二次函数三种表达式对应的图像
- 格式:doc
- 大小:103.50 KB
- 文档页数:2
二次函数图像与性质完整归纳二次函数的图像与性质二次函数是高中数学中的重要内容之一,掌握其图像与性质是必不可少的。
二次函数的基本形式是y=ax^2,其中a表示开口方向和抛物线开口大小,x^2表示自变量的平方。
根据a的正负,抛物线的开口方向和顶点的坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(0,0),对称轴为y轴;当a<0时,抛物线开口向下,顶点坐标为(0,0),对称轴为y轴。
在y=ax^2的基础上,加上常数项c可以得到y=ax^2+c的形式,其中c表示抛物线在y轴上的截距。
根据a和c的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,c>0时,抛物线开口向上,顶点坐标为(0,c),对称轴为y轴;当a>0,c0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴;当a<0,c<0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴。
除了基本形式和加上常数项的形式,二次函数还有一种顶点式的形式y=a(x-h)^2+k,其中(h,k)表示顶点坐标。
根据a的正负,抛物线的开口方向和顶点坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
在顶点式的基础上,加上常数项k可以得到y=a(x-h)^2+k的形式。
根据a和k的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,k>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a>0,k0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h;当a<0,k<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
二次函数图象的平移二次函数的图像可以通过平移来得到新的图像。
平移的步骤是先确定顶点坐标,然后根据顶点坐标的变化来确定平移方向和距离。
二次函数及其图像【知识点回顾】 1. 解析式:(1)一般式:y =ax 2+bx +c (a ≠0)(2)顶点式:y =a (x -h )2+k (a ≠0),其图象顶点坐标(h ,k ).(3)两根式:y =a (x -x 1)( x -x 2) (a ≠0),其图象与x 轴的两交点分别为(x 1,0),(x 2,0). 注意:①一般式可通过配方法化为顶点式.②求二次函数解析式通常由图象上三个点的坐标,用待定系数法求得. 若已知抛物线的顶点和对称轴,可用顶点式;若已知抛物线与x 轴的两个交点,可用两根式;若已知三个非特殊点,通常用一般式.2a >03. 二次函数y =a (x -h )2+k (a ≠0)的对称轴是______________,顶点坐标是___________.4. 二次函数y =ax 2+bx +c 用配方法可化成y =a (x -h )2+k 的形式,其中h =____,k =________.5. 二次函数y =a (x -h )2+k 的图象和y =ax 2图象的关系.6. 二次函数y =ax 2+bx +c 图象与a ,b ,c 符号的关系.(1)a 决定抛物线开口方向:a >0时抛物线开口向上;a <0时抛物线开口向下; (2)a 、b 决定对称轴x =-2ba的位置:ab >0时对称轴在y 轴左侧;b =0时对称轴为y 轴; ab <0时对称轴在y 轴右侧.(3)c 决定抛物线与y 轴交点的位置:c >0时抛物线交y 轴于正半轴;c =0时抛物线过原点;c <0时抛物线交y 轴于负半轴.7.抛物线的平移抛物线的平移主要是移动顶点的位置,将y=ax 2沿着y 轴(上“+”,下“-”)平移k (k>0)个单位得到函数y=ax 2±k ,将y=ax 2沿着x 轴(右“-”,左“+”)平移h (h>0)个单位得到y=a (x ±h )2.•在平移之前先将函数解析式化为顶点式,再来平移,若沿y•轴平移则直接在解析式的常数项后进行加减(上加下减),若沿x 轴平移则直接在含x 的括号内进行加减(右减左加). 【典例精析】例1 已知:二次函数为y=x 2-x+m ,(1)写出它的图象的开口方向,对称轴及顶点坐标;(2)m 为何值时,顶点在x 轴上方,(3)若抛物线与y 轴交于A ,过A 作AB ∥x 轴交抛物线于另一点B ,当S △AOB =4时,求此二次函数的解析式.例2 如图,抛物线经过、两点,与轴交于另一点.(1)求抛物线的解析式;(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标; (3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.24y ax bx a =+-(10)A -,(04)C ,x B (1)D m m +,D BC BD P 45DBP∠=°P【迎考精练】一、选择题1.抛物线(是常数)的顶点坐标是()A.B.C.D.2.根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图像与x轴()A.只有一个交点B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧D.无交点3.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()4.二次函数的图象如图2所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是()A.B.C.D.不能确定5.将函数的图象向右平移a个单位,得到函数的图象,则22()y x m n=++m n,()m n,()m n-,()m n-,()m n--,cbxaxy++=244cbxaxy++=221yy<21yy=21yy>2y x x=+(0)a>232y x x=-+B.C.D.a 的值为A .1B .2C .3D .46.在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A . B .C. D .7.把二次函数用配方法化成的形式 A. B. C. D. 8.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s二、填空题1.若把代数式化为的形式,其中为常数,则=.2.已知二次函数的图象经过原点及点(,),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为3.抛物线的顶点坐标为__________.4.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个.5.抛物线的图象如图所示, 则此抛物线的解析式为 .22y x x =+-x y 22y x x =--+22y x x =-+-22y x x =-++22y x x =++3412+--=x x y ()k h x a y +-=2()22412+--=x y ()42412+-=x y ()42412++-=x y 321212+⎪⎭⎫ ⎝⎛-=x y 2120y x =223x x --()2x m k -+,m k m k +12-14-23(1)5y x =--+2y ax bx c =++x (20)-,1(0)x ,112x <<y (02),420a b c -+=0a b <<20a c +>210a b -+>2y x bx c=-++6.函数取得最大值时,______. 三、解答题1.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.2.已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、.(1)求点的坐标(用表示); (2)求抛物线的解析式;(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结并延长交于点,试证明:(2)(3)y x x =--x =ABC ∆90ACB ∠=︒AC BC =A C x B 3m 0m >AB y D P B D A m Q P B PQ BC E BQ AC F (FC AC3.已知二次函数过点A (0,),B (,0),C (). (1)求此二次函数的解析式;(2)判断点M (1,)是否在直线AC 上?(3)过点M (1,)作一条直线与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.2-1-5948,1212l 第3题4.如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2).(1)求点B的坐标;(2)求过点A、O、B的抛物线的表达式;(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.5.新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.7.如图1,已知:抛物线与轴交于两点,与轴交于点C,经过B、C两点的直线是,连结.(1)B、C两点坐标分别为B(_____,_____)、C(_____,_____),抛物线的函数关系式为______________;(2)判断的形状,并说明理由;(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由.[抛物线的顶点坐标是]。
