2015中考数学分析
- 格式:doc
- 大小:106.00 KB
- 文档页数:14
2015年河北省中考数学试卷分析一、试题总体特点2015年河北省中考数学试卷在承接2013年河北省中考数学卷变革以来的基本思路的同时在命题形式和命题方向上有了比较大的改变。
从考查形式上看2015年河北省中考数学试卷依然是选择题、填空题、解答题三大板块,分值和2014年一样是42、12、66的分布,题量也和2014年一样是16、4、6的分布,不同的是2015年河北省中考数学试卷选择题部分1-10题每题3分,11-16题每题2分。
在选择题后6道题的综合性明显高于前10道题的前提下这种分值的改动是有待商榷的,选择题前后题目分值和试题难易度、试题所花时间难成正比。
解答题的分值由2014年的10、10、11、11、11、13变为今年的10、10、10、11、11、14,分值变动不大。
从考查难度上看2015年河北省中考数学试卷一方面基本杜绝了“送分题”,基础题目也需要适当运算思考才能得出结果;另一方面试题整体难度比2014年简单,除选择题16题,填空题20题,解答题25题第3问,26题最后一问其他题目难度适中,易于上手。
河北省中考数学试卷的难度从2013年到2015年三年来持续走低。
二、典型试题评析1、选择题1-16题为选择题,选择题知识覆盖面广,多为大框架内的小切口命题,整体难度较低。
第1题是固定的有理数基础,不同的是此次考查有理数运算,利用减法或负负得正都可以解。
第2题是传统第1题的考点,考查相反数、倒数,直接锁定A项。
第3题考查折叠展开图,合理想象。
第4题考查实数运算和整式运算,套用公式。
第5题利用主视图和左视图判断。
第6题利用外心性质判断,2015年中考说明题型示例填空题第14题考查到三角形外心。
第7题考查二次根式估算,2014年河北省中考数学卷选择题第5题考查了这个内容。
第8题考查平行线的性质,过点C做EF的平行线是关键。
第9题单独考查方向角是比较独特的,利用方向角定义选择。
第10题考查反比例函数图像和性质,利用反比例函数k=x y转化求解。
2015年四川省泸州市中考数学试卷解析(全卷满分120分,考试时间120分钟)第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1. (2015年四川泸州3分)7-的绝对值为【 】 A.7 B.17 C.17- D.7- 【答案】A. 【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点7-到原点的距离是7,所以7-的绝对值是7. 故选A.2. (2015年四川泸州3分)计算23()a 的结果为【 】 A.4a B.5a C.6a D. 9a 【答案】C. 【考点】幂的乘方.【分析】根据幂的乘方运算法则计算作出判断:23236()a a a ⨯==.故选C.3. (2015年四川泸州3分)如左下图所示的几何体的左视图是【 】A.B. C. D.【答案】C.【考点】简单几何体的三视图.【分析】找到从左面看所得到的图形即可:从左面看易得是一个矩形. 故选C.4. (2015年四川泸州3分)截止到2014年底,泸州市中心城区人口约为1120000人,将1120000用科学计数法表示为【 】A.51.1210⨯B.61.1210⨯C.71.1210⨯D. 81.1210⨯ 【答案】B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵1120000一共7位,∴1120000=1.12×106. 故选B.5. (2015年四川泸州3分)如图,AB ∥CD ,CB 平分∠ABD ,若∠C=40°,则∠D 的度数为【 】A. 90°B. 100°C. 110°D. 120° 【答案】B.【考点】角平分线定义;平行的性质;三角形内角和定理;方程思想的应用. 【分析】∵CB 平分∠ABD ,∴2ABD CBD ∠=∠.又∵AB ∥CD ,∴1802180ABD D CBD D ∠+∠=︒⇒∠+∠=︒.又∵∠C=40°,∴18040180C CBD D CBD D ∠+∠+∠=︒⇒︒+∠+∠=︒二者联立218021801004018022280CBD D CBD D D CBD D CBD D ∠+∠=︒∠+∠=︒⎧⎧⇒⇒∠=︒⎨⎨︒+∠+∠=︒∠+∠=︒⎩⎩.故选B.6. (2015年四川泸州3分)菱形具有而平行四边形不具有的性质是 【 】 A.两组对边分别平行 B.两组对角分别相等 C.对角线互相平分 D. 对角线互相垂直 【答案】D.【考点】平行四边形和菱形的性质.【分析】根据平行四边形和菱形的性质对各选项进行判断,作出选择:A.“两组对边分别平行”是平行四边形和菱形都具有的性质,选项错误;B. “两组对角分别相等”是平行四边形和菱形都具有的性质,选项错误;C. “对角线互相平分”是平行四边形和菱形都具有的性质,选项错误;D. “对角线互相垂直”是菱形具有而平行四边形不具有的性质,选项正确.故选D.7. (2015年四川泸州3分)某校男子足球队的年龄分布情况如下表:A. 15,15B. 15,14C.16,15D.14,15【答案】A.【考点】众数;中位数.【分析】众数是在一组数据中,出现次数最多的数据,这组数据中15出现8次,出现的次数最多,故这组数据的众数为15.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).共有数据22个,第11个数和第12个数都是15人,所以中位数是:(15+15)÷2=15(人).故选A.8. (2015年四川泸州3分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为【】A. 65°B. 130°C. 50°D. 100°【答案】C.【考点】圆周角定理;切线的性质;多边形内角和定理.【分析】∵∠C和∠AOB是同圆中同弧所对的圆周角和圆心角,且∠C=65°,∴∠AOB =130°.∵PA、PB分别与⊙O相切于A、B两点,∴∠PAO =∠PBO =90°.∴360 360130909050P AOB PAO PBO ∠=︒-∠-∠-∠=︒-︒-︒-︒=︒ 故选C .9. (2015年四川泸州3分)若二次函数2(0)y ax bx c a =++<的图象经过点(2,0),且其对称轴为1x =-,则使函数值0y >成立的x 的取值范围是【 】A.4x <-或2x >B.4-≤x ≤2C.x ≤4-或x ≥2D. 42x -<< 【答案】D .【考点】二次函数的图象和性质.【分析】∵二次函数2(0)y ax bx c a =++<的图象经过点(2,0),且其对称轴为1x =-,∴二次函数2(0)y ax bx c a =++<的图象开口向下,与x 轴的另一交点为()4,0- . ∴使函数值0y >成立的x 的取值范围是:42x -<<. 故选D .10. (2015年四川泸州3分)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是【 】A. B. C. D.【答案】B .【考点】一元二次方程根与系数的关系;解一元一次不等式;一次函数图象与系数的关系;整体思想和数形结合思想的应用.【分析】∵关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,∴()()2241>0<0kb kb ∆=--+⇒. 根据一次函数图象与系数的关系,选项A 中>0>0>0k kb b ⎧⇒⎨⎩,与<0kb 不符;选项B 中>0<0<0k kb b ⎧⇒⎨⎩,与<0kb 相符;选项C 中<0>0<0k kb b ⎧⇒⎨⎩,与<0kb 不符;选项D 中>000k kb b ⎧⇒=⎨=⎩,与<0kb 不符.故选B .11. (2015年四川泸州3分) 如图,在△ABC 中,AB =AC ,BC =24,tan C =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为【 】A.13B.152C.272 D.12【答案】A .【考点】翻折问题;等腰三角形的性质;勾股定理;翻折对称的性质;锐角三角函数定义;方程思想的应用.【分析】如答图,过点E 作EH ⊥BC 于点H ,∵AB =AC ,BC =24,∴CH =12. ∵tan C =2,∴AH =24.设,CE x DH y == ,则2E H x =.∵△ABC 沿直线l 翻折,点B 落在边AC 的中点E 处,∴BD =DE 24x y =--.在Rt EDH ∆中,()22212185y y y +=-⇒=. ∴BD =DE 2413x y =--=. 故选A .12. (2015年四川泸州3分)在平面直角坐标系中,点A ,B ,动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为【 】 A.2 B.3 C.4 D.5 【答案】B .【考点】点的坐标;等腰三角形的判定;分类思想和数形结合思想的应用.【分析】如答图,作AB 中垂线交x 轴于1C ,则1ABC ∆是等腰三角形;以点A 为圆心,AB 长为半径画圆交x 轴于23,C C 则23,ABC ABC ∆∆ 是等腰三角形;以点B 为圆心,AB 长为半径画圆与x 轴没有交点(因为点到x 轴的距离AB =).∴点C 的个数为3. 故选B .第Ⅱ卷 (非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上题目上对应题号位置作答,在试卷上作答无效. 二、填空题(每小题3分,共12分)13. (2015年四川泸州3分)分解因式:222m -= ▲ . 【答案】()()211m m +-.【考点】提公因式法和应用公式法因式分解.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,先提取公因式2后继续应用平方差公式分解即可:()()()222221211m m m m -=-=+-.14. (2015年四川泸州3分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 ▲ . 【答案】2.【考点】圆锥和扇形的计算.【分析】∵扇形的半径为6、圆心角为120°,∴扇形的弧长为12064180ππ⋅⋅=. ∵圆锥的底面周长等于它的侧面展开图的弧长, ∴根据圆的周长公式,得242r r ππ=⇒=.15. (2015年四川泸州3分)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 ▲ . 【答案】27.【考点】一元二次方程根与系数的关系;求代数式的值;整体思想的应用. 【分析】∵1x 、2x 是一元二次方程2510x x --=的两实数根,∴12125,1x x x x +=⋅=- .∴()()2222121212252127x x x x x x +=+-⋅=--=.16. (2015年四川泸州3分)如图,在矩形ABCD 中,BC =,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题:其中正确命题的序号是 ▲ (填上所有正确命题的序号).【答案】①③.【考点】矩形的性质;等腰(直角)三角形的判定和性质;三角形内角和定理;全等三角形的判定和性质;直角三角形斜边上的中线的判定;勾股定理;相似三角形的判定和性质;特殊元素法和方程思想的应用.【分析】①∵在矩形ABCD 中,BC =,∴不妨设1AB =,则BC =∴18067.5AEB AED DEC AEH ∠=︒-∠-∠=︒=∠.故命题①正确. ②∵ADH ∆是等腰直角三角形,∴1DH =.不难证明(ABE AHE AAS ∆∆≌④如答图,延长AB 至G ,使BG=BF ,连接CG ,设BF x =,则2FG x =.∴2BF x ==∴2BC BF -=.)12==∴BC BF -≠.