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图2.(1)始终与△AGC相似的三角形是和;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图2的情形说明理由);(3)在整个旋转过程中,当旋转角为多少度时,△AGH是等腰三角形?请直接写出旋转的度数.B.如图(1),正方形AEFG的边长为1,正方形ABCD的边长为3,且点F在AD上;(1)求S△DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得到图(2)中的S△DBF;(3)将正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF存在最大值与最小值,请直接写出最大值为,最小值为.我选做的是题.23.如图,二次函数y=ax2+bx+c的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且A(4,0).C(0,﹣3),对称轴是直线x=l.(1)求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA的面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B、C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.河南省驻马店市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.一元二次方程x2+2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:x(x+2)=0,解得:x1=0,x2=﹣2.故选A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.下列图形中,是中心对称但不是轴对称图形的为()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点评】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合,难度适中.3.已知抛一枚均匀的硬币,正面朝上的概率为.有下列四种说法:①连续抛一枚均匀硬币2次必有一次正面朝上;②连续抛一枚均匀硬币10次都可能正面朝上;③大量反复抛一枚均匀的硬币,平均每100次出现正面朝上50次;④通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的.其中错误的说法有()A.1种B.2种C.3种D.4种【考点】概率的意义.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【解答】解:①连续抛一枚均匀硬币2次有可能一次正面朝上,故①错误;②连续抛一枚均匀硬币10次都可能正面朝上,故②正确;③大量反复抛一枚均匀的硬币,平均每100次出现正面朝上50次,故③错误;④通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的,故④正确;故选:B.【点评】本题考查了概率,大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.4.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0B.方程ax2+bx+c=0的两根是x1=﹣1,x2=3C.不等式ax2+bx+c<0的解集是﹣1<x<3D.当x>0时,y随x的增大而减小【考点】二次函数与不等式(组);二次函数图象与系数的关系;抛物线与x轴的交点.【分析】根据抛物线的开口向下可知a<0,由与y轴的交点在y轴正半轴可知c>0,故ac <0,A错误;由抛物线与x轴的交点可得出x的值,判断出B正确;由图可知当x<﹣1或x>3时,抛物线在x轴的下方可知C错误;当0<x<1时,y随x的增大而增大可知D 错误.【解答】解:A、∵抛物线的开口向下,∴a<0.∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴ac<0,故本选项错误;B、∵抛物线的对称轴为x=1,与x轴的一个交点是(3,0),∴抛物线与x轴的另一个交点是(﹣1,0),∴方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故本选项正确;C、∵由图可知当x<﹣1或x>3时,抛物线在x轴的下方,∴不等式ax2+bx+c<0的解集是x<﹣1或x>3,故本选项错误;D、由图可知,当0<x<1时,y随x的增大而增大,故本选项错误.故选B.【点评】本题考查的是二次函数与不等式组,能根据题意利用数形结合求出不等式及一元二次方程的解是解答此题的关键.5.已知点A(﹣2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<0【考点】反比例函数图象上点的坐标特征.【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点解答.【解答】解:∵反比例函数y=(k<0)中,k<0,∴此函数图象在二、四象限,∵﹣2<0,∴点A(﹣2,y1)在第二象限,∴y1>0,∵3>0,∴B(3,y2)点在第四象限,∴y2<0,∴y1,y2的大小关系为y2<0<y1.