二次函数的图像及其三种表达式学生:时间:学习目标1熟悉常见的二次函数的图像;2、理解二次函数的三种表达式知识点分析1、•二次函数的三种表达式一般式:y=ax A2+bx+c (a, b, c 为常数,a老)顶点式:y=a(x-h)A2+k [ 抛物线的顶点P (h, k)]交点式:y=a(x-x1)(x-x2)[ 仅限于与x轴有交点A (x1 , 0)和B (x2 , 0)的抛物线]2、一般地,自变量x和因变量y之间存在如下关系:y=axA2+bx+c (a, b, c为常数,a M),且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,lal还可以决定开口大小,lal越大开口就越小,lal越小开口就越大.) 则称y 为x的二次函数。
二次函数表达式的右边通常为二次三项式。
例题精讲2例题1已知函数y=x + bx +1的图象经过点(3, 2).(1)求这个函数的表达式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x > 0时,求使y》2的x的取值范围.例题2、一次函数y=2x + 3,与二次函数y=ax2+ bx + c的图象交于A ( m 5)和B (3, n)两点,且当x=3时,抛物线取得最值为9.(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大. (4)当x为何值时,一次函数值大于二次函数值?随堂练习1.已知函数y=ax2+ bx+ c(a M0)的图象,如图①所示,则下列关系式中成立的是(b b b b——=12a 21 2A. y= (x—1) +22 B.y=1 (x—1) 2+2 21 2 1 2C.y =丄(x — 1)2-3D.y =l (x +2)2- 12 23. 抛物线y =- 2x 2-x +1的顶点在第 ______ 象限A. 一B. 二C.三D.四4. 不论m 取任何实数,抛物线 y =a (x +m )2+m (a * 0)的顶点都A.在y =x 直线上B.在直线y =-x 上C.在x 轴上D.在y 轴上25. 任给一些不同的实数 n ,得到不同的抛物线 y =2x +n ,如当n =0,± 2时,关于这些抛物线 有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判 断正确的个数是A.1个B.2 个C.3 个D.4 个6. 二次函数y =x 2+p x +q 中,若p+q=O ,则它的图象必经过下列四点中,-1)C.(-1,- 1) D.(1 , 1)7. 下列说法错误的是A. 二次函数y =— 2x 2中,当x =0时,y 有最大值是0B. 二次函数y =4x 2中,当x >0时,y 随x 的增大而增大2 2 2 2 . . 2 . .C. 在三条抛物线 y =2x , y =- 0.5 x , y =-x 中,y =2x 的图象开口最大,y =- x 的图象开 口最小D. 不论a 是正数还是负数,抛物线y =ax 2( a 工0)的顶点一定是坐标原点8. 已知二次函数 y =x 2+(2k +1)x +k 2— 1的最小值是0,贝U k 的值是219. 小颖在二次函数 y =2x +4x +5的图象上,依横坐标找到三点(—1, y",( — , y 2),(-213丄,y 3),则你认为y 1, y 2,小的大小关系应为2A. y 1 >y 2>y 3B.y 2>y 3>y 1 C. y 3>y 1>y 2 D. y 3>y 2>y 11 210. 抛物线y =-(x +3)的顶点坐标是 __________ .211. _____________________________________________________________ 将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是 ______________________________ .4 212. 函数y =-x - 2- 3x 有最 ________ 值为 ____ .313. 已知抛物线 y =ax 2+bx +c 的图象顶点为(—2, 3),且过(—1, 5),则抛物线的表达式为 14. ________________________________________________________________ 二次函数y =m )2+2x +m- 4n i 的图象过原点,则此抛物线的顶点坐标是 ______________________15. 抛物线y=ax 2 + bx + c (c 丰0)如图②所示,回答:(1) _______________________________________ 这个二次函数的表达式是 ; (2) 当 x= _____ 时,y=3;16. 抛物线y=ax 2 + bx + c (c 丰0)如图②所示,回答:(1) _______________________________________ 这个二次函数的表达式是 ; (2) 当 x= _____ 时,y=3;A.( - 1, 1)B.(1 B.C.D.(3)根据图象回答:当x __________________ 时,y>0.17. ____________________________ 已知抛物线y= - x2+( 6- 2k) x+ 2k- 1与y轴的交点位于(0, 5) 上方,则k的取值范围是__ .18. —根长为100 m 的铁丝围成一个矩形的框子,要想使铁丝框的面积最大,边长分别为19. ________________________________________________________________________ 若两个数的差为 3,若其中较大的数为 x ,则它们的积y 与x 的函数表达式为 __________________ _,它有最 _________ 值,即当 x= _________ 时,y= _________ . 20. 边长为12cm 的正方形铁片,中间剪去一个边长为 x 的小正方形铁片,剩下的四方框铁 片的面积y (cm )与x (cm )之间的函数表达式为 ______________________ . 21. 等边三角形的边长 2x 与面积y 之间的函数表达式为 .22. ____________________________________________________________________ 抛物线y=x 2 + kx — 2k 通过一个定点,这个定点的坐标为 __________________________________ . 23. 已知抛物线 y=x 2 + x + b 2经过点(a , — 1 )和(一a , yj ,则y 1的值是 ________________ .424. 如图,图①是棱长为 a 的小正方体,②、③是由这样的小正方体摆放而成,按照这样的 方法继续摆放,由上而下分别叫第一层、第二层……第n 层,第n 层的小正方体的个数记 为S,解答下列问题:(1)按照要求填表:n1234s1 3 6(2) 写出当n=10时,S= __________ .(3) 根据上表中的数据,把 S 作为纵坐标,n 作为横坐标,在平面直角坐标系中描出 相应的点.(4) 请你猜一猜上述各点会在某一函数图象上吗?如果在某一函数的图象上,求出该 函数的表达式.25. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过 程.图中二次函数图象(部分)刻画了该公司年初以来累积利润 S (万元)与销售时间a由(D ②(月)之间的关系(即前t个月的利润总和根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润式;(2)求截止到几月末公司累积利润可达到S与t之间的关系).S (万元)与时间t (月)之间的函数表达30万元;(3)求第8个月公司所获利润是多少万元?精品文档欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