故命题④错误. 综上所述,正确命题的序号是①③.三、(每小题6分,共18分)17. (2015年四川泸州6分)计算:01sin 4520152O--+【答案】解:原式1131212222=-+=-+=. 【考点】实数的运算;特殊角的三角函数值;二次根式化简;零指数幂;负整数指数幂.【分析】针对特殊角的三角函数值,二次根式化简,零指数幂,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.18. (2015年四川泸州6分)如图,AC=AE ,∠1=∠2,AB=AD . 求证:BC=DE .【答案】证明:∵∠1=∠2,∴12EAB EAB ∠+∠=∠+∠,即CAB EAD∠=∠. 又∵AC=AE , AB=AD ,∴()CAB EAD SAS ∆∆≌. ∴BC=DE .【考点】全等三角形的判定和性质.【分析】要证BC=DE ,根据全等三角形的性质只要CAB EAD ∆∆≌即可,而要证全等已有两边对应相等,由∠1=∠2可推出夹角对应相等而得证.19. (2015年四川泸州6分)化简:2211211m m m m ⎛⎫÷- ⎪+++⎝⎭【答案】解:()()2222221112111111m m m m m m m m m m m m m m +⎛⎫÷-=÷=⋅= ⎪+++++⎝⎭++. 【考点】分式的化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.四、(每小题7分,共14分)20. (2015年四川泸州7分)小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图).(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.【答案】解:(1)∵月均用水量45x ≤<所占百分比为()14%24%20%12%6%4%30%-+++++=; 月均用水量45x ≤<的频数为5030%15⨯=;月均用水量67x ≤<的频数为5012%6⨯=,∴补全频数分布表和频数分布直方图如下:(2)∵样本中家庭月均用水量“大于或等于4t 且小于7t ”占62%,∴估计总体中的中等用水量家庭大约有45062%279⨯=(户).(3)设月均用水量在23x ≤<范围内的样本家庭为,A B ,月均用水量在89x ≤<范围内的样本家庭为,X Y ,∵从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,共有6种等可能结果:()()()()()(),,,,,,,,,,,A B A X A Y B X B Y X Y ,抽取出的2个家庭来自不同范围的有4种情况:()()()(),,,,,,,A X A Y B X B Y ,∴抽取出的2个家庭来自不同范围的概率为4263=.为 【考点】频数分布表和频数分布直方图;频数、频率和总量的关系;用样本估计总体;概率.【分析】(1)由已知信息,根据频数、频率和总量的关系,求出月均用水量45x ≤<所占百分比和频数,月均用水量67x ≤<的频数,从而补全频数分布表和频数分布直方图.(2)求出样本中家庭月均用水量“大于或等于4t 且小于7t ” 所占百分比,即可用样本估计总体.(3)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.21. (2015年四川泸州7分)某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12棵和5棵.两次共花费940元(两次购进的A 、B 两种花草价格均分别相同).(1)A 、B 两种花草每棵的价格分别是多少元?(2)若购买A 、B 两种花草共31棵,且B 种花草的数量少于A 种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】解:(1)设A 种花草每棵的价格是x 元, B 种花草每棵的价格是y 元,根据题意,得3015675125940675x y x y +=⎧⎨+=-⎩,解得205x y =⎧⎨=⎩. 答:A 种花草每棵的价格是20元, B 种花草每棵的价格是5元.(2)设购买A 种花草a 棵,则购买B 种花草31a -棵,所需费用z 元.根据题意,得31<20310a a a a -⎧⎪≥⎨⎪-≥⎩,解得31>3031a a a ⎧⎪⎪≥⎨⎪≥⎪⎩,即31<313a ≤. ∵()2053115155z a a a =+-=+中15>0,∴15155z a =+是增函数.∴当11a =时,费用最省,此时3120a -=,320z =.∴费用最省的方案是购买A 种花草11棵,则购买B 种花草20棵,所需费用320元.【考点】一次函数、二元一次方程组和一元一次不等式组的应用.【分析】(1)方程(组)的应用解题关键是找出等量关系,列出方程(组)求解. 本题等量关系为:“分别购进A 、B 两种花草30棵和15棵,共花费675元”和“分别购进A 、B 两种花草12棵和5棵,两次共花费940元”.(2)设购买A 种花草a 棵,根据已知列出不等式组求出a 的取值范围,再根据所需费用关于a 的一次函数的增减性求出费用最省的方案和所需费用.五、(每小题8分,共16分)22. (2015年四川泸州8分)如图,海中一小岛上有一个观测点A ,某天上午9:00观测到某渔船在观测点A 的西南方向上的B 处跟踪鱼群由南向北匀速航行. 当天上午9:30观测到该渔船在观测点A 的北偏西60°方向上的C 处. 若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B 处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值).【答案】解:如答图,过点A 作AD ⊥BC 于点D ,则点D 就是渔船离观测点A的距离最近的点.∵渔船从B 到C 用时0.5小时,渔船的速度为每小时30海里,∴300.515BC =⨯=(海里).根据题意,知ADB ∆是等腰直角三角形,∴设AD BD x ==,则15CD x =-.在Rt ADC ∆中,∵30CAD ∠=︒,∴tan CD CAD AD∠=,即1515tan30x x x x --︒=⇒=.解得(1532x -=. (153302÷=∴该渔船从B 小时,离观测点A 的距离最近. 【考点】解直角三角形的应用(方向角问题);锐角三角函数定义;特殊角的三角函数值;方程思想的应用.【分析】作辅助线,过点A 作AD ⊥BC 于点D ,则点D 就是渔船离观测点A 的距离最近的点,从而解Rt ADB ∆和Rt ADC ∆即可求解.23. (2015年四川泸州8分)如图,一次函数(0)y kx b k =+<的图象经过点C (3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数m y x=的图象与该一次函数的图象交于二、四象限内的A 、B 两点,且AC =2BC ,求m 的值.【答案】解:(1)设一次函数(0)y kx b k =+<的图象与y 的交点为()0,c .∵一次函数(0)y kx b k =+<的图象经过点C (3,0),且与两坐标轴围成的三角形的面积为3,∴1332c ⋅⋅=,解得2c =. ∴032k b b =+⎧⎨=⎩,解得232k b ⎧=-⎪⎨⎪=⎩. ∴该一次函数的解析式为223y x =-+. (2)如答图,分别过点A 、B 作x 的垂线,垂足分别为M 、N ,设A 、B 两点的坐标分别为()(),,,A A B B x y x y ,∵A 、B 两点在m y x =上,∴,A B A Bm m y y x x == . 易得AMC BNC ∆∆∽,∴CM AM AC CN BN BC ==. ∵2,3,3,,A B A B AC BC CM x CN x AM y BN y ==-=-==- , ∴()()323323321322A B A B A A B A B A B Bm x x x x x x m m m x x x x x x ⎧-=-⎧=--⎪-⎪==⇒⇒⎛⎫⎨⎨-=-=- ⎪⎪⎪-⎩⎝⎭⎩ ()132362B B B x x x ⇒--=-⇒=. ∵B 点在223y x =-+上,∴26223B y =-⋅+=-. ∴12B B m x y =⋅=-.【考点】一次函数和反比例函数综合题;曲线上点的坐标与方程的关系;相似三角形的判定和性质.【分析】(1)根据已知条件求出一次函数(0)y kx b k =+<的图象与y 的交点坐标,即可根据曲线上点的坐标与方程的关系列式求出(0)y kx b k =+<的系数,从而得到该一次函数的解析式.(2)分别过点A 、B 作x 的垂线,垂足分别为M 、N ,应用相似三角形的判定和性质,列式求出点A 或点B 的坐标即可求得m 的值.六、(每小题12分,共24分)24. (2015年四川泸州12分)如图,△ABC 内接于⊙O ,AB =AC ,BD 为⊙O 的弦,且AB ∥CD ,过点A 作⊙O 的切线AE 与DC 的延长线交于点E ,AD 与BC 交于点F .(1)求证:四边形ABCE 是平行四边形;(2)若AE =6,CD =5,求OF 的长.【答案】解:(1)证明:如答图1,连接AO 并延长交⊙O 于另一点G ,连接CG ,∵AE 是⊙O 的切线,∴AE AG ⊥.∴90EAG ∠=︒,即90EAC CAG ∠+∠=︒.∵AO 是⊙O 的直径,∴90ACG ∠=︒.∴90G CAG ∠+∠=︒.∴EAC G ∠=∠.∵G ∠和ABC ∠是同圆中同弧所对的圆周角,∴G ABC ∠=∠.∴EAC ABC ∠=∠.(学习过弦切角定理的直接得此)∵AB =AC ,∴ACB ABC ∠=∠.∴EAC ACB ∠=∠.∴AE ∥BC .又∵AB ∥CD ,∴四边形ABCE 是平行四边形.(2)如答图2,连接AO ,交BC 于点H ,双向延长OF 分别交AB 、CD 于点N 、M ,∵AE 是⊙O 的切线,∴根据切割线定理,得2AE EC ED =⋅,(没学习切割线定理可由相似得到)∵ AE =6,CD =5,∴()265EC EC =⋅+,解得4EC =(已舍去负数).由圆的对称性,知四边形ABDC 是等腰梯形,且4AB AC BD EC ====.又根据对称性和垂径定理,知AO 垂直平分BC ,MN 垂直平分,AB DC .设,,OF x OH y FH z === ,∵4,6,5AB BC DC === ∴3,322BC BC BF FH z DF CF FH z =-=-==+=+ . 易证OFH DFM BFN ∆∆∆∽∽, ∴53232DF DM z OF OH x y BF BN z OF OHx y ⎧⎧⎪+==⎪⎪⎪⇒⎨⎨⎪⎪-==⎪⎪⎩⎩. 两式相加和相除,得69324135334y x x y z z z ⎧⎧==⎪⎪⎪⎪⇒⎨⎨+⎪⎪==⎪⎪⎩-⎩. 又∵222x y z =+,∴2291169x x x =+⇒. ∴OF. 【考点】切线的性质;圆周勾股定理;等腰三角形的性质;平行的判定;平行四边形的判定和性质;等腰梯形的判定和性质;垂径定理;相似判定和性质;勾股定理.【分析】(1)作辅助线,连接AO 并延长交⊙O 于另一点G ,连接CG ,根据切线的性质证明EAC ABC ∠=∠,根据等腰三角形等边对等角的性质和等量代换得到EAC ACB ∠=∠,从而根据内错角相等两直线平行的判定得到AE ∥BC ,结合已知AB ∥CD 即可判定四边形ABCE 是平行四边形.(2)作辅助线,连接AO ,交BC 于点H ,双向延长OF 分别交AB 、CD 于点N 、M ,根据切割线定理求得4EC =,证明四边形ABDC 是等腰梯形,根据对称性、圆周角定理和垂径定理的综合应用证明OFH DFM BFN ∆∆∆∽∽,并由勾股定理列式求角即可.25. (2015年四川泸州12分)如图,已知二次函数的图象M 经过A (1-,0),B (4,0),C (2,6-)三点.