【精选3份合集】山西省临汾市2019年中考一模数学试卷有答案含解析
- 格式:doc
- 大小:1.44 MB
- 文档页数:57
2019年临汾市中考数学模拟试卷及答案一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0) B .(1,0) C .(32,0) D .(52,0) 2.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3B .﹣5C .1或﹣3D .1或﹣54.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°5.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A 5B 25C 5D .236.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <7.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )A .40B .30C .28D .208.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-9.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S Vh h=≠,这个函数的图象大致是( ) A . B .C .D .10.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+11.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°12.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是()A.8%B.9%C.10%D.11%二、填空题13.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n个图形中有______个三角形(用含n的式子表示)14.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx =在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.15.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.16.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______17.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).18.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____. 19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.20.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.三、解答题21.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 22.如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?24.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).25.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.(1)求证:△ADC≌△BEC;(2)如果EC⊥BE,证明:AD∥EC.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB 的解析式是y=kx+b , 把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D . 【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.A解析:A 【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A . 考点:由三视图判定几何体.3.A解析:A 【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等, ∴4=|2a +2|,a +2≠3, 解得:a =−3, 故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.4.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.5.A解析:A【解析】【分析】在直角△ABC中,根据勾股定理即可求得AB,而∠B=∠ACD,即可把求sin∠ACD转化为求sin B.【详解】在直角△ABC中,根据勾股定理可得:AB222252AC BC=+=+=()3.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴sin∠ACD=sin∠B5 ACAB==.故选A.【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.6.A解析:A【解析】【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:a b =Q ,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A . 【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.D解析:D 【解析】 【分析】根据菱形对角线互相垂直平分的性质,可以求得BO =OD ,AO =OC ,在Rt △AOB 中,根据勾股定理可以求得AB 的长,即可求出菱形ABCD 的周长. 【详解】∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,BO =OD =3,AO =OC =4,AC ⊥BD , ∴AB ==5,∴菱形的周长为4×5=20. 故选D . 【点睛】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且平分的性质,本题中根据勾股定理计算AB 的长是解题的关键.8.C解析:C 【解析】 【分析】 【详解】 ∵A (﹣3,4), ∴2234+, ∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8, 故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C .考点:菱形的性质;反比例函数图象上点的坐标特征.9.C解析:C 【解析】 【分析】 【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h=≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C.10.D解析:D 【解析】 【分析】首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程. 【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件, ∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D. 【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.11.D解析:D 【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.C解析:C 【解析】 【分析】设月平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x ,根据题意得:240000(1+x )2=290400,解得:x 1=0.1=10%,x 2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-.二、填空题13.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.14.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E∴2x=x+2解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1),∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴2222,OD OA OD =+=故答案为:2 2.【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 15.30【解析】【分析】由图象可以V 甲=9030=3m/sV 追=90120-30=1m/s 故V 乙=1+3=4m/s 由此可求得乙走完全程所用的时间为:12004=300s 则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V 甲==3m/s ,V 追==1m/s ,故V 乙=1+3=4m/s ,由此可求得乙走完全程所用的时间为:=300s ,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V 甲==3m/s ,V 追==1m/s ,∴V 乙=1+3=4m/s ,∴乙走完全程所用的时间为:=300s ,此时甲所走的路程为:(300+30)×3=990m . 此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.16.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB 得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.17.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.18.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为516. 20.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.三、解答题21.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 22.(1)证明见解析;(2)BH =.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC ∥BD ,即可得出结论;(2)先利用相似三角形求出BF ,进而利用勾股定理求出AF ,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.(1)小聪上午7:30从飞瀑出发;(2)点B的实际意义是当小慧出发1.5 h时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1, 10+1=11=11点,∴小聪到达宾馆后,立即以30km/h 的速度按原路返回,那么返回途中他11点遇见小慧.24.风筝距地面的高度49.9m .【解析】【分析】作AM ⊥CD 于M ,作BF ⊥AM 于F ,EH ⊥AM 于H .设AF =BF =x ,则CM =BF =x ,DM =HE =40-x ,AH =x +30-1.5=x +28.5, 在Rt △AHE 中,利用∠AEH 的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD=∠BCE,利用SAS即可证明△ADC≌△BEC;(2)由△ADC≌△BEC可得∠ADC=∠E=90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC⊥DM,∴∠ECD=90°,∴∠ACB=∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD=∠BCE,∵CD=CE,CA=CB,∴△ADC≌△BEC(SAS).(2)由(1)得△ADC≌△BEC,∵EC⊥BE,∴∠ADC=∠E=90°,∴AD⊥DM,∵EC⊥DM,∴AD∥EC.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.。