二次函数的三种表示方式高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:y =ax 2+bx +c (a ≠0);典型考题【典型例题】已知抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3). (1)求抛物线的表达式.(2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m ≠n ,请判断关于t 的方程t 2+mt +n =0是否有实数根,并说明理由.【答案】(1)y =x 2+2x ﹣3;(2)方程有两个不相等的实数根. 【解析】(1)抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,3) 9a ﹣3b +c =0930312a b c c b a⎧⎪-+=⎪=-⎨⎪⎪-=-⎩ 解得a =1,b =2,c =﹣3 ∴抛物线y =x 2+2x ﹣3;(2)∵点(m ,k ),(n ,k )在此抛物线上, ∴(m ,k ),(n ,k )是关于直线x =﹣1的对称点, ∴+2m n=﹣1 即m =﹣n ﹣2 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0∴此方程有两个不相等的实数根.【变式训练】抛物线的图象如下,求这条抛物线的解析式。
(结果化成一般式)【答案】【解析】由图象可知抛物线的顶点坐标为(1,4),设此二次函数的解析式为y=a(x-1)2+4把点(3,0)代入解析式,得:4a+4,即a=-1所以此函数的解析式为y=-(x-1)2+4故答案是y=-x2+2x+3.【能力提升】如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线. (1)求抛物线的解析式(化为一般式);(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.【答案】(1) ;(2)4.【解析】 (1)抛物线的顶点坐标为,把点先向右平移2个单位,再向下平移2个单位后得到的点的坐标为,抛物线的解析式为;(2)顶点坐标为,且抛物线的对称轴与两段抛物线弧围成的阴影部分的面积,抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:y =a (x -h )2+k (a ≠0),其中顶点坐标是(h ,k ).典型考题【典型例题】已知二次函数21322y x x =-++. ⑴用配方法将此二次函数化为顶点式; ⑵求出它的顶点坐标和对称轴方程.【答案】(1)()21122y x =--+;(2)(1,2),直线1x = 【解析】 (1)21322y x x =-++()21232y x x =--- ()2121132y x x =--+--()212142y x x ⎡⎤=--+-⎣⎦ ()21142y x ⎡⎤=---⎣⎦()21122y x =--+(2)∵()21122y x =--+∴顶点坐标为(1,2),对称轴方程为直线1x =.【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式. 【答案】二次函数的解析式为y=﹣2(x+1)2+2. 【解析】∵二次函数的图象的顶点是(﹣1,2),∴设抛物线顶点式解析式y=a (x+1)2+2,将(1,﹣6)代入得,a (1+1)2+2=﹣6, 解得a=﹣2,所以,这个二次函数的解析式为y=﹣2(x+1)2+2.【能力提升】二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.【答案】(1)322--=x x y ;(2)(1,-4);(3)5【解析】(1)设c bx ax y ++=2,把点(03)A -,,(23)B -,,(10)C -,代入得 ⎪⎩⎪⎨⎧=---=++-=03343b a c b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y ;(2)∵4)1(3222--=--=x x x y∴函数的顶点坐标为(1,-4); (3)∵|1-0|+|-4-0|=5∴二次函数的图象沿坐标轴方向最少平移5个单位,使得该图象的顶点在原点.高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.典型考题【典型例题】已知在平面直角坐标系中,二次函数 y =x 2+2x +2k ﹣2 的图象与 x 轴有两个交点. (1)求 k 的取值范围;(2)当 k 取正整数时,请你写出二次函数 y =x 2+2x +2k ﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.【答案】(1)k <;(2)(﹣2,0)和(0,0).【解析】(1)∵图象与x轴有两个交点,∴方程有两个不相等的实数根,∴解得(2)∵k 为正整数,∴k=1.∴令y=0,得解得∴交点为(﹣2,0)和(0,0).【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x=-2,此时抛物线与x轴的两交点间距离为6.(1)求抛物线与x轴两交点坐标;(2)求抛物线的解析式.【答案】(1)(-5,0),(1,0);(2)y=-x2-2x+.【解析】(1) ∵因为抛物线对称轴为直线x=-2,且图象与x轴的两个交点的距离为6,∴点A、B到直线x=-2的距离为3,∴A为(-5,0),B为(1,0);(2)设y=a(x+5)(x-1).∵点(3,-8)在抛物线上,∴-8=a(3+5)(3-1),a=-,∴y=-x2-2x+.【能力提升】已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.【答案】(1)二次函数与x轴的交点坐标为(1,0)(3,0),抛物线的顶点坐标为(2,﹣1);(2)图见详解;当y<0时,1<x<3.【解析】(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.专题验收测试题1.将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为()A.y=﹣2(x﹣1)2+1 B.y=﹣2(x+3)2﹣5C.y=﹣2(x﹣1)2﹣5 D.y=﹣2(x+3)2+1【答案】B【解析】解:将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为:y=﹣2(x+3)2﹣5.故选:B.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【答案】A【解析】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选:A.3.若二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,则k的值为()A.1 B.2 C.﹣1 D.﹣2【答案】D【解析】∵二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,∴△=b2﹣4ac=0,即8﹣4k(k+1)=0,解得:k1=1,k2=﹣2,当k=1时,k+1>0,此时图象有最低点,不合题意舍去,则k的值为:﹣2.故选:D.4.已知二次函数为常数,且),()A.若,则的增大而增大;B.若,则的增大而减小;C.若,则的增大而增大;D.若,则的增大而减小;【答案】C【解析】解:∵y=ax2+(a+2)x-1对称轴直线为,x=-=-.由a<0得,->0.∴->-1.又∵a<0∴抛物线开口向下.故当x<-时,y随x增大而增大.又∵x<-1时,则一定有x<-.∴若a<0,则x<-1,y随x的增大而增大.故选:C.5.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)【答案】B【解析】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.6.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.7.把抛物线y=ax2+bx+c图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y=x2+5x+6,则a﹣b+c的值为()A.2 B.3 C.5 D.12【答案】B【解析】y=x2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣).故原抛物线的解析式是:y=(x+)2+=x2+x+3.所以a=b=1,c=3.所以a﹣b+c=1﹣1+3=3.故选B.8.已知二次函数y=﹣(x﹣k+2)(x+k)+m,其中k,m为常数.下列说法正确的是()A.若k≠1,m≠0,则二次函数y的最大值小于0B.若k<1,m>0,则二次函数y的最大值大于0C.若k=1,m≠0,则二次函数y的最大值小于0D.