(1)求该二次函数的解析式;(2)点G 是线段AC 上的动点(点G 与线段AC 的端点不重合),若△ABG 与△ABC 相似,求点G 的坐标时,点D 关于l 的对称点为E ,能否在图象M 和l 上分别找到点P 、Q ,使得以点D 、E 、P 、Q 为顶点的四边形为平行四边形. 若能,求出点P 的坐标;若不能,请说明理由.【答案】解:(1)∵二次函数的图象M 经过A (1-,0),B (4,0)两点,∴可设二次函数的解析式为()()14y a x x =+-.∵二次函数的图象M 经过C (2,6-)点,∴()()62124a -=+-,解得1a =.∴二次函数的解析式为()()14y x x =+-,即234y x x =--.(2)易用待定系数法求得线段AC 的解析式:22y x =--.设点G 的坐标为(),22k k -- .△ABG 与△ABC 相似只有△AGB ∽△ABC 一种情况.∴AG ABAB AC =.∵5,1AB BC AG ===+ .513k =⇒+=.∴23k =或83k =-(舍去).∴点G 的坐标为210,33⎛⎫- ⎪⎝⎭ .(3)能. 理由如下:如答图,过D 点作x 的垂线交于点H ,∵(,)D m n (12)m -<<,∴(,22)H m m -- .∵点(,)D m n 是图象M 上,∴2(,3m 4)D m m -- .∵223253424y x x x ⎛⎫=--=-- ⎪⎝⎭,∴图象M 的对称轴l 为x =若以点D 、E 、P 、Q 为顶点的四边形为平行四边形,则PQ ∥DE 且2PQ =.722+=或31222-=-. ∴点P 的纵坐标为2732592244⎛⎫--=- ⎪⎝⎭.【考点】二次函数综合题;单动点、轴对称和平行四边形存在性问题; 待定系数法的应用;曲线上点的坐标与方程的关系;相似三角形的性质;勾股定理;二次函数的性质;平行四边形的判定;方程思想和分类思想的应用.【分析】(1)设交点式的式,应用待定系数法可求二次函数的解析式.(2)待定系数法求得线段AC 的解析式,设出点G 的坐标,根据相似三角形的性质列式求解.(3垢四边形是平行四边形的判定分对称轴两边求解.。
专题五:最短距离问题最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
一、“最值”问题大都归于两类基本模型:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值Ⅱ、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。
凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。
几何模型:条件:如图,A 、B 是直线l 同旁的两个定点.问题:在直线l 上确定一点P ,使PA PB +的值最小. 方法:作点A 关于直线l 的对称点A ',连结A B '交l 于点P ,则PA PB A B '+=的值最小(不必证明).模型应用:(1)如图1,正方形ABCD 的边长为2,E 为AB 的中点, P 是AC 上一动点.连结BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连结ED 交AC 于P ,则PB PE +的最小值是___________;(2)如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,求PA PC +的最小值;(3)如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,求PQR △周长的最小值.(4)如图,要在一条河上架一座桥MN (河的两岸互相平行,桥与河岸垂直),在如下四种方案中,使得E 、F 两地的路程最短的是A B A 'P lAB PRQ 图3A BB 图1A B C图2 P A BC D · · E F· · EF· · E F M N M N M N EM 与河岸垂直 EM ∥FN E 、M 、F 共线 FN 与河岸垂直 · · E F M N · · E F (4)题图(5)、作图设计,村庄A 、B 位于不平行的两条小河的两侧,若要在两条小河上各架设一座与河岸垂直的桥,并要使A 到B 的路程最近,问桥应架在何处?(6). (2012•台州)如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( ) A .1B.3C .2D .31+(7).(2012•兰州)如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( ) A .130° B .120° C .110° D .100°【典型例题分析】1.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .23B .26C .3D .62.如图,抛物线2124y x x =--+的顶点为A ,与y 轴交于点B .(1)求点A 、点B 的坐标;(2)若点P 是x 轴上任意一点,求证:PA-PB ≤AB ; (3)当PA-PB 最大时,求点P 的坐标.BOA·xyA D EPBCyOxP DB(40)A ,(02)C ,第4题OxyBD AC P 3.如图,在矩形OABC 中,已知A 、C 两点的坐标分别为(40)(02)A C ,、,,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合).(1)试证明:无论点P 运动到何处,PC 总造桥与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式;(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使90CPN ∠=°?若存在,请直接写出点P 的坐标.4.一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点, 求PC +PD 的最小值,并求取得最小值时P 点坐标.5.已知:抛物线的对称轴为与x 轴交于A B ,两点,与y 轴交于点C ,其中A(-3,0)、B(1,0) C(0,-2).(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.A CxyB O5题图A CxyB O6.如图,抛物线2y ax bx c =++的顶点P 的坐标为4313⎛⎫- ⎪ ⎪⎝⎭,,交x 轴于A 、B 两点,交y 轴于点(03)C -,. (1)求抛物线的表达式.(2)把△ABC 绕AB 的中点E 旋转180°,得到四边形ADBC . 判断四边形ADBC 的形状,并说明理由.(3)试问在线段AC 上是否存在一点F ,使得△FBD 的周长最小, 若存在,请写出点F 的坐标;若不存在,请说明理由.7.如图(1),抛物线3518532+-=x x y 和y 轴的交点为M A ,为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长。
2015年广东省深圳市中考数学试卷一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C.D.2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×1063.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a44.(3分)下列图形既是中心对称又是轴对称图形的是()A. B.C.D.5.(3分)下列主视图正确的是()A.B.C.D.6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,907.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.49.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.10011.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C. D.12.(3分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF 交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S =.在以上4个结论中,正确的有()△BEFA.1 B.2 C.3 D.4二、填空题:13.(3分)因式分解:3a2﹣3b2=.14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.三、解答题:17.(5分)计算:|2﹣|+2sin60°+﹣.18.(6分)解方程:.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.2015年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣15的相反数是15,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将316000000用科学记数法表示为:3.16×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;合并同类项法则对各选项分析判断即可得解.【解答】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选:C.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.(3分)下列图形既是中心对称又是轴对称图形的是()A. B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)下列主视图正确的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【分析】首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.【点评】(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.【分析】先移项、合并同类项,把x的系数化为1即可.【解答】解:2x≥x﹣1,2x﹣x≥﹣1,x≥﹣1.故选:B.【点评】本题考查了解一元一次不等式、在数轴上表示不等式的解集.把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.4【分析】根据抛物线开口方向对①进行判断;根据抛物线的对称轴位置对②进行判断;根据抛物线与y轴的交点位置对③进行判断;根据抛物线与x轴的交点个数对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.9.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.100【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.11.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C. D.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12.(3分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF 交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S=.