故选B.【点评】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.6.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=【考点】相似三角形的判定与性质.【分析】由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.7.如图,AB是⊙O的直径,CD为弦,CD⊥AB且交于点E,则下列结论中不成立的是()A.∠A=∠D B.C.∠ACB=90°D.∠COB=3∠D【考点】垂径定理;圆周角定理.【分析】根据圆周角定理和圆心角、弧、弦之间的关系定理进行判断即可.【解答】解:由圆周角定理得,∠A=∠D成立,A不合题意;∵∠A=∠D,∴=成立,B不合题意;∵AB是⊙O的直径,∴∠ACB=90°正确,C不合题意;∵∠COB=2∠A,∠A=∠D,∴∠COB=2∠D,D不成立.故选:D.【点评】本题考查的是垂径定理和圆周角定理的应用,掌握同弧所对的圆周角相等、直径所对的圆周角是90°是解题的关键.8.如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD 的边于M、N两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是()A.B.C.D.【考点】动点问题的函数图象.【专题】几何动点问题;压轴题;分类讨论.【分析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;【解答】解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴,即,,MN=x;∴y=AP×MN=x2(0<x≤1),∵,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,,即,,MN=2﹣x;∴y=AP×MN=x×(2﹣x),y=﹣x2+x;∵﹣,∴函数图象开口向下;综上,答案C的图象大致符合;故选:C.【点评】本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.二、填空题(共7小题,每小题3分,满分21分)9.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为6.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.【解答】解:设反比例函数解析式为y=,根据题意得k=3×(﹣4)=﹣2m,解得m=6.故答案为6.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.10.一个正五边形绕它的中心至少要旋转72度,才能和原来五边形重合.【考点】旋转对称图形.【分析】要与原来的五边形重合.可用一个圆周角的度数(即360度)除以5,便可知道至少要旋转多少度才能和原来的五边形重合.【解答】解:要与原来五边形重合,故为360÷5=72°.故一个正五边形绕它的中心至少旋转72°才能和原来的五边形重合.【点评】本题主要考查旋转对称图形的性质以及几何体度数的计算方法,难度一般.11.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为(2.5,5).【考点】位似变换;坐标与图形性质.【分析】根据题意得到B点与D点是对应点,根据B点与D点的坐标求出位似比,根据位似变换的性质计算即可.【解答】解:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,又点D的坐标为(2,0),点B的坐标为(5,0),∴位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5).故答案为:(2.5,5).【点评】本题主要考查了位似变换的概念和性质,正确把握位似比与对应点坐标的关系是解题关键.12.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)2+3,由此可知铅球推出的距离是10m.【考点】二次函数的应用.【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【解答】解:令函数式y=﹣(x﹣4)2+3中,y=0,0=﹣(x﹣4)2+3,解得x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故答案为:10.【点评】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.13.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.【考点】列表法与树状图法.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是(保留π).【考点】扇形面积的计算;勾股定理;切线的性质.【专题】压轴题.【分析】我们只要根据勾股定理求出AD的长度,再用三角形的面积减去扇形的面积即可.【解答】解:连接AD,∵⊙A与BC相切于点D,AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,AD⊥BC,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=1,△ABC的面积=2×1÷2=,扇形MAN得面积=π×12×=,所以阴影部分的面积=.