若k>1,m<0,则二次函数y的最大值大于0【答案】B【解析】∵y=﹣(x﹣k+2)(x+k)+m=﹣(x+1)2+(k﹣1)2+m,∴当x=﹣1时,函数最大值为y=(k﹣1)2+m,则当k<1,m>0时,则二次函数y的最大值大于0.故选:B.9.关于抛物线,下列说法错误..的是().A.开口向上B.与轴只有一个交点C.对称轴是直线D.当时,的增大而增大【答案】B【解析】解:A、,抛物线开口向上,所以A选项的说法正确;B、当时,即,此方程没有实数解,所以抛物线与x轴没有交点,所以B选项的说法错误;C、抛物线的对称轴为直线,所以C选项的说法正确;D、抛物线开口向上,抛物线的对称轴为直线,则当时,y随x的增大而增大,所以D选项的说法正确.故选:B.10.将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣2【答案】D【解析】将抛物线y=﹣3x2+1向左平移2个单位长度所得直线解析式为:y=﹣3(x+2)2+1;再向下平移3个单位为:y=﹣3(x+2)2+1﹣3,即y=﹣3(x+2)2﹣2.故选D.11.已知抛物线经过点,则该抛物线的解析式为__________.【答案】【解析】解:将A、O两点坐标代入解析式得:,解得:,∴该抛物线的解析式为:y=.12.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.【答案】-1【解析】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a的值为-1.故答案为:-1.13.将二次函数y=x2的图象先向上平移1个单位,然后向右平移2个单位,得到新的二次函数的顶点式为______.【答案】y=(x-2)2+1【解析】解:将抛物线y=x2的图象先向上平移1个单位,然后向右平移2个单位后,得到的抛物线的表达式为y=(x-2)2+1,故答案为:y=(x-2)2+1.14.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+115.在平面直角坐标系xOy 中,函数y = x2的图象经过点M (x1 , y1 ) ,N (x2 , y2 ) 两点,若- 4< x1<-2,0< x2<2 ,则y1 ____ y2 . (用“ <”,“=”或“>”号连接)【答案】>【解析】解:抛物线y=x2的对称轴为y轴,而M(x1,y1)到y轴的距离比N(x2,y2)点到y轴的距离要远,所以y1>y2.故答案为:>.16.小颖从如图所示的二次函数的图象中,观察得出了下列信息:;;;;.你认为其中正确信息的个数有______.【答案】【解析】解:抛物线的对称轴位于y轴左侧,则a、b同号,即,抛物线与y轴交于正半轴,则,所以,故错误;如图所示,当时,,所以,故正确;对称轴,,则如图所示,当时,,,,故正确;如图所示,当时,,故错误;综上所述,正确的结论是:.故答案是:.17.已知二次函数y=﹣x2+bx﹣c的图象与x轴的交点坐标为(m﹣2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y =1时,自变量x 有唯一的值,求二次函数的解析式. 【答案】(1)31=m (2)y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 【解析】解:(1)由题意可知,二次函数图象的对称轴为x =2213122m m m -++-=,∵a =﹣1<0,∴二次函数的图象开口向下, ∵x <0时,y 随x 的增大而增大,∴312m -≥0, 解得m ≥13,(2)由题意可知,二次函数的解析式为y =﹣(x ﹣312m -)2+1, ∵二次函数的图象经过点(m ﹣2,0), ∴0=﹣(m ﹣2﹣312m -)2+1, 解得m =﹣1和m =﹣5,∴二次函数的解析式为y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 18.设二次函数y 1=ax 2+bx +a ﹣5(a ,b 为常数,a ≠0),且2a +b =3. (1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;(2)y 1的图象始终经过一个定点,若一次函数y 2=kx +b (k 为常数,k ≠0)的图象也经过这个定点,探究实数k ,a 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )都在函数y 1的图象上,若x 0<1,且m >n ,求x 0的取值范围(用含a 的代数式表示).【答案】(1)y =3x 2﹣3x ﹣2;(2)k =2a ﹣5;(3)x 0<.【解析】解:(1)∵函数y 1=ax 2+bx +a ﹣5的图象经过点(﹣1,4),且2a +b =3 ∴,∴,∴函数y 1的表达式为y =3x 2﹣3x ﹣2; (2)∵2a +b =3∴二次函数y1=ax2+bx+a﹣5=ax2+(3﹣2a)x+a﹣5,整理得,y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2∴当x=1时,y1=﹣2,∴y1恒过点(1,﹣2)∴代入y2=kx+b得∴﹣2=k+3﹣2a得k=2a﹣5∴实数k,a满足的关系式:k=2a﹣5(3)∵y1=ax2+(3﹣2a)x+a﹣5∴对称轴为x=﹣,∵x0<1,且m>n∴当a>0时,对称轴x=﹣,解得,当a<0时,对称轴x=﹣,解得(不符合题意,故x0不存在)故x0的取值范围为:19.已知二次函数y=x2+bx+c的图象经过点A和点B(1)求该二次函数的解析式;(2)写出该抛物线的对称轴及顶点坐标.【答案】(1) y=x2﹣4x﹣6;(2)对称轴为x=2;顶点坐标是(2,﹣10).【解析】(1)根据题意,得,解得,∴所求的二次函数的解析式为y=x2﹣4x﹣6.(2)又∵y=x2﹣4x﹣6=(x﹣2)2﹣10,∴函数图象的对称轴为x=2;顶点坐标是(2,﹣10).20.如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中A点的坐标为(-3,0),C为抛物线与y轴的交点.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=2S△BOC,求点P的坐标.【答案】(1)y=x2+2x﹣3;(2)点P的坐标为(2,5)或(﹣2,﹣3)【解析】(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.(2)∵将x=0代y=x2+2x﹣3入,得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12OC•|a|=12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,5);当a=﹣2时,点P的坐标为(﹣2,﹣3).∴点P的坐标为(2,5)或(﹣2,﹣3).21.已知抛物线y=ax2﹣3ax﹣4a(a≠0).(1)直接写出该抛物线的对称轴.(2)试说明无论a为何值,该抛物线一定经过两个定点,并求出这两个定点的坐标.【答案】(1);(2)抛物线一定经过点.【解析】解:(1)该抛物线的对称轴为x=-;(2)可化为,当,即时,,抛物线一定经过点.22.如图,已知点A(-1,0),B(3,0),C(0,)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在第一象限的抛物线上求一点P,使△PBC的面积为.【答案】(1);(2)点P的坐标为(1,2)或(2,).【解析】(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,)代入,得-3a=,解得∴抛物线的解析式为(2)过点P作PD⊥x轴于D.设点,∴S四边形ACOB=S梯形PDOC+S△PBD =(=∴S△PBC=S四边形PCOB- S△BOC=整理得,解得x=1或x=2.∴点P的坐标为(1,2)或(2,)。
二次函数(注意图像辅助功能)1、二次函数的概念二次函数基本表示形式y=ax 2+bx+c(a ≠0),自变量为x,因变量为y 。
称为y 为x 的二次函数,a 是二次项系数,b 是一次项系数,c 是常数项。