在以上4个结论中,正确的有()△BEFA.1 B.2 C.3 D.4【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【点评】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题:13.(3分)因式分解:3a2﹣3b2=3(a+b)(a﹣b).【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(a2﹣b2)=3(a+b)(a﹣b),故答案为:3(a+b)(a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.【分析】利用树状图法列举出所有可能,看是否能被3整除.找出满足条件的数的个数除以总的个数即可.【解答】解:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为=.故答案为:.【点评】本题考查了树状图法求概率以及概率公式,注意能被3整除即两位数加起来和为3的倍数.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.【分析】由图形可以看出:第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、8、…、2n﹣1,由此计算得出答案即可.【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.故答案为:21.【点评】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=16.【分析】根据反比例函数系数k的几何意义,证明△ABC∽△EOB,根据相似比求出BA•BO的值,从而求出△AOB的面积.【解答】解:∵△BCE的面积为8,∴,∴BC•OE=16,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE∴k=AB•BO=BC•OE=16.故答案为:16.【点评】本题考查了反比例函数系数k的几何意义,解决本题的关键是证明△EOB∽△ABC,得到AB•OB•=BC•OE.三、解答题:17.(5分)计算:|2﹣|+2sin60°+﹣.【分析】原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=2﹣+2×+2﹣1=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x2﹣2x+10x﹣15=4(2x﹣3)(3x﹣2),整理得:3x2﹣2x+10x﹣15=24x2﹣52x+24,即7x2﹣20x+13=0,分解因式得:(x﹣1)(7x﹣13)=0,解得:x1=1,x2=,经检验x1=1与x2=都为分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调查的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.【分析】(1)根据看1本书的人数为40人,所占的百分比为10%,40÷10即可求出总人数,用100%﹣10%﹣25%﹣45%即可得x的值,用总人数乘以x的值,即可得到3本以上的人数,即可补全统计图;(2)用x的值乘以360°,即可得到圆心角;(3)用6.7万乘以三本以上的百分比,即可解答.【解答】解:(1)40÷10%=400(人),x=100%﹣10%﹣25%﹣45%=20%,400×20%=80(人),故答案为:20%,400;如图所示;(2)20%×360°=72°,故答案为:72°;(3)67000×20%=13400(人),故答案为:13400.【点评】此题主要考查了条形图与扇形图的综合应用,解决此类问题注意图形有机结合,综合分析获取正确信息.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.【分析】关键三角形外角的性质求得∠DAF=30°,得出AF=DF=10,在Rt△FGA中,根据正弦函数求出AG的长,加上BG的长即为旗杆高度.【解答】解:如图,∵∠ADG=30°,∠AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10×=5,∴AB=1.5+5.答:旗杆AB的高度为(1.5+5)米.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?【分析】(1)直接利用10a=23进而求出即可;(2)首先判断得出x>22,进而表示出总水费进而得出即可.【解答】解:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.【点评】此题主要考查了一元一次方程的应用,根据图表中数据得出用户用水为x米3(x>22)时的水费是解题关键.22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.【分析】(1)根据题意得出BO的长,再利用路程除以速度得出时间;(2)根据切线的性质和判定结合等腰直角三角形的性质得出AO的长,进而求出答案;(3)利用圆周角定理以及切线的性质定理得出∠CEF=∠ODF=∠OFD=∠CFG,进而求出△CFG∽△CEF,即可得出答案.【解答】(1)解:由题意可得:BO=4cm,t==2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=OH=3cm,∴AD=AO﹣DO=(3﹣3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠CEF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴=,∴CF2=CG•CE.【点评】此题主要考查了切线的性质以及相似三角形的判定与性质、等腰直角三角形的性质等知识,根据题意得出△CFG∽△CEF是解题关键.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.【分析】(1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;(2)当点P在∠DAB的平分线上时,过P作PM⊥AD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;当点P在∠DAB外角平分线上时,同理可求得P点坐标;(3)可先求得△FBC的面积,过F作FQ⊥x轴,交BC的延长线于Q,可求得FQ的长,可设出F点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标.【解答】解:(1)∵二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),∴,解得,∴抛物线的解析式y=﹣x2﹣2x+3,(2)存在,当P在∠DAB的平分线上时,如图1,作PM⊥AD,设P(﹣1,m),则PM=PD•sin∠ADE=(4﹣m),PE=m,∵PM=PE,∴(4﹣m)=m,m=﹣1,∴P点坐标为(﹣1,﹣1);当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,设P(﹣1,n),则PN=PD•sin∠ADE=(4﹣n),PE=﹣n,∵PN=PE,∴(4﹣n)=﹣n,n=﹣﹣1,∴P点坐标为(﹣1,﹣﹣1);综上可知存在满足条件的P点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);(3)∵抛物线的解析式y=﹣x2﹣2x+3,∴B(1,0),∴S△EBC=EB•OC=3,∵2S△FBC =3S△EBC,∴S△FBC=,过F作FQ⊥x轴于点H,交BC的延长线于Q,过F作FM⊥y轴于点M,如图3,∵S△FBC =S△BQH﹣S△BFH﹣S△CFQ=HB•HQ﹣BH•HF﹣QF•FM=BH(HQ﹣HF)﹣QF•FM=BH•QF﹣QF•FM=QF•(BH﹣FM)=FQ•OB=FQ=,∴FQ=9,∵BC的解析式为y=﹣3x+3,设F(x0,﹣x02﹣2x0+3),∴﹣3x0+3+x02+2x0﹣3=9,解得:x0=或(舍去),∴点F的坐标是(,),∵S△ABC=6>,∴点F不可能在A点下方,综上可知F点的坐标为(,).【点评】本题主要考查二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积等知识点.在(1)中注意待定系数法的应用步骤,在(2)中注意分点P在∠DAB的角平分线上和在外角的平分线上两种情况,在(3)中求得FQ的长是解题的关键.本题所考查知识点较多,综合性很强,难度适中.。
听教育局相关人员分析:2015大连中考题难度咋样?[转载]听教育局相关人员分析:2015大连中考题难度咋样?中考刚刚结束,考生们暂时放松,正等待着成绩的发布。
而对即将升入初三的学生及其家长们来说,则格外关注今年中考命题特点和难易程度。
记者在采访中了解到,市教育部门、初三考生及初中老师等多方均反映今年的中考试题难度适中、科学合理,并且贴近生活。
昨日,针对广大学生及家长们关心的中考各科试卷命题原则、特点等,记者采访了大连市教育局相关人员。
数学:体现理念关注核心促进发展1.充分体现课程理念试卷充分体现新课程倡导的由“双基(基础知识、基本技能)”到“四基(基础知识、基本技能、基本思想和基本活动经验)”,由“双能(分析问题和解决问题能力)”到“四能(发现问题、提出问题、分析问题和解决问题的能力)”的基本理念。
试卷高度重视对数学思想方法的考查,同时,试卷更加关注对统领各个“思想”的“转化思想”的考查,重视考查学生化繁为简、化难为易、化未知为已知的能力。
试卷不仅综合考查学生分析问题和解决问题能力,而且还考查学生发现问题的能力。
值得一提的是,对学生“四能”中的“发现问题”能力的考查,是大连市初中毕业升学考试数学试卷中的一个创新点。
2.重点关注内容核心试卷在注重考查初中阶段数学基础知识和基本技能、保证考查知识的覆盖面的同时,更加关注对函数与方程、基本图形的性质与图形间的基本关系、统计与概率等核心内容,重点考查考生对重要数学内容的本质意义的理解水平和运用能力。
例如,第24题以直角三角形一直角边上两个点的运动引起一个等腰直角三角形大小变化,进而引起两个三角形重叠部分面积变化为背景,直接考查在变化过程中的两个变量之间的内在的、本质的联系——单值对应关系,即函数关系。
第25题以两个三角形的特殊位置关系为背景,重点考查三角形全等的判定与性质、相似三角形的判定与性质、等腰三角形的性质、三角形内角和定理、勾股定理等核心知识点。
精心整理操作探究一、选择题1.(2015?浙江宁波,第12题4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长A.b,②③-①将a+将2c∴故选A.2.(2015?浙江省绍兴市,第10题,4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。
如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒 考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项. 解答:解:仔细观察图形发现: 第1第2第3第4第5第6故选二.1.(中CD =_______________________________【答案】2或4+第16题【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C =30°. 如答图,根据题意对折、裁剪、铺平后可有两种情况H ,设∴设在Rt 易证BCD EHB ∆∆∽,∴CD BCHB EH =,即1CD =∴224CD +==+综上所述,CD =2或4+2.(2015?浙江省绍兴市,第13题,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。