【点评】解此题的关键是求出圆的半径,即三角形的高,再相减即可.15.如图所示,将抛物线y=﹣x2平移得到抛物线m,抛物线m经过点A(6,0)和原点O,它的顶点为P,它的对称轴与抛物线y=﹣x2交于点Q,则图中阴影部分的面积为13.5.【考点】二次函数图象与几何变换.【分析】连结OQ、OP,如图,先利用交点时写出平移后的抛物线m的解析式,再用配方得到顶点式y=﹣(x﹣3)2+,则P点坐标为(3,),抛物线m的对称轴为直线x=3,于是可计算出Q点的坐标为(3,﹣),所以点Q与P点关于x轴对称,于是得到图中阴影部分的面积,然后根据三角形面积公式计算.【解答】解:连结OQ、OP,如图,∵平移后的抛物线解析式为y=﹣(x﹣6)•x=﹣(x﹣3)2+,∴P点坐标为(3,),抛物线m的对称轴为直线x=3,当x=3时,y=﹣x2=﹣,则Q点的坐标为(3,﹣),由于抛物线y=﹣x2向右平移3个单位,再向上平移个单位得到抛物线y=﹣(x﹣3)2+,所以图中阴影部分的面积=S△OPQ=×3×(+)=13.5.故答案为:13.5.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.三、解答题(共8小题,满分75分)16.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)关于x的方程x2﹣2x+a﹣2=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.(2)设方程的另一根为x1,根据根与系数的关系列出方程组,求出a的值和方程的另一根.【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.如图,已知反比例函数y1=(k<0)的图象与一次函数y2=ax+1(a≠0)的图象相交于A、B两点,AC⊥x轴于点C,若△OAC的面积为1,且A点的横坐标为﹣1.(1)求反比例函数与一次函数的表达式;(2)直接写出B点的坐标,并结合图象指出当x为何值时,反比例函数y1的值小于一次函数y2的值.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;反比例函数系数k的几何意义.【专题】数形结合.【分析】(1)根据反比例函数系数k的几何意义可求出k的值,然后根据条件可求出点A 的坐标,然后运用待定系数法就可解决问题;(2)只需通过解反比例函数与一次函数的表达式组成的方程组,就可求出点B的坐标,然后运用数形结合的思想,结合图象就可解决问题.【解答】解:(1)∵点A在y1=(k<0)的图象上,S△OAC=1,∴=2×1=2.∵k<0,∴k=﹣2,∴反比例函数的表达式为y1=﹣.∵A点的横坐标为﹣1,∴当x=﹣1时,y1=2,∴A(﹣1,2).∵点A在y2=ax+1(a≠0)的图象上,∴2=﹣a+1,∴a=﹣1,∴一次函数的表达式为y2=﹣x+1;(2)解方程组,得或,∴点B的坐标为(2,﹣1).观察图象可知,当x<﹣1或0<x<2时,反比例函数y1的值小于一次函数y2的值.【点评】本题主要考查了反比例函数系数k的几何意义、运用待定系数法求一次函数的表达式、反比例函数与一次函数的图象的交点坐标等知识,运用数形结合的思想是解决第(2)小题的关键.18.为进一步增强学生体质,据悉,我市从起,2016届中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X1)、排球(记为X2)、足球(记为X3)中任选一项.(1)每位考生将有3种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.【考点】列表法与树状图法.【分析】(1)根据题意得出每位考生的选择方案种类即可;(2)根据列表法求出所有可能,进而得出概率即可.【解答】解:(1)根据题意得出:每位考生有3种选择方案;故答案为:3;(2)列表法是:X1X2X3X1(X1,X1)(X1,X2)(X1,X3)X2(X2,X1)(X2,X2)(X2,X3)X3(X3,X1)(X3,X2)(X3,X3)由表中得知:共有9种不同的结果,而小颖和小华将选择同种方案的结果有3种,则:小颖与小华选择同种方案的概率为P==.【点评】本题考查了概率的概念:用列举法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P=.19.如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA、PB,切点分别为A、B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当的长为或cm时,四边形AOBD是菱形;②当DP=(﹣1)cm时,四边形AOBP是正方形.【考点】切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.【分析】(1)如图1,连接AO,根据切线的性质得到∠PAO=90°,根据三角形内角和得到∠AOP=60°,根据等腰三角形的性质得到∠C=∠CAO=30°,即可得到结论;(2)①由四边形AOBD是菱形,得到AO=AD,由于AO=OD,推出△AOD是等边三角形,根据等边三角形的性质得到∠AOD=60°,易得圆心角为120度或240度.