2、二次函数的三种表达式一般式:y=ax 2+bx+c(a ≠0)顶点式:2()y a x h k =-+224()24b ac b y a x a a-=-+ 交点式:12()()y a x x x x =-- 即与x 轴有两个交点(x 1,0)(x 2,0)3、二次函数图像和性质对称轴:2b x a=- 顶点坐标:24(,)24b ac b a a-- 与y 轴交点:(0,c )a ——开口方向b ——对称轴与a 左同右异(可以用对称轴2b x a =-来判断) 4、二次函数的增减性在此类题目中通常用图形进行辅助作图(作图无需精美,只需要表达出开口方向,题目中已知的坐标需要经过,例如:对称轴、顶点、与x 轴交点、与y 轴交点或是给出的普通坐标)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小5.图像的平移当做到此类题目时,我们可以使用两种方法首先,我们在图像平移的过程中需要确认,图像的形状是没有改变的,也就是说图像的大小、开口方向及大小都未改变,所以a 是始终没有变动的(一般式中的a )具体不太清楚可以画出出a 不同,其他相同的二次函数进行比较(例如可以观察y=4x 2与y=x 2之间的差异,实际上a 绝对值越大,开口越小,无需死记硬背,图形辅助记忆)一般图像平移有两种方法第一种:直接用一般式进行计算,因为a 未变,所以此式子有两个未知数,我们至少需要知道两个坐标进行计算,由原式找出两个比较简单的坐标,例如x=1、x=0、x=-1等整数带入得到原坐标,后将坐标也进行相应的平移操作,得到新坐标,带入新的二次函数,求得最终解。
【最新】二次函数图表总结二次函数图表总结y=a_图象2a>0ay=a_+k图象2a>0a0开口对称性顶点k0ky=a(_-h)2图象a>0a0开口对称性顶点增减性h0hy=a(_-h)+k2a>0a0,k>0h>0,k0,kh0顶点是最低点左右平移y=a_2+k上下平移y=a(_h)2+k上下平移y=a(_h)2左右平移y=a_2一般地,抛物线y=a(_-h)+k与y=a_2的形状相同,位置不同.2y=a_2向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k扩展阅读:二次函数单元总结二次函数单元总结【知识归纳和总结】一.知识网络二次函数的定义ya_2b_c(a0)ya_2(a0)二次函数的图像ya(_m)2k(a0)ya_2b_c(a0)二次函数二次函数的性质开口方向.对称轴.顶点坐标.增减性,二次函数与一元二次方程的关系二次函数的应用最大面积.利润等二.知识要点分布1.二次函数的定义:形如ya_2b_c(a.b.c为常数,a0〕的函数叫二次函数.任何一个二次函数的表达式都可以化为ya_2b_c的形式,这就是二次函数的一般形式.2.二次函数表达式的几种形式:〔1〕y=a_2;〔2〕y=a_2+k;〔3〕y=a(_+h)2;〔4〕〔5〕y=a_2+b_+c(a0).y=a(_+h)2+k;3.二次函数表达式的形式及对称轴.顶点坐标.〔1〕一般式:ya_b_c(a.b.c为常数,a0〕,其对称轴为直线_=-2b,顶点2ab4ac-b2坐标为-,.2a4a〔2〕顶点式:y=a(_+h)+k(a.h.k为常数,a0〕,其对称轴为直线_=-h,顶点坐标为-h,k.〔3〕交点式:y=a_-_1_-_2,其中a0,_1._2是抛物线与_轴两个交点的横坐标,即一元二次方程a_-_1_-_2=0的两个根.4.二次函数图像之间的平移关系1向上〔k>0〕或向下〔k0〕或向下〔k0〕或向下〔k0a对称轴顶点坐标直线_=-b2a 直线_=-b2ab4ac-b2-,2a4a当_-小;当_-大;b4ac-b2-,2a4a当_-大;性质增减性b 时,y随_的增大而减2ab时,y随_的增大而增2ab时,y随_的增大而增2ab时,y 随_的增大而减2a当_-小;最值当_=-b时,y有最小值,2a当_=-b时,y有最大值,2a4ac-b2y最小值=4a〞,〞p〞:{“h〞:19.298,〞w〞:9.111,〞_〞:407.786,〞y〞:455.644,〞z〞:象而具体了.7.抛物线的平移与解析式的变化.抛物线上最重要的点是它的顶点,最重要的线是它的对称轴,抛物线的平移首先表现为对称轴和顶点的平移.在抛物线y=a_-h+k中,令_-h=0易得对称轴为直线_=h,抛物线向右〔左〕平移那么对称轴也向右〔左〕平移,h的值将随之增大〔减小〕,反之也成立;抛物线上〔下〕平移,对称轴不会改变,即顶点的横坐标h的值不变,但顶点的纵坐标k的值将随之增大〔减小〕,反之也成立.抛物线的平移不会改变抛物线的形状,即a不变.在抛物线y=a_2+b_+c中研究平移是很不方便的,要先将y=a_2+b_+c的形式转化成2y=a(_-h)2+k再研究.抛物线平移的题型一般有以下几种:〔1〕抛物线的解析式,求平移后抛物线的解析式.例1将抛物线y=-3(_-1)2-3先向左平移2个单位,再向上平移5个单位,所得抛物线的解析式为.〔2〕平移后抛物线是解析式,求原抛物线的解析式.例2将抛物线y=a(_-h)2+k先向左平移5个单位,再向下平移4个单位后所得抛物线为y=-12_+2-3,那么原抛物线的解析式为.222〔3〕平移前后抛物线的解析式,求平移的方式.例3将抛物线y=-2_-2-5经过怎样的平移,可得抛物线y=-2_+4+3?8.图像共存问题的解法解决此类问题的关键是分析两函数的解析式有什么共同的特点,从这些特点入手,在利用抛物线的顶点位置和开口方向.双曲线所在象限.直线所在象限加以判断,决定取舍.例函数y=a_与函数y=a_+a在同一直角坐标系中的图像大致为〔〕A.B.C.D.29.抛物线的对称性的妙用.二次函数的图像是一条抛物线,其具有轴对称性.假设设抛物线上两个对称点的坐_+_标为_1,y1._2,y2,那么一定有y1=y2,且该抛物线的对称轴为直线_=12,利用它2可以简便.快捷地解决相关问题.例:二次函数y=a_2+b_+c的局部对应值如下表:_y……-37-200-81-93-557……二次函数y=a_2+b_+c的图形的对称轴为直线_=;_=2对应的函数值y=.【典型例题分析】题型一利用图像求二次函数y=a_2+b_+c的增减性例1二次函数y=-12_+_+4.2〔1〕试确定抛物线的开口方向.顶点坐标和对称轴;〔2〕_为何值时,y有最大〔小〕值?〔3〕求出抛物线与两坐标轴的交点;1〔4〕画出函数图形的草图,并说明该图像是y=-_2经过怎样的平移得到的; 2〔5〕根据图像答复,当_取何值时,y>0?y=0?y题型三二次函数与几何知识的综合应用例3如下图,某场地为一直角三角形,∠C=90°,AC=6m,BC=12m,现在要对四边形ABPQ进行装修,装修费为50元/m,且四边形ABPQ的边AQ为PC的一半,问怎样设计四边形ABPQ才能使装修费最少?2B例4如下图,二次函数y=-_2+a_+b的图形与_轴交于PCQA1A-,0.B2,0两点,且与y轴交于点C,求该抛物线的解析2式,并判断△ABC 的形状.题型四二次函数与其他函数的综合应用例5二次函数y=a_+b_+c的图像如下图,反比例函数y=在同一坐标系中的大致图像可能是〔〕2a与正比例函数y=b+c__A.B.C.D.题型五二次函数在生活.生产中的应用例6王亮同学善于改良学习方法,他发现对解题过程进行回忆反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间_〔单位:分钟〕与学习收益量y的关系如图甲所示,用于回忆反思的时间_〔单位:分钟〕与学习收益量y的关系如图乙所示〔其中OA是抛物线的一局部,A为抛物线的顶点〕,且用于回忆反思的时间不超过用于解题的时间.〔1〕求王亮解题的学习收益量y与用于解题的时间_的函数解析式,并写出自变量_的取值范围;〔2〕求王亮回忆反思的学习收益量y与用于回忆反思的时间_之间的函数解析式;〔3〕王亮如何分配解题和回忆反思的时间,才能使这30分钟的学习收益总量最大?〔学习收益总量=解题的学习收益量+回忆反思的学习收益量〕y4O2_甲例7甲车在弯路做刹车试验,收集到的数据如下表所示:速度_/〔kmh〕10510152025…刹车距离y/m034215416354…〔1〕请用上表中的各对数据〔_,y〕作为点的坐标,在如图所示的坐标系中画出刹车距离y〔m〕与速度_〔kmh〕的函数图像,并求函数的解析式;〔2〕在一个限速为40kmh的弯路上,甲.乙两车相向而行,同时刹车,但还是相撞了,事后测得甲.乙两车刹车距离分别为12m和10.5m,又知乙车刹车距离y〔m〕与速度_〔km/h〕满足函数y析相撞原因.11_,请你就两车速度方面分4题型六二次函数与图形变换相结合例8如下图,在矩形ABCD中,BC=acm,AB=bcm,ab,且a.b是方程8-4_2_+3+=1的两个根.P是BC上一动点,动点Q在PC或_(_+5)_+5其延长线上,BP=PQ,以PQ为一边的正方形为PQRS.点P从B点开始沿射线BC方向运动.设BP=_cm,正方形PQRS与矩形ABCD重叠局部的面积为ycm. 〔1〕求a.b的值;〔2〕分别求出0_2和2_4时,y与_之间的函数关系式.2SADRBPCQ。
二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