小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。
如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm考点:等边三角形的判定与性质..专题:应用题.∴△∴3.(t、t1等边三角型的边长为a≈2,等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8;圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t2>t3>t1.故答案为:t2>t3>t1.点评:本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.4.(A与点出=2,则∴,∴=故=.故答案为:.点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT△AOE∽RT△ABC,利用相似三角形的性质得出OE的长.三.解答题1.(2015?浙江省台州市,第24题)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且段(3D(4,△和△H 是2.(的顶点形所(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式。
2015年中考数学试题考生须知:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上2. 用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内.答 在试题卷上无效.3.考生必须保持答题卡整洁.考试结束后,请将本试题卷和答题卡一并上交.试题卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1、和数轴上的点一一对应的是( )(A)整数 (B)有理数 (C)无理数 (D)实数 2、化简:322)3(x x -的结果是( )(A )53x - (B )518x (C )56x - (D )518x - 3、已知一组数据54321x x x x x 、、、、的平均数是5,则另一组 新数组5432154321+++++x x x x x 、、、、的平均数是( )(A )6 (B )8 (C )10 (D )无法计算 4、下列语句中,属于命题..的是( ) (A) 作线段的垂直平分线 (B) 等角的补角相等吗 (C) 平行四边形是轴对称图形 (D) 用三条线段去拼成一个三角形5、一次函数2)3(+-=x k y ,若y 随x 的增大而增大,则k 的值可以是( ) (A )1 (B )2 (C )3 (D )46、有两个圆,⊙1O 的半径等于地球的半径,⊙2O 的半径等于一个篮球的半径,现将两个圆都向外膨胀(相当于作同心圆),使周长都增加1米,则半径伸长的较多的圆是( ) A 、⊙1O B 、⊙2O C 、两圆的半径伸长是相同的 D 、无法确定7.数学活动课上,小明,小华各画了△ABC 和△DEF,尺寸如下图,两个三角形面积分别记作S △ABC 和S △DEF ,那么你认为( )8、若不等式组 -2 x+4≥0 (x 为未知数)无解,则二次函数的图象y=ax 2-2x+1 x >a 与x 的交点( )A.没有交点B.一个交点C.两个交点D.不能确定 9.已知w 关于t 的函数:2w t=,则下列有关此函数图像的描述正确的是( ) (A )该函数图像与坐标轴有两个交点 (B )该函数图像经过第一象限 (C )该函数图像关于原点中心对称 (D )该函数图像在第四象限10.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形,③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案 11. 21-的倒数是 ,写出一个比-3大而比-2小的无理数是 . 12. 数据1、5、6、5、6、5、6、6的众数是 ,方差是 .13. 正方形ABCD 的边长为a cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2. 14. 已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有3个整数解,则实数a 的取值范围是 .第13题CEBAFD(第10题)15.具有方向的线段叫做有向线段,以A 为起点,B 为终点的有向线段记作AB ,已知BC=AC AB +,如下图所示:如果a AB =,BC=b ,则A C a b =+。
2015年浙江省金华市中考数学试卷解析(本试卷满分120分,考试时间120分钟,本次考试采用开卷形式,不得使用计算器)一、选择题(本题有10小题,每小题3分,共30分) 1. (2015年浙江金华3分) 计算23(a )结果正确的是【 】A. 5aB. 6aC. 8aD. 23a 【答案】B . 【考点】幂的乘方【分析】根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则计算作出判断:23236(a )a a ⨯==.故选B .2. (2015年浙江金华3分)要使分式1x 2+有意义,则x 的取值应满足【 】 A. x 2=- B. x 2≠- C. x 2>- D. x 2≠- 【答案】D .【考点】分式有意义的条件.【分析】根据分式分母不为0的条件,要使1x 2+在实数范围内有意义,必须x 20x 2+≠⇒≠-.故选D . 3. (2015年浙江金华3分) 点P (4,3)所在的象限是【 】A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】A .【考点】平面直角坐标系中各象限点的特征.【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点P (4,3)位于第一象限. 故选A .4. (2015年浙江金华3分) 已知35α∠=︒,则α∠的补角的度数是【 】A. 55°B. 65°C. 145°D. 165° 【答案】C .【考点】补角的计算.【分析】根据“当两个角的度数和为180 °时,这两个角互为补角”的定义计算即可:∵35α∠=︒,∴α∠的补角的度数是18035145︒-︒=︒. 故选C .5. (2015年浙江金华3分)一元二次方程2x 4x 30+-=的两根为1x ,2x ,则12x x ⋅的值是【 】A. 4B. -4C. 3D. -3 【答案】D .【考点】一元二次方程根与系数的关系.【分析】∵一元二次方程2x 4x 30+-=的两根为1x ,2x ,∴123x x 31-⋅==-. 故选D .6. (2015年浙江金华3分) 如图,数轴上的A ,B ,C ,D 四点中,与表示数3-的点最接近的是【 】A. 点AB. 点BC. 点CD. 点D 【答案】B .【考点】实数和数轴;估计无理数的大小;作差法的应用. 【分析】∵1<3<41<322<3<1⇒⇒---,∴3-21--.又∵(32331293>0222---==,∴3>32--∴32<3<2---,即与无理数3-最接近的整数是2-. ∴在数轴上示数3-的点最接近的是点B . 故选B .7. (2015年浙江金华3分)如图的四个转盘中,C ,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是【 】A. B. C.D.【答案】A . 【考点】概率.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵四个转盘中,A 、B 、C 、D 的面积分别为转盘的3215,,,4328, ∴A 、B 、C 、D 四个转盘指针落在阴影区域内的概率分别为3215,,,4328.∴指针落在阴影区域内的概率最大的转盘是A . 故选A .8. (2015年浙江金华3分)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线21y (x 80)16400=--+,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴. 若OA =10米,则桥面离水面的高度AC 为【 】A. 40916米 B. 417米 C. 40716米 D. 415米 【答案】B .【考点】二次函数的应用(实际应用);求函数值. 【分析】如图,∵OA =10,∴点A 的横坐标为10-,∴当x 10=-时,2117y (1080)164004=---+=-.∴AC =174米. 故选B .9. (2015年浙江金华3分)以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线a ,b 互相平行的是【 】A. 如图1,展开后,测得∠1=∠2B. 如图2,展开后,测得∠1=∠2,且∠3=∠4C. 如图3,测得∠1=∠2D. 如图4,展开后,再沿CD 折叠,两条折痕的交点为O ,测得OA =OB ,OC =OD【答案】C .【考点】折叠问题;平行的判定;对顶角的性质;全等三角形的判定和性质. 【分析】根据平行的判定逐一分析作出判断:A . 如图1,由∠1=∠2,根据“内错角相等,两直线平行”的判定可判定纸带两条边线a ,b 互相平行;B . 如图2,由∠1=∠2和∠3=∠4,根据平角定义可得∠1=∠2=∠3=∠4=90°,从而根据“内错角相等,两直线平行”或“同旁内角互补,两直线平行”的判定可判定纸带两条边线a ,b 互相平行;C . 如图3,由∠1=∠2不一定得到内错角相等或同位角相等或同旁内角互补,故不一定能判定纸带两条边线a ,b 互相平行;D . 如图4,由OA =OB ,OC =OD ,AOC BOD ∠∠=得到AOC BOD ∆∆≌,从而得到CAO DBO ∠∠=,进而根据“内错角相等,两直线平行”的判定可判定纸带两条边线a ,b 互相平行.故选C .10. (2015年浙江金华3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值是【 】A.26B. 2C. 3D. 2 【答案】C .【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=.不妨设正方形ABCD 的边长为2,则AC =∵AC 是⊙O 的直径,∴0AEC 90∠=.在Rt ACE ∆中,AE AC cos EAC =⋅∠==, 1CE AC sin EAC 2=⋅∠=在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴1CM CE sin EAC 2=⋅∠=易知GCH ∆是等腰直角三角形,∴GF 2CM ==又∵AEF ∆是等边三角形,∴EF AE ==.∴EF GH ==故选C .二、填空题(本题有6小题,每小题4分,共24分) 11. (2015年浙江金华4分) 数3-的相反数是 ▲ 【答案】3. 【考点】相反数.【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此-3的相反数是3.12. (2015年浙江金华4分)数据6,5,7,7,9的众数是 ▲ 【答案】7 【考点】众数.【分析】众数是在一组数据中,出现次数最多的数据,这组数据中7出现两次,出现的次数最多,故这组数据的众数为7.13. (2015年浙江金华4分)已知a b 3+=,a b 5-=,则代数式22a b -的值是 ▲【答案】15.