根据弧长公式进行计算即可;②当四边形AOBP为正方形时,则有PA=OA,再结合切割线定理可求得PD,可得出答案.【解答】解:(1)如图1,连接AO,∵PA是⊙O的切线,∴∠PAO=90°,∵∠APO=30°,∴∠AOP=60°,∵OA=OC,∴∠C=∠CAO=30°,∴∠C=∠APO,∴△ACP是等腰三角形;(2)如图2,①∵四边形AOBD是菱形,∴AO=AD,∵AO=OD,∴△AOD是等边三角形,∴∠AOD=60°,则∠AOB=120°,∴的长为:=或=故答案是:或;②当四边形AOBP为正方形时,则有PA=AO=1cm,∵PA为⊙O的切线,∴PA2=PD•PC,且CD=2cm,∴1=PD(PD+2),整理可得PD2+2PD﹣1=0,解得PD=﹣1或PD=﹣﹣1(舍去),∴PD=﹣1(cm),∴当PD=(﹣1)cm时,四边形AOBP为正方形;故答案为:(﹣1).【点评】本题考查了切线的性质,菱形的性质,含30°角的直角三角形的性质,正方形的性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.20.有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.x …﹣3 ﹣2 ﹣11 2 3 …﹣﹣m …y …﹣﹣﹣求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值.【考点】二次函数的图象;反比例函数的图象;反比例函数的性质;二次函数的性质.【分析】(1)由图表可知x≠0;(2)根据图表可知当x=3时的函数值为m,把x=3代入解析式即可求得;(3)根据坐标系中的点,用平滑的曲线连接即可;(4)观察图象即可得出该函数的其他性质.【解答】解:(1)x≠0,(2)令x=3,∴y=×32+=+=;∴m=;(3)如图(4)该函数的其它性质:①该函数没有最大值;②该函数在x=0处断开;③该函数没有最小值;④该函数图象没有经过第四象限.故答案为该函数没有最大值.【点评】本题考查了二次函数的图象和性质,反比例函数的图象和性质,根据图表画出函数的图象是解题的关键.21.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OD,利用AB=AC,OD=OC,证得OD∥AD,易证DF⊥OD,故DF为⊙O的切线;(2)证得△BED∽△BCA,求得BE,利用AC=AB=AE+BE求得答案即可.【解答】(1)证明:如图,连接OD.∵AB=AC,∴∠B=∠C,∵OD=OC,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴OD⊥DF,∵点D在⊙O上,∴直线DF与⊙O相切;(2)解:∵四边形ACDE是⊙O的内接四边形,∴∠AED+∠ACD=180°,∵∠AED+∠BED=180°,∴∠BED=∠ACD,∵∠B=∠B,∴△BED∽△BCA,∴=,∵OD∥AB,AO=CO,∴BD=CD=BC=3,又∵AE=7,∴=,∴BE=2,∴AC=AB=AE+BE=7+2=9.【点评】此题考查切线的判定,三角形相似的判定与性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.22.请从以下A、B两题中任选一题解答,若两题都做,按A题给分.A.如图1,△ABC和△FED均为等腰直角三角形,AC与BE重合,AB=AC=EF=3,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB重合时,旋转停止.现不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图2.(1)始终与△AGC相似的三角形是△HAB和△HGA;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图2的情形说明理由);(3)在整个旋转过程中,当旋转角为多少度时,△AGH是等腰三角形?请直接写出旋转的度数.B.如图(1),正方形AEFG的边长为1,正方形ABCD的边长为3,且点F在AD上;(1)求S△DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得到图(2)中的S△DBF;(3)将正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF存在最大值与最小值,请直接写出最大值为,最小值为.我选做的是A题.【考点】几何变换综合题.【分析】A(1)根据等腰直角三角形和旋转的性质得出:∠B=∠ACB=∠HAG=45°,∠CAG=∠H,即可判断;(2)由(1)运用:△AGC∽△HAB得出线段比相等,代入常量和变量即可;(3)分类讨论等腰三角形,求出旋转角:∠CAG即可.B(1)运用正方形性质求出DF和AB,再根据三角形面积公式求解即可;(2)连接AF,证明AF∥BD,根据三角形ABD的面积求解;(3)以点A为圆心以AF长为半径画圆,交过点A与BD垂直的直线于点F″,F′,由题意可知BD的长为定值,当F转至F″时三角形面积最大,转至点F′时三角形面积最小,根据三角形面积公式求值.【解答】解:A.(1)由等腰直角三角形的性质和旋转的性质可知:∠B=∠ACB=∠HAG=45°,∠CAG=∠H,∴始终与△AGC相似的三角形是:△HAB和△HGA;(2)由(1)知:△AGC∽△HAB,∴,即,∴y=;(3)如图:。