模块三 函数第四讲 二次函数的图象和性质知识梳理 夯实基础知识点1:二次函数的概念及表达式1.一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2.二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:()()12y a x x x x =--,其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.知识点2:二次函数的图象及性质1.二次函数的图象与性质解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a 顶点(–2ba,244ac b a -)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2ba 时,y 最小值=244ac b a-当x =–2ba 时,y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小2.二次函数图象的特征与a,b,c的关系字母的符号图象的特征a>0开口向上aa<0开口向下b=0对称轴为y轴ab>0(a与b同号)对称轴在y轴左侧bab<0(a与b异号)对称轴在y轴右侧c=0经过原点c>0与y轴正半轴相交cc<0与y轴负半轴相交b2–4ac=0与x轴有唯一交点(顶点)b2–4ac>0与x轴有两个交点b2–4acb2–4ac<0与x轴没有交点知识点3:抛物线的平移1.将抛物线解析式化成顶点式y=a(x–h) 2+k,顶点坐标为(h,k).:2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3.注意二次函数平移遵循“左加右减(自变量),上加下减(常数项)”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.知识点4:二次函数与一元二次方程的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0).2.ax 2+bx +c =0(a ≠0)的解是抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交点的横坐标. 3.(1)b 2–4ac >0⇔方程有两个不相等的实数根,抛物线与x 轴有两个交点;(2)b 2–4ac =0⇔方程有两个相等的实数根,抛物线与x 轴有且只有一个交点;(3)b 2–4ac <0⇔方程没有实数根,抛物线与x 轴没有交点.知识点5:二次函数的综合1、函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.直击中考 胜券在握1.(2021·甘肃兰州中考)二次函数222=++y x x 的图象的对称轴是( )A .1x =-B .2x =-C .1x =D .2x =【答案】A 【分析】将二次函数222=++y x x 写成顶点式,进而可得对称轴.【详解】解:Q 222=++y x x 2(1)1=++x .\二次函数222=++y x x 的图象的对称轴是1x =-.【点睛】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键.2.(2021·西藏中考)将抛物线y =(x ﹣1)2+2向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为( )A .y =x 2﹣8x +22B .y =x 2﹣8x +14C .y =x 2+4x +10D .y =x 2+4x +2【答案】D 【分析】根据“左加右减,上加下减”的法则进行解答即可.【详解】解:将抛物线y =(x ﹣1)2+2向左平移3个单位长度所得抛物线解析式为:y =(x ﹣1+3)2+2,即y =(x +2)2+2;再向下平移4个单位为:y =(x +2)2+2﹣4,即y =(x +2)2﹣2=x 2+4x +2.故选:D .【点睛】本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.3.(2021·广西河池中考)二次函数2(0)y ax bx c a =++¹的图象如图所示,下列说法中,错误的是( )A .对称轴是直线12x =B .当12x -<<时,0y <C .a c b +=D .a b c+>-【答案】D 【分析】由与x 轴的交点和中点公式求对称轴判断选项A ;结合函数图象判断选项B ;令x =-1,判断选项C ;令x =1,判断选项D ,即可解答.解:A 、对称轴为:直线12122x -+== ,故选项A 正确,不符合题意;B 、由函数图象知,当-1<x <2时,函数图象在x 轴的下方,∴当-1<x <2时,y <0,故选项B 正确,不符合题意;C 、由图可知:当x =-1时,y =a -b +c =0,∴a +c =b ,故选项C 正确,不符合题意;D 、由图可知:当x =1时,y =a +b +c <0∴a +b <-c ,故选项D 错误,不符合题意;故选:D .【点睛】本题主要考查了二次函数对称性、二次函数图象与系数之间的关系和二次函数图象上点的坐标特征,解题的关键理解函数图象与不等式之间以及方程的关系.4.(2021·辽宁阜新·中考真题)如图,二次函数2(2)y a x k =++的图象与x 轴交于A ,(),10B -两点,则下列说法正确的是()A .0a <B .点A 的坐标为()4,0-C .当0x <时,y 随x 的增大而减小D .图象的对称轴为直线2x =-【答案】D 【分析】根据二次函数的图象与性质即可依次判断.【详解】由图可得开口向上,故a >0,A 错误;∵解析式为2(2)y a x k =++,故对称轴为直线x =-2,D 正确∵(),10B -∴A 点坐标为(-3,0),故B 错误;由图可知当2x <-时,y 随x 的增大而减小,故C 错误;故选D .【点睛】此题主要考查二次函数的图象与性质,解题的关键是熟知二次函数顶点式的特点.5.(2021·广东广州·中考真题)抛物线2y ax bx c =++经过点()1,0-、()3,0,且与y 轴交于点()0,5-,则当2x =时,y 的值为()A .5-B .3-C .1-D .5【答案】A 【分析】先利用待定系数法求出抛物线解析式,再求函数值即可.【详解】解:∵抛物线2y ax bx c =++经过点()1,0-、()3,0,且与y 轴交于点()0,5-,∴50930c a b c a b c =-ìï-+=íï++=î,解方程组得553103c a b ìï=-ïï=íïï=-ïî,∴抛物线解析式为2353051y x x -=-,当2x =时,103542553y =´´-=--.故选择A .【点睛】本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值求法是解题关键.6.(2021·绍兴中考)关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( )A .有最大值4B .有最小值4C .有最大值6D .有最小值6【答案】D【分析】根据二次函数22(4)6y x =-+的解析式,得到a 的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值.【详解】解:∵在二次函数22(4)6y x =-+中,a =2>0,顶点坐标为(4,6),∴函数有最小值为6.故选:D .【点睛】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a 的符号和根据顶点坐标求出最值.7.(2021·贵州黔东南中考)如图,抛物线()210:+=+L y ax bx c a ¹与x 轴只有一个公共点A (1,0),与y轴交于点B (0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为( )A .1B .2C .3D .4【答案】B 【分析】连接AB ,OM ,根据二次函数图像的对称性把阴影图形的面积转化为平行四边形ABOM 面积求解即可.【详解】设平移后的抛物线与对称轴所在的直线交于点M ,连接AB ,OM .由题意可知,AM =OB ,∵()(),1,0,20A B ∴OA =1,OB =AM =2,∵抛物线是轴对称图形,∴图中两个阴影部分的面积和即为四边形ABOM 的面积,∵//AM OB ,AM OB =,∴四边形ABOM 为平行四边形,∴212ABOM S OB OA =·=´=四边形.故选:B .【点睛】此题考查了二次函数图像的对称性和阴影面积的求法,解题的关键是根据二次函数图像的对称性转化阴影图形的面积.8.(2021·江苏徐州中考)在平面直角坐标系中,将二次函数2y x =的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+B .()221y x =++C .()221y x =+-D .()221y x =--【答案】B 【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案.【详解】解:∵2y x =的顶点坐标为(0,0)∴将二次函数2y x =的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),∴所得抛物线对应的函数表达式为()221y x =++,故选B 【点睛】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键.9.