【考点】求代数式的值;因式分解的应用;整体思想的应用. 【分析】∵a b 3+=,a b 5-=,∴()()22a b a b a b 3515-=+-=⨯=.14. (2015年浙江金华4分)如图,直线126l ,l ,,l ⋅⋅⋅ 是一组等距离的平行线,过直线1l 上的点A 作两条射线,分别与直线3l ,6l 相交于点B ,E ,C ,F . 若BC =2,则EF 的长是 ▲【答案】5.【考点】平行线分线段成比例的性质;相似三角形的判定和性质. 【分析】∵直线126l ,l ,,l ⋅⋅⋅ 是一组等距离的平行线,∴AB 2BE 3=,即AB 2AE 5=. 又∵3l ∥6l ,∴ABC AEF ∆∆∽. ∴BC AB 2EF AE 5==.∵BC =2,∴22EF 5EF 5=⇒=.15. (2015年浙江金华4分)如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数ky (x 0)x=>的图象经过该菱形对角线的交点A ,且与边BC 交于点F . 若点D 的坐标为(6,8),则点F 的坐标是 ▲【答案】8123⎛⎫ ⎪⎝⎭,.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;待定系数法的应用;菱形的性质;中点坐标;方程思想的应用.【分析】∵菱形OBCD 的边OB 在x 轴正半轴上,点D 的坐标为(6,8),∴22OD DC OD 6810===+=.∴点B 的坐标为(10,0),点C 的坐标为(16,8). ∵菱形的对角线的交点为点A ,∴点A 的坐标为(8,4).∵反比例函数ky (x 0)x =>的图象经过点A ,∴k 8432=⋅=. ∴反比例函数为32y x=.设直线BC 的解析式为y mx n =+,∴4m 16m n 8310m n 040n 3⎧=⎪+=⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩. ∴直线BC 的解析式为440y x 33=-. 联立440x 12y x 33832y y 3x ⎧==-⎧⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩.∴点F 的坐标是8123⎛⎫ ⎪⎝⎭,. 16. (2015年浙江金华4分)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时,点A ,B ,C 在同一直线上,且∠ACD =90°.图2是小床支撑脚CD 折叠的示意图,在折叠过程中,ΔACD 变形为四边形ABC'D',最后折叠形成一条线段BD". (1)小床这样设计应用的数学原理是 ▲ (2)若AB :BC =1:4,则tan ∠CAD 的值是 ▲【答案】(1)三角形的稳定性和四边形的不稳定性;(2)815. 【考点】线动旋转问题;三角形的稳定性;旋转的性质;勾股定理;锐角三角函数定义.【分析】(1)在折叠过程中,由稳定的ΔACD 变形为不稳定四边形ABC'D',最后折叠形成一条线段BD",小床这样设计应用的数学原理是:三角形的稳定性和四边形的不稳定性.(2)∵AB :BC =1:4,∴设AB x,CD y == ,则BC 4x,AC 5x == .由旋转的性质知BC"BC 4x,AC"3x,C"D"y === = , ∴AD AD"AC"C"D"3x y ==+=+.在Rt ACD ∆中,根据勾股定理得222AD AC CD =+,∴()()22283x y 5x y y x 3+=+⇒=.∴8xCD y 83tan CAD AD 5x 5x 15∠====. 三、解答题(本题有8小题,共66分,个小题都必须写出解答过程) 17. (2015年浙江金华6分)1124cos302--︒+-【答案】解:原式=11114122222⨯==-+-. 【考点】实数的运算;二次根式化简;负整数指数幂;特殊角的三角函数值;绝对值.【分析】针对二次根式化简,负整数指数幂,特殊角的三角函数值,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.18. (2015年浙江金华6分)解不等式组5x 34x4(x 1)32x -<⎧⎨-+≥⎩【答案】解:5x 3<4x 4(x 1)32x -⎧⎨-+≥⎩①②由①可得5x 4x 3-<,即x 3<,由②可得4x 432x -+≥,4x 2x 43-≥-,2x 1≥,1x 2≥, ∴不等式组的解是1x 32≤<. 【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).19. (2015年浙江金华6分)在平面直角坐标系中,点A 的坐标是(0,3),点B 在x 轴上,将△AOB 绕点A 逆时针旋转90°得到△AEF ,点O ,B 对应点分别是E ,F .(1)若点B 的坐标是()40- ,,请在图中画出△AEF ,并写出点E ,F 的坐标; (2)当点F 落在x 轴上方时,试写出一个符合条件的点B 的坐标.【答案】解:(1)如答图,△AEF 就是所求作的三角形; 点E 的坐标是(3,3),点F 的坐标是()3,1- .(2)答案不唯一,如B ()20- ,. 【考点】开放型;网格问题;图形的设计(面动旋转);点的坐标.【分析】(1)将线段AO 、AB 绕点A 逆时针旋转90°得到AE 、AF ,连接EF ,则△AEF 就是所求作的三角形,从而根据图形得到点E ,F 的坐标.(2)由于旋转后EF x ⊥,点E 的坐标是(3,3),所以当点F 落在x 轴上方时,只要0<EF <3即0<OB<3即可,从而符合条件的点B 的坐标可以是()()120,10,02⎛⎫--- ⎪⎝⎭,,,等,答案不唯一. 20. (2015年浙江金华8分)小明随机调查了若干市民租用公共自行车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如下统计图. 请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A 组的扇形圆心角的度数,并补全条形统计图;(3)如果骑自行车的平均速度为12km /h ,请估算,在租用公共自行车的市民中,骑车路程不超过6km 的人数所占的百分比.【答案】解:(1)被调查总人数为19÷38%=50(人).(2)表示A 组的扇形圆心角的度数为15360=10850︒︒⨯. ∵C 组的人数为501519412---=(人),∴补全条形统计图如答图:(3)设骑车时间为t分,则12t6,解得t≤30,60∴被调查的50人中,骑公共自行车的路程不超过6km的人数为50-4=46(人),∴在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比为46÷50=92%.【考点】条形统计图和扇形统计图;频数、频率和总量的关系;用样本估计总体.【分析】(1)由B组的频数确19、频率38%,根据频数、频率和总量的关系即可求得被调查总人数.(2)求出A组的频率,即可求得表示A组的扇形圆心角的度数;求得C组的人数即可补全条形统计图.(3)求出被调查的50人中骑车路程不超过6km的人数所占的百分比即可用样本估计总体. 21.(2015年浙江金华8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求EG的长.【答案】解:(1)证明:∵DE⊥AF,∴∠AED=90°.又∵四边形ABCD是矩形,∴AD∥BC,∠B=90°.∴∠DAE=∠AFB,∠AED=∠B=90°.又∵AF=AD,∴△ADE≌△FAB(AAS).∴DE=AB.(2)∵BF =FC =1,∴AD =BC =BF +FC =2.又∵△ADE ≌△FAB ,∴AE =BF =1.∴在Rt △ADE 中,AE =12AD . ∴∠ADE =30°. 又∵DE =2222AD AE 213-=-=,∴n R 3033EG 180πππ⋅⋅===. 【考点】矩形的性质;全等三角形的判定和性质;含30度角直角坐标三角形的性质;勾股定理;弧长的计算.【分析】(1)通过应用AAS 证明△ADE ≌△FAB 即可证明DE =AB .(2)求出∠ADE 和DE 的长即可求得EG 的长.22. (2015年浙江金华410分)小慧和小聪沿图1中的景区公路游览,小慧乘坐车速为30km /h 的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆现. 小聪骑自行车从飞瀑出发前往宾馆,速度为20km /h ,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点,上午10:00小聪到达宾馆. 图2中的图象分别表示两人离宾馆的路程s (km )与时间t (h )的函数关系. 试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB ,GH 的交叉点B 的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30km /h 的速度按原路返回,那么返回途中他几点钟遇见小慧?【答案】解:(1)小聪从飞瀑到宾馆所用的时间为50÷20=2.5(h )∵小聪上午10:00到达宾馆,∴小聪从飞瀑出发的时刻为10-2.5=7.5.∴小聪早上7:30分从飞瀑出发.(2)设直线GH 的函数表达式为s =kt +b ,∵点G (12,50),点H (3, 0 ),∴1k b 5023k b 0⎧+=⎪⎨⎪+=⎩,解得k 20b 60=-⎧⎨=⎩. ∴直线GH 的函数表达式为s =-20t +60.又∵点B 的纵坐标为30,∴当s =30时,-20t +60=30, 解得t =32. ∴点B (32,30). 点B 的实际意义是:上午8:30小慧与小聪在离宾馆30km (即景点草甸) 处第一次相遇.(3)设直线DF 的函数表达式为11s k t b =+,该直线过点D 和 F (5,0),∵小慧从飞瀑回到宾馆所用时间55030=3÷(h ),∴所以小慧从飞瀑准备返回时t =510533-=,即D (103,50). 111110k b 5035k b 0⎧+=⎪⎨⎪+=⎩,解得11k 30b 150=-⎧⎨=⎩. ∴直线DF 的函数表达式为s =-30t +150.∵小聪上午10:00到达宾馆后立即以30km /h 的速度返回飞瀑,∴所需时间55030=3÷(h ).如答图,HM 为小聪返回时s 关于t 的函数图象.∴点M 的横坐标为3+53=143,点M (143,50). 设直线HM 的函数表达式为s k t b =+22,该直线过点H (3,0) 和点M (143,50),∴14k b5033k b0⎧+=⎪⎨⎪+=⎩2222,解得k30b90=⎧⎨=-⎩22.∴直线HM的函数表达式为s=30t-90,由30t9030t150-=-+解得t4=,对应时刻7+4=11,∴小聪返回途中上午11:00遇见小慧.【考点】一次函数的应用;待定系数法的应用;直线上点的坐标与议程伯关系.【分析】(1)求出小聪从飞瀑到宾馆所用的时间即可求得小聪上午从飞瀑出发的时间.(2)应用待定系数法求出直线GH的函数表达式即可由点B的纵坐标求出横坐标而得点B的坐标;点B的实际意义是:上午8:30小慧与小聪在离宾馆30km (即景点草甸) 处第一次相遇.(3)求出直线DF和小聪返回时s关于t的函数(HM),二者联立即可求解.23.(2015年浙江金华10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A'GC和往墙面BB'C'C爬行的最近路线A'HC,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm的⊙M与D'C'相切,圆心M到边CC'的距离为15dm,蜘蛛P在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线。