(2021·山东淄博中考)已知二次函数2286y x x =-+的图象交x 轴于,A B 两点.若其图象上有且只有123,,P P P 三点满足123ABPABP ABP S S S m ===V V V ,则m 的值是( )A .1B .32C .2D .4【答案】C 【分析】由题意易得点123,,P P P 的纵坐标相等,进而可得其中有一个点是抛物线的顶点,然后问题可求解.【详解】解:假设点A 在点B 的左侧,∵二次函数2286y x x =-+的图象交x 轴于,A B 两点,∴令0y =时,则有20286x x =-+,解得:121,3x x ==,∴()()1,0,3,0A B ,∴312AB =-=,∵图象上有且只有123,,P P P 三点满足123ABPABP ABP S S S m ===V V V ,∴点123,,P P P 的纵坐标的绝对值相等,如图所示:∵()22286222y x x x =-+=--,∴点()12,2P -,∴112222ABP m S ==´´=V ;故选C .【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.10.(2021·内蒙古赤峰·中考真题)已知抛物线2y ax bx c =++上的部分点的横坐标x 与纵坐标y 的对应值如表:x …-10123…y…3-1m3…以下结论正确的是()A .抛物线2y ax bx c =++的开口向下B .当3x <时,y 随x 增大而增大C .方程20ax bx c ++=的根为0和2D .当0y >时,x 的取值范围是02x <<【答案】C 【分析】利用表中数据求出抛物线的解析式,根据解析式依次进行判断.【详解】解:将(1,3),(0,0),(3,3)-代入抛物线的解析式得;309333a b c c a b -+=ìï=íï++=î,解得:1,2,0a b c ==-=,所以抛物线的解析式为:222(2)(1)1y x x x x x =-=-=--,A 、0a >Q ,抛物线开口向上,故选项错误,不符合题;B 、抛物线的对称轴为直线1x =,在13x <<时,y 随x 增大而增大,故选项错误,不符合题意;C 、方程20ax bx c ++=的根为0和2,故选项正确,符合题意;D 、当0y >时,x 的取值范围是0x <或2x >,故选项错误,不符合题意;故选:C .【点睛】本题考查了二次函数的解析式的求法和函数的图象与性质,解题的关键是:利用待定系数法求出解析式,然后利用函数的图象及性质解答.11.(2021·四川雅安中考)定义:{}()min ,()a ab a b b a b £ì=í>î,若函数()2min 123y x x x =+-++,,则该函数的最大值为()A .0B .2C .3D .4【答案】C【分析】根据题目中所给的运算法则,分两种情况进行求解即可.【详解】令(),y min a b =,当2123x x x +£-++时,即220x x --£时,1y x =+,令22w x x =-- ,则w 与x 轴的交点坐标为(2,0),(-1,0),∴当0w £时,12x -££,∴1y x =+(12x -££),∵y 随x 的增大而增大,∴当x =2时,3y =最大;当2123x x x +>-++时,即220x x -->时,2y x 2x 3=-++,令22w x x =-- ,则w 与x 轴的交点坐标为(2,0),(-1,0),∴当0w >时,2x >或1x <-,∴2y x 2x 3=-++(2x >或1x <-),∵2y x 2x 3=-++的对称轴为x =1,∴当2x >时,y 随x 的增大而减小,∵当x =2时,2y x 2x 3=-++=3,∴当2x >时,y <3;当1x <-,y 随x 的增大而增大,∴当x =-1时,2y x 2x 3=-++=0;∴当1x <-时,y <0;综上,()2min 123y x x x =+-++,的最大值为3.故选C .【点睛】本题是新定义运算与二次函数相结合的题目,解题时要注意分情况讨论,不要漏解.12.(2021·湖北天门中考)若抛物线2y x bx c =++与x 轴两个交点间的距离为4.对称轴为2x =,P 为这条抛物线的顶点,则点P 关于x 轴的对称点的坐标是()A .()2,4B .()2,4-C .()2,4--D .()2,4-【答案】A【分析】设抛物线与x 轴的两个交点坐标分别为12(,0),(,0)x x ,且21x x >,根据“两个交点间的距离为4,对称轴为2x =”建立方程可求出12,x x 的值,再利用待定系数法求出抛物线的解析式,从而可得顶点P 的坐标,然后根据关于x 轴的对称点的坐标变换规律即可得.【详解】解:设抛物线与x 轴的两个交点坐标分别为12(,0),(,0)x x ,且21x x >,由题意得:2112422x x x x -=ìïí+=ïî,解得1204x x =ìí=î,则抛物线与x 轴的两个交点坐标分别为(0,0),(4,0),将点(0,0),(4,0)代入2y x bx c =++得:01640c b c =ìí++=î,解得40b c =-ìí=î,则抛物线的解析式为224(2)4y x x x =-=--,顶点P 的坐标为(2,4)-,则点P 关于x 轴的对称点的坐标是(2,4),故选:A .【点睛】本题考查了二次函数的性质、关于x 轴的对称点的坐标变换规律,熟练掌握二次函数的性质是解题关键.13.(2021·贵州铜仁中考)已知直线2y kx =+过一、二、三象限,则直线2y kx =+与抛物线223y x x =-+的交点个数为()A .0个B .1个C .2个D .1个或2个【答案】C【分析】先由直线2y kx =+过一、二、三象限,求出0k >,通过判断方程2232x x kx -+=+实数解的个数可判断直线2y kx =+与抛物线223y x x =-+交点的个数.【详解】解:∵直线2y kx =+过一、二、三象限,∴0k >.由题意得:2232x x kx -+=+,即()2210x k x -++=,∵△()222440k k k éù=-+-=+ëû>,∴此方程有两个不相等的实数解.∴直线2y kx =+与抛物线223y x x =-+的交点个数为2个.故选:C .【点睛】此题考查了二次函数与一元二次方程的关系,熟练掌握一次函数与二次函数的图象与性质及利用一元二次方程根的判别式求解是解题的关键.14.(2021·四川广元中考)将二次函数2y x 2x 3=-++的图象在x 轴上方的部分沿x 轴翻折后,所得新函数的图象如图所示.当直线y x b =+与新函数的图象恰有3个公共点时,b 的值为( )A .214-或3-B .134-或3-C .214或3-D .134或3-【答案】A【分析】由二次函数解析式2y x 2x 3=-++,可求与x 轴的两个交点A 、B ,直线y x b =+表示的图像可看做是直线y x =的图像平移b 个单位长度得到,再结合所给函数图像可知,当平移直线y x =经过B 点时,恰与所给图像有三个交点,故将B 点坐标代入即可求解;当平移直线y x =经过C 点时,恰与所给图像有三个交点,即直线y x b =+与函数2y x 2x 3=-++关于x 轴对称的函数223y x x =--图像只有一个交点,即联立解析式得到的方程的判别式等于0,即可求解.【详解】解:由2y x 2x 3=-++知,当0y =时,即2230x x -++=解得:121,3x x =-=()()1,0,3,0A B \-作函数y x =的图像并平移至过点B 时,恰与所给图像有三个交点,此时有:03b=+3b \=-平移图像至过点C 时,恰与所给图像有三个交点,即当13x -££时,只有一个交点当13x -££的函数图像由2y x 2x 3=-++的图像关于x 轴对称得到\当13x -££时对应的解析式为223y x x =--即{223y x by x x =+=--,整理得:2330x x b ---=()()234132140b b \D =--´´--=+=214b \=-综上所述3b =-或214-故答案是:A .15.(2021·四川眉山中考)在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为()A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---【答案】A【分析】先求出C 点坐标,再设新抛物线上的点的坐标为(x ,y ),求出它关于点C 对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.【详解】解:当x =0时,y =5,∴C (0,5);设新抛物线上的点的坐标为(x ,y ),∵原抛物线与新抛物线关于点C 成中心对称,由20x x ´-=-,2510y y ´-=-;∴对应的原抛物线上点的坐标为(),10x y --;代入原抛物线解析式可得:()()21045y x x -=--×-+,∴新抛物线的解析式为:245y x x =--+;故选:A .本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.【点睛】本题主要考察二次函数翻折变化、交点个数问题、函数图像平移的性质、二次函数与一元二次方程的关系等知识,属于函数综合题,中等难度.解题的关键是数形结合思想的运用,从而找到满足题意的条件.16.(2021·广西贺州中考)如图,已知抛物线2y ax c =+与直线y kx m =+交于1(3,)A y -,2(1,)B y 两点,则关于x 的不等式2ax c kx m +³-+的解集是( )A .3x £-或1³x B .1x £-或3x ³C .31x -££D .13x -££【答案】D【分析】将要求的不等式抽象成两个函数的函数关系问题,根据二次函数图象的对称性,以及两一次函数图象的关系,求出新的一次函数与二次函数的交点,从而写出抛物线在直线上方部分的x 的取值范围即可.y kx m =+Q 与y kx m =-+关于y 轴对称抛物线2y ax c =+的对称轴为y 轴,因此抛物线2y ax c =+与直线y kx m =+的交点和与直线y kx m =-+的交点也关于y 轴对称设y kx m =-+与2y ax c =+交点为A B ¢¢、,则A ¢2(1,)y -,B ¢1(3,)y Q 2ax c kx m+³-+即在点A B ¢¢、之间的函数图像满足题意2ax c kx m \+³-+的解集为:13x -££故选D .【点睛】本题考查了轴对称,二次函数与不等式,数形结合是数学中的重要思想之一,解决函数问题更是如此.理解y kx m =+与y kx m =-+关于y 轴对称是解题的关键.17.(2021·内蒙古中考)已知二次函数2(0)y ax bx c a =-+¹的图象经过第一象限的点(1,)b -,则一次函数y bx ac =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】根据直角坐标系和象限的性质,得0b <;根据二次函数的性质,得0a c +=,从而得2y bx ac bx a =-=+,通过计算即可得到答案.【详解】∵点(1,)b -在第一象限∴0b ->∴0b <∵二次函数2(0)y ax bx c a =-+¹的图象经过第一象限的点(1,)b -∴b a b c-=-+∴0a c +=∴2y bx ac bx a =-=+当0x =时,2y a =,即y bx ac =-和y 轴交点为:()20,a当0y =时,2a x b =-,即y bx ac =-和x 轴交点为:2,0a b æö-ç÷èø∵20a >,20a b -> ∴一次函数y bx ac =-的图象不经过第三象限故选:C .【点睛】本题考查了二次函数、一次函数、直角坐标系的知识;解题的关键是熟练掌握二次函数、一次函数、直角坐标系的性质,从而完成求解.18.(2021·安徽·中考真题)设抛物线2(1)y x a x a =+++,其中a 为实数.(1)若抛物线经过点(1,)m -,则m =______;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是______.【答案】02【分析】(1)直接将点(1,)m -代入计算即可(2)先根据平移得出新的抛物线的解析式,再根据抛物线顶点坐标得出顶点坐标的纵坐标,再通过配方得出最值【详解】解:(1)将(1,)m -代入2(1)y x a x a =+++得:110m a a =--+=故答案为:0(2)根据题意可得新的函数解析式为:2(1)+2y x a x a =+++由抛物线顶点坐标24-,24b ac b aa æö-ç÷èø得新抛物线顶点的纵坐标为:24(2)(1)4a a +-+2274a a -++=2(21)84a a --++=2(1)84a --+=∵2(1)0a -³∴当a =1时,()218a --+有最大值为8,∴所得抛物线顶点的纵坐标的最大值是8=24故答案为:2【点睛】本题考查将抛物线的顶点坐标、将点代入代入函数解析式、利用配方法求最值是常用的方法19.(2021·贵州遵义·中考真题)如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(1)求该抛物线的解析式;(2)若直线y =kx +23(k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 12+x 22=10时,求k 的值;(3)当﹣4<x ≤m 时,y 有最大值4m 3,求m 的值.【答案】(1)y =―13(x ―2)2+3;(2)k 1=2,k 2=23,;(3)m =―或94.【解析】【分析】(1)把A 0, (2)联立两个函数的解析式,消去y, 得:―13(x ―2)2+3=kx +23,再利用根与系数的关系与x 21+x 22=(x 1+x 2)2―2x 1x 2=10,可得关于k 的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当m ≤2, 2<m <8, m ≥8, 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把Ay =a (x ―2)2+3中,∴4a +3=53,∴a =―13,∴ 抛物线的解析式为:y =―13(x ―2)2+3. (2)联立一次函数与抛物线的解析式得:y =kx +23y =―13(x ―2)2+3 ∴―13(x ―2)2+3=kx +23,整理得:x 2―(4―3k )x ―3=0, ∴x 1+x 2=4―3k,x 1x 2=―3,∵x 21+x 22=(x 1+x 2)2―2x 1x 2=10,∴(4―3k )2―2×(―3)=(4―3k )2+12>0, ∵x 1+x 2=4-3k ,x 1•x 2=-3,∴x 12+x 22=(4-3k )2+6=10,解得:k 1=2,k 2=23,∴k 1=2,k 2=23,(3)∵函数的对称轴为直线x=2,当m <2时,当x=m 时,y 有最大值,4m 3=-13(m-2)2+3,解得∴当m≥2时,当x=2时,y 有最大值,∴4m 3=3,∴m=94,综上所述,m 的值为或94.【点睛】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与x轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.20.(2021·青海·中考真题)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A,B两点,点A在x 轴上,点B在y轴上,C点的坐标为1,0,抛物线y=ax2+bx+c经过点A,B,C.(1)求抛物线的解析式;(2)根据图象写出不等式ax2+(b―1)x+c>2的解集;(3)点P是抛物线上的一动点,过点P作直线AB的垂线段,垂足为Q点,当PQ=P点的坐标.【答案】(1)y=―x2―x+2;(2)―2<x<0;(3)P坐标有P1(―1,2)或P2(―1+或P3(―1――【解析】【分析】(1)先求出A、B两点坐标,再代入抛物线中即可求出解析式;(2)将不等式ax2+(b―1)x+c>2变形为ax2+bx+c>x+2,进而得到二次函数图像在一次函数图像上方即可求解;(3)先证明△PDQ为等腰直角三角形,进而求出PD==1,再分类讨论P点在直线AB上方或下方进而求解.【详解】解:(1)当y=0时,x+2=0,解得x=―2,当x=0时,y=0+2=2,则点A(―2,0),点B(0,2),把A(―2,0),B(0,2),C(1,0),分别代入y=ax2+bx+c得4a ―2b +c =0a +b +c =0c =2解得:a =―1,b =―1,c =2,∴该抛物线的解析式为y =―x 2―x +2.(2)由不等式ax 2+(b ―1)x +c >2,得ax 2+bx +c >x +2,由图像可知,二次函数图像在一次函数图像上方,则不等式ax 2+(b ―1)x +c >2的解集为―2<x <0;(3)如图,作PE ⊥x 轴于点E ,交AB 于点D ,在Rt △AOB 中,∵OA =OB =2,∴∠OAB =45°,∴∠PDQ =∠ADE =45°,在Rt △PDQ 中,∠DPQ =∠PDQ =45°,∴PQ =DQ =∴PD ==1,设点P (m,―m 2―m +2),则点D (m,m +2),当点P 在直线AB 上方时,PD =―m 2―m +2―(m +2)=―m 2―2m ,即―m 2―2m =1,解得m =―1,则―m 2―m +2=2,∴P 点的坐标为:P 1(―1,2).当点P 在直线AB 下方时,PD =m +2―(―m 2―m +2)=m 2+2m ,即m2+2m=1解得m=―1±∴―m2―m+2=±∴P2(―1或P3(―1――,综上所述,符合条件的点P坐标有P1(―1,2)或P2(―1或P3(―1――.【点睛】本题考查了待定系数法求二次函数的解析式,图像法解不等式及等腰直角三角形的性质等,第(3)问中需要分类讨论P点位于直线AB上方或下方的情况.。