2015年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,1—10小题,每小题3分;11—16小题,每小题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:=-⨯-)1(23 ( )A. 5B.1C.-1D.6 涉及知识点:有理数的混合运算0401513 2.下列说法正确的是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数 涉及知识点:相反数0401230;有理数0401200;倒数0401412;立方根04062013.一张菱形纸片按图1-1、图1-2依次对折后,再按图1-3打出一个圆形小孔,则展开铺平后的图案( )涉及知识点:简单的图案分析0423302 4.下列运算正确的是( )A.21211-=⎪⎭⎫ ⎝⎛- B.60000001067=⨯ C.()2222a a = D.523a a a =⋅涉及知识点:幂的乘方0414121;积的乘方0414130;科学计数 法0415232;同底数幂的乘法0414111AB 图1—1图1—3图1—2DC5.图2中的三视图所对应的几何体是( )涉及知识点:三视图的有关概念04292016.如图3,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是..点O 的是( ) A.△ABE B.△ACF C.△ABD D.△ADE涉及知识点:三角形的外接圆0424213;三角形及其相关概念0411101 7.在数轴上标注了四段范围,如图4,则表示8的点落在( ) A.段① B.段 ② C.段③ D.段④涉及知识点:实数与数轴的关系0406303;无理数的概念0406301 8.如图5,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( ) A.120° B.130° C.140° D.150°涉及知识点:平行线的性质0405300;垂涎04051209.已知:岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是()图3图4图5涉及知识点:方位角040433310.一台印刷机每年印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y 与x 的函数图像大致是( )涉及知识点:反比例函数的图象和性质0426122;反比例函数在实际问题中的应用0426201 11.利用加减消元法解方程组⎩⎨⎧=--=+②①635 1052y x y x ,下列做法正确的是( )A.要消去y ,可以将25⨯+⨯②①B.要消去x ,可以将)5(3-⨯+⨯②①C.要消去y ,可以将35⨯+⨯②①D.要消去x ,可以将2)5(⨯+-⨯②①涉及知识点:二元一次方程组的解040810212.若关于x 的方程022=++a x x 不存在...实数根,则a 的取值范围是( ) A.a<1 B.a>1 C.a ≤1 D.a ≥1 涉及知识点:方程解的检验040312313.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( ) A.21 B.31 C.51 D.61涉及知识点:概率0425103 14.如图6,直线332:--=x y l 与直线a y =(a 为常数)的交点在第四象限,则a可能在( )A.21<<aB.02<<-aC.23-≤≤-aD.410-<<-a涉及知识点:正比例函数的性质0419213;一次函数的性质0419223 15.如图7,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对于下列各值: ①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而变化的是( ) A.②③ B.②⑤ C.①③④ D.④⑤ 涉及知识点:三角形的中位线041812216.图8是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( ) A.甲、乙都可以 B.甲、乙都不可以图 6图7图8C.甲不可以,乙可以D.甲可以,乙不可以 涉及知识点:几何图形0404000二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.若02015=a ,则=a涉及知识点:绝对值0401240;零指数幂的性质041414518.若02≠=b a ,则aba b a --222的值为 涉及知识点:分式的约分041510519.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图9,则∠3+∠1-∠2= °涉及知识点:多边形的内角和0411302;多边形的外角和041130320.如图10,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2; 再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=涉及知识点:等腰三角形的性质0413312三、解答题(本大题共6个小题,共66分。
12015年中考综合、压轴题(专题)解答题在中考中占有相当大的比重,主要由综合性问题构成,就题型而言,包括计算题、证明题和应用题等.它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性.一般地,解题设计要因题定法,无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等. (一)解答综合、压轴题,要把握好以下各个环节:1.审题:这是解题的开始,也是解题的基础.一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计.审题思考中,要把握“三性”,即明确目的性,提高准确性,注意隐含性.解题实践表明:条件暗示可知并启发解题手段,结论预告并诱导解题方向,只有细致地审题,才能从题目本身获得尽可能多的信息.这一步,不要怕慢,其实“慢”中有“快”,解题方向明确,解题手段合理得当,这是“快”的前提和保证.否则,欲速则不达.2.寻求合理的解题思路和方法:破除模式化、力求创新是近几年中考数学试题的显著特点,解答题体现得尤为突出,因此,切忌套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,谨慎地确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃. (二)题型解析类型1 直线型几何综合题这类题常见考查形式为推理与计算.对于推理,基本思路为分析与综合,即从需要证明的结论出发逆推,寻找使其成立的条件,同时从已知条件出发来推导一些结论,再设法将它们联系起来.对于计算,基本思路是利用几何元素(比如边、角)之间的数量关系结合方程思想来处理.例1如图1,在ABC △中,5AB =,3BC =,4AC =,动点E (与点A 、C 不重合)在AC 边上,EF AB ∥交BC 于点F .(1)当E C F △的面积与四边形EABF 的面积相等时,求CE 的长; (2)当E C F △的周长与四边形EABF 的周长相等时,求CE 的长;(3)试问在AB 上是否存在点P ,使得EFP △为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF 的长.特别提示:因为等腰直角三角形中哪条边为斜边没有指明,所以需要就可能的情形进行讨论. 类型2 .圆的综合题常见形式为推理与计算综合,解答的基本思路仍然是分析—综合,需要注意的是,因为综合性比较强,解答后面问题时往往需要充分利用前面的结论,这样才会简便.例2如图5,点A 、B 、C 、D 是直径为AB 的⊙O 上四个点,C 是劣弧BD 的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △.(2)试探究四边形ABCD 是否是梯形?若是,请你给予证明图1C EF AB2并求出它的面积;若不是,请说明理由.(3)延长AB 到H ,使BH =OB .求证:CH 是⊙O 的切线. 特别提示:在推理时,有时可能需要借助于计算来帮助证明,比如本题中证明DC ∥AB. 类型3. 含统计(或概率)的代数(或几何)综合题 这类题通常为知识串联型试题,因此只要逐个击破即可.例3.在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式: ①AB DC = ②ABE DCE ∠=∠ ③AE DE = ④A D ∠=∠ 小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定BEC △ 是等腰三角形吗?说说你的理由;(2)请你用树形图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片 上的等式为条件,使BEC △不能..构成等腰三角形的概率. 特别提示:不能得到“ABE DCE △≌△”有两种情形,一是“边边角”不能得全等,二是只能得到相似.类型4. 图形中的函数(方程)这类题通常需要利用方程与函数的思想来处理,具体的说,往往通过线段成比例或者面积公式等来建立关系式,再通过解方程或者利用函数性质来得到解决.例4.如图,已知正方形ABCD 与正方形EFGH的边长分别是和,它们的中心12O O ,都在直线l 上,AD l ∥,EG 在直线l 上,l 与DC 相交于点M,7ME =-,当正方形EFGH 沿直线 l 以每秒1个单位的速度向左平移时,正方形ABCD 也绕1O 以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变. (1)在开始运动前,12O O = ;(2)当两个正方形按照各自的运动方式同时 运动3秒时,正方形ABCD 停止旋转,这时 AE = ,12O O = ;(3)当正方形ABCD 停止旋转后,正方形EFGH 继续向左平移的时间为x 秒,两正方形重叠部分的面积为y ,求y 与x 之间的函数表达式. .特别提示:(1)本题也是变换型试题,计算与证明时要抓住变换中不变的元素(比如角相等,边相等,图形全等,等)来进行处理,如果直角比较多,还可从相似、三角函数、勾股定理角度来建立数量关系.(2)对于图形变化中分段函数的问题,可以从图形特征角度来分别讨论,以力求解答完备.类型5. 抛物线中的图形 一般而言,这类题多为压轴题,解答基本思路仍然为分析与综合.除了需要灵活运用代数与几何核心知识外,还要注意应用分类、数形结合、转化等基本数学思想方法.例5如图,对称轴为直线72x =的抛物线经过点A (6,0)和B (0,4).图53(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.跟踪练习.已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2. (1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由. 类型6、函数与几何综合的压轴题例6.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上;(2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式.例7.如图,已知点A(0,1)、C(4,3)、E(415,823),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的—个动点,点D 在y 轴,抛物线y =ax 2+b x +1以P 为顶点. (1)说明点A 、C 、E 在一条条直线上;(2)能否判断抛物线y =ax 2+b x +1的开口方向?请说明理由;(3)设抛物线y =ax 2+b x +1与x 轴有交点F 、G(F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点.这时能确定a 、b 的值吗?若能,请求出a 、b 的值;若不能,请确定a 、b 的取值范围. (本题图形仅供分析参考用)第26图②4例8.如图,直线4+=kx y 与函数)0,0(>>=m x xmy 的图像交于A 、B 两点,且与x 、y 轴分别交于C 、D 两点.(1)若COD ∆的面积是AOB ∆的面积的2倍,求k 与m 之间的函数关系式;(2)在(1)的条件下,是否存在k 和m ,使得以AB 为直径的圆经过点)0,2(P .若存在,求出k 和m 的值;若不存在,请说明理由.。
2015年云南省楚雄州初中数学学科学业水平考试质量分析报告楚雄州教科所张文英一.试题评价2015年云南省初中数学学业水平考试试题以“课程目标”为标准、以教学要求和现实为依据、以学生为本,努力体现考查内容的有效性,确保考查目标的准确性。
全面评价学生在数学知识与技能、数学思考、解决问题、情感与态度等方面的表现,较好地体现了“课标”所规定的学习要求。
着重考察了学生全面掌握初中阶段所学的数学基础知识、基本技能和思想方法,有利于学生在考试中展示自己应有的学业水平,产生并发挥促进学生生动活泼的全面发展及教师改进和完善教学实践的导向效应。
覆盖“课程标准”的内容;覆盖方程与函数、化归(转化)、分类、数形结合的全部;没有超过“课程标准”的题目。
整卷题目的内容和题目所设计的问题没有科学性错误。
整卷预设的评分标准基本合理,所设计的评分点基本能反映出不同分数所对应水平之间的差异。
题型设计合理,整卷题目设计基本有利于学生展示水平,与去年的考题目相比较,保持了平稳;整卷的语言、图形、文字叙述准确、突出主题;整卷试题所使用的题目载体(素材:在教材和“学业水平标准与考试说明”能找到它的原形)对考生公平合理;整卷及每道题目的阅读量合理。
二、考试基本情况统计分析(成绩含分流职业教育学生考试成绩全州约1000人)(一)全卷基本情况(二)第I卷(选择题)统计情况(三)第II卷(非选择题)统计情况(四)第II卷(填空题)统计情况(五)各小题统计分析三、考生答题情况及错误原因分析(一)、填空题1、主要考查的内容是:(9)因式分解;(10)函数自变量取值范围(二次根式);(11)内错角、邻补角;(12)列代数式;(13)同弧所对的圆心角、圆周角的关系,等边三角形的性质;(14)三角形的中位线性质、找规律。
2、失分的原因及错误所在:(1)分解因式不彻底,平方差公式和完全平方公式混淆;(2)二次根式的概念、分式有意义、分式的值为零的取值范围混淆;(3)计算能力差,容易出现低级错误;(4)做题粗心大意,部分同学还弄清题目问什么就把答案填上去,或者漏填部分答案;(5)书写不规范,特别是分数的平方,平方后倍数的区别。
由于填空题考查的是概念、公式、定义、规律等,如果教学中只重视结果,而忽视了过程,必然会导致学生概念不清,公式不理解,从而记不住。
第15题化简求值(一)、本题考点:1、分式的通分、约分 2、分配律 3、合并同类项。
(二)、学生做题方法:1、利用乘法分配律进行化简2、按运算顺序进行计算(三)失分的原因及错误所在:1、分式化简求值与分式方程混淆2、不写等号;3、丢括号,颠倒运算顺序4、没有掌握分式的通分、约分、基本性质5、大部分学生书写较差,两极分化严重,满分与零分人数相差不大。
导致以上错误的原因我认为:一是有的教师在平时的教学中书写不规范,批改作业不到位;二是复习时没有把分式和分式方程进行对比,所以有的学生就不知道什么情况可以去分母,什么情况不可以去分母。
第16题全等三角形的判定(一)、此题是开放性试题,给出条件不唯一;1、主要考查学生的探究和创新能力;(2)三角形全等判定;(3)简单的逻辑推理能力;(4)几何推理书面表述的规范。
(二)、考生失分情况:(1)有空白卷,还有考生虽然书写,但无得分点;(2)证明书写不规范;(3)不熟悉全等三角形的判定方法;(4)把SSS、SAS、ASA、AAS错写成AAA、SSA;(5)书面表达逻辑不清,不分主次,不分因果关系;(6)未能正确区分原有条件与添加条件。
导致以上错误的原因主要是学生几何入门时,教师没有很好的把几何语言和图形结合起来,让学生“练”到位,所以让学生看到几何证明题就望而生畏。
第17题列方程或方程组解应用题此题考查方程思想、考查分析问题、解决问题的能力,其解题方法灵活多样。
主要有:列一元一次方程、二元一次方程组、算术法。
(一)学生解答试题存在的主要问题有:1. 许多学生在做题中,没有认真读题,认为球赛中输了应该得零分或负分,所以导致方程(组)列错。
2、书写不规范。
有同学应用题不写“解”、“设”和“答”的内容,没有写解答过程,只写答案。
3、设未知数与列方程之间关系矛盾,等量关系处理不好。
4、一元一次方程、二元一次方程组的解法掌握不好,列方程(组)时括号运用不当。
5. 基础不扎实,解题不仔细,大意出错。
如:移项错误、运算错误。
导致以上错误的原因是教师在讲解列方程(组)解应用问题时,没有很好讲清楚列方程(组)解应用问题的五个步骤:(1)设(如何设未知数);(2)找(如何找等量关系,这是列方程(组)最关键的一步);(3)列(列方程或方程组);(4)解(解方程);(5)答。
第18题一次函数的实际应用(一)、考查知识点:1、一次函数表达式及其取值范围;2、已知自变量的值,求函数值。
(二)、本题失分较多的几种情况1、直接不会做、空白卷太多;2、在列一次函数表达式时,学生没有读懂题目;尤其y表示剩余距离,学生均把表达式列为正比例函数。
3、学生均未能结合题目实际意义,准确计算出自变量x的取值范围4、在第二问代入表达式求y值,多数学生都以算术方法求解。
导致以上错误的主要原因是:(1)是部分教师在进行复习或教学时,没有很好的把初中所学的几种函数概念和解析式进行类比,因而导致学生把这两种函数的概念和解析式混淆;(2)是理解和分析实际问题的能力差;(3)计算能力有待提高。
19题解直角三角形(一)、本题考点:解直角三角形的知识与方法,涉及锐角三角函数的基本概念,特殊角的三角函数值,取近似数等等(二)、失分表现为:1、未很好掌握锐角三角函数的基本概念;2、特殊角的三角函数值未记住;3、解题方法不够灵活;4、计算能力差;5、忽略取近似数。
导致以上错误的主要原因是:一是教师对锐角三角函数的基本概念教学过程没有落实到位;二是由于受往年使用《数学手册》的影响,学生没有很好的去记住特殊角的三角函数值;三是不会看图,不知道如何添加辅助线。
第20题概率1、主要考查的内容是:利用树状图或列表法的方式求概率问题。
2、答题方法:用树状图或列表法的学生占80%左右,剩下的用自己所想的方式回答。
3、学生答题中存在的问题:(1)列表法中,表不完整、不规范,多数未求积的所有结果;(2)树状图中,图形画不完整,非常丑,不表示出所有结果,并不求积直接写出结果;(3)审题不仔细,答非所问;(4)书写不规范,粗心大意。
导致以上错误的主要原因是教师在平时的教学中书写不规范,对作业的批改不及时或不认真,由于长期使用计算器,导致学生的计算能力下降。
第21题统计题(一)、本题主要考查统计图表问题,所涉及的知识点共有以下四个:1、扇形统计图、统计表、条形统计图;2、统计图表中的数据、百分比、圆心角的关系;3、条形统计图的补充;(二)、学生在解答题中存在或出现的一些问题:1、对题意理解不透,不会看统计图表,还有学生不能从图中找到有关数据;2、知识点混淆,从而失分;3、书写不工整,卷面不整洁,字迹难辨认;4、第(1)小题有两个要求:一是求机场E的投资金额,二是补全条形统计图;学生没把计算过程写在答题卡上,或忘了补条形统计图,从而失分。
导致以上错误的原因主要是教师在平时的教学中没有把数形结合的思想落实到位,导致学生不会看图,从而找不到想要的数据。
第22题四边形问题主要考查的知识是矩形的性质和判定、等腰三角形的判定和性质、勾股定理、相似三角形的判定,方程的思想等。
主要丢分问题:(1)第一问中,抛开已知条件,直接利用条件推得的结论直接进行证明;(2)第二问中,错误构造相似三角形求线段的长。
故本题得分率不高。
导致以上错误的主要原因是:(1)是部分学生不会结合已知条件识图,弄清楚谁是谁的倍数;(2)是第二问中,学生没有结合第一问的结论进行思考,误用(错误构造)求线段的长;(3)第二问等腰三角形的判定问题成为学生解决第二问的瓶颈。
第23题探索题(综合)1、主要考查的内容是:待定系数法、数形结合、方程、函数、相似三角形的判定和性质、直角三角形的性质、勾股定理、分类思想等等。
具体表现在第(1)小题是用待定系数法求一次函数和二次函数的解析式(将函数图像上的点的坐标代入“一般式”、“交点式”,利用二元一次方程组求解);第(2)小题是用相似三角形的判定、性质求解或用勾股定理求解,直角三角形的存在性问题(相似、对称轴、一元二次方程、分类讨论等)。
2、主要丢分问题:主要是学生对“双基”的掌握及计算能力方面存在较大问题。
具体表现在第(1)小题是不会用待定系数法函数解析式(将函数图像上的点的坐标代入“一般式”、“交点式”,利用二元一次方程组求解);第(2)小题是不能用相似三角形的判定、性质求解或用勾股定理求解,而用平面内两点间距3写成离公式求解;解方程组出错的学生比例仍很大,如把系数44。
3导致以上错误的主要原因是:(1)是教师在平时的教学没有很好的落实数形结合的思想,导致学生不会结合函数图像看图,因而就不能理解两个函数图像交点是什么意思;(2)是能判断出存在符合条件的直角三角形,但找不到求出p点坐标的思路。
四、教学建议1、进一步培养方程思想,以促进学生的数学能力的形成。
数学思想和方法是将数学知识学习转化为能力培养的桥梁。
2、加强列方程、解方程的训练。
3、要求学生面对实际问题时,能够主动尝试从数学的角度运用所学的知识和方法寻求解决问题的策略和方法。
4、引导学生关注生活,关注社会,学会用数学的眼光观察社会,实现生活数学化, 数学生活化。
5、增强阅读,关注发展。
阅读理解能力和知识迁移能力是学生进一步学习和走向社会所需的重要能力。
对这两种能力的考查可更好地体现学生的数学素养,实现中考的选拔功能。
考查学生的阅读、理解、分析、解决问题的能力。
6、加强“四基”的教学,使两极分化缩小从答题情况来看,各校均不同程度的存在着严重的学困生,他们对初中数学中最基础的知识都不能够理解,如第1题考查的是相反数,由于学生混淆了相反数与倒数的概念,所以写成了倒数;等等。
7、加强数学思想方法应用能力培养任何数学问题的解决都是在数学思想方法的指导下完成的,而且这些思想方法和能力是进入高中后不可缺少的数学素质,是继续学习的基础。
因此考查数学思想方法是考查学生能力的主要途径,本次试卷中亦充分体现了这一特点。
9、加强有效解题策略的研究不少学生解题思路狭窄,方法不多,不少考生平时没有养成良好的思维习惯,缺少有效的思维方式,对有的试题觉得似曾相识,但束手无策;对有的试题小题大做,不得要领;对有的试题走入岔道。
10、加强对学法的研究和指导.特别要加强对学生进行阅读、理解和表达的训练,提高学生审题能力,训练学生表达书写的规范性.11、以学生为主体,着眼于能力的培养.所有的知识和方法都必须经过学生的内化才能形成能力,因此教学中必须注意学生的主体地位,让学生真正参与到教学中来,切忌包办代替和满堂灌的教学模式.解题思路的分析应从学生的角度进行设计和讲解,教给学生思维的方法,授人以“渔”,而不是授人以“鱼”.12、关注数学答题卡的书写建议毕业班的教师关注数学答题卡的填写,一是有的学生把填空题的答案填写错位,没有认真看清答题卡的题号排列;二是规范十个阿拉伯数字(0~9)的书写,扫描后才能看清。