山西省临汾市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点D 在△ABC 边延长线上,点O 是边AC 上一个动点,过O 作直线EF ∥BC ,交∠BCA 的平分线于点F ,交∠BCA 的外角平分线于E,当点O 在线段AC 上移动(不与点A ,C 重合)时,下列结论不一定成立的是( )A .2∠ACE=∠BAC+∠BB .EF=2OC C .∠FCE=90°D .四边形AFCE是矩形 2.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A .12B .11C .10D .93.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:34.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为 ( )A .149×106千米2B .14.9×107千米2C .1.49×108千米2D .0.149×109千25.如图,点A 、B 、C 在⊙O 上,∠OAB=25°,则∠ACB 的度数是( )A .135°B .115°C .65°D .50°6.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++B .2(1)4y x =--+C .2(1)2y x =--+D .2(1)4y x =-++7.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1,2C .1,1,3D .1,2,39.如图所示,点E 是正方形ABCD 内一点,把△BEC 绕点C 旋转至△DFC 位置,则∠EFC 的度数是( )A .90°B .30°C .45°D .60°10.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根11.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <012.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为______.14.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m 的值是______.15.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.16.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).17.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.18.已知函数y=1x-1,给出一下结论:①y的值随x的增大而减小②此函数的图形与x轴的交点为(1,0)③当x>0时,y的值随x的增大而越来越接近-1④当x≤12时,y的取值范围是y≥1以上结论正确的是_________(填序号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E 、F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°,求此时BQ 的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m ,AE=400m ,ED=285m ,CD=340m ,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长,若不存在,请说明理由.20.(6分)(1)化简:221m 2m 11m 2m 4++⎛⎫-÷ ⎪+-⎝⎭(2)解不等式组31234(1)9x x x +⎧>+⎪⎨⎪+->-⎩.21.(6分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.22.(8分)已知a 2+2a=9,求22212321121a a a a a a a +++-÷+--+的值. 23.(8分) (1)解方程: +=4(2)解不等式组并把解集表示在数轴上:.24.(10分)如图,∠AOB=90°,反比例函数y=﹣2x(x<0)的图象过点A(﹣1,a),反比例函数y=kx(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=kx于另一点C,求△OBC的面积.25.(10分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.26.(12分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.27.(12分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)(2)连接AP 当B Ð为多少度时,AP 平分CAB ∠.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B ,EF=2OC ,∠FCE=90°,进而得到结论.【详解】解:∵∠ACD 是△ABC 的外角,∴∠ACD=∠BAC+∠B ,∵CE 平分∠DCA ,∴∠ACD=2∠ACE ,∴2∠ACE=∠BAC+∠B ,故A 选项正确;∵EF ∥BC ,CF 平分∠BCA ,∴∠BCF=∠CFE ,∠BCF=∠ACF ,∴∠ACF=∠EFC ,∴OF=OC ,同理可得OE=OC ,∴EF=2OC ,故B 选项正确;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=12×180°=90°,故C选项正确;∵O不一定是AC的中点,∴四边形AECF不一定是平行四边形,∴四边形AFCE不一定是矩形,故D选项错误,故选D.【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质.2.A【解析】【分析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.【详解】∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数=36030︒︒=1.故选:A.【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.3.A【解析】【分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.4.C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:149 000 000=1.49×2千米1.故选C.把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,n为整数.因此不能写成149×106而应写成1.49×2.5.B【解析】【分析】由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= 12∠AOB,然后根据圆内接四边形的性质求解.【详解】解:在圆上取点 P ,连接 PA 、 PB. ∵OA=OB ,∴∠OAB=∠OBA=25°,∴∠AOB=180°−2×25°=130°,∴∠P=12∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键.6.B【解析】【分析】把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.【详解】解:∵y=x2+2x+3=(x+1)2+2,∴原抛物线的顶点坐标为(-1,2),令x=0,则y=3,∴抛物线与y轴的交点坐标为(0,3),∵抛物线绕与y轴的交点旋转180°,∴所得抛物线的顶点坐标为(1,4),∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].故选:B.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.7.D【解析】【分析】根据题意得出△ABE ∽△CDE ,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m ,∵△ABC ∽△EDC , ∴, 即,解得:AB =6,故选:D .【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE ∽△CDE 是解答此题的关键. 8.D【解析】【分析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B 、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C 、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B 、∵12+122)2,是等腰直角三角形,故选项错误;C 2231-2()=12,可知是顶角120°,底角30°的等腰三角形,故选项错误; D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D .9.C【解析】【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF ,然后求出△CEF 是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD 是正方形,∴∠BCD=90°,∵△BEC 绕点C 旋转至△DFC 的位置,∴∠ECF=∠BCD=90°,CE=CF ,∴△CEF 是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故CEF ∆ 为等腰直角三角形.10.D【解析】【分析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+V ==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.【解析】【分析】【详解】解:∵二次函数的图象开口向上,∴a>1.∵对称轴在y轴的左边,∴b2a-<1.∴b>1.∵图象与y轴的交点坐标是(1,﹣2),过(1,1)点,代入得:a+b﹣2=1.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,∵b>1,∴b=2﹣a>1.∴a<2.∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.故选A.【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.12.A【解析】【分析】原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1,故选A.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.64.410⨯【解析】试题分析:将4400000用科学记数法表示为:4.4×1.故答案为4.4×1.考点:科学记数法—表示较大的数.14.258或5或1.【解析】【分析】根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可.解:如图(1)当在△ADE 中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m 个单位使得E 、C 点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE 、AD 为腰使ADE 为等腰三角形,设平移了m 个单位:则223(m-4)+,AD=m ,得:2223(m-4)=m +,得m=258, 综上所述:m 为258或5或1, 所以答案:258或5或1. 【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.15.13【解析】【分析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【详解】∵共有15个方格,其中黑色方格占5个, ∴这粒豆子落在黑色方格中的概率是515=13, 故答案为13. 【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.16.>;【解析】【详解】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,故答案为>17.这一天的最高气温约是26°【解析】【分析】根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【详解】解:根据图象可得这一天的最高气温约是26°,故答案为:这一天的最高气温约是26°.【点睛】本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.18.②③【解析】(1)因为函数11yx=-的图象有两个分支,在每个分支上y随x的增大而减小,所以结论①错误;(2)由110x-=解得:1x=,∴11yx=-的图象与x轴的交点为(1,0),故②中结论正确;(3)由11yx=-可知当x>0时,y的值随x的增大而越来越接近-1,故③中结论正确;(4)因为在11yx=-中,当=-1x时,2y=-,故④中结论错误;综上所述,正确的结论是②③.故答案为:②③.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1;(1);(4)(【解析】【分析】(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.【详解】(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴227.43∴BP′=27.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:7综上所述:在等腰三角形△ADP中,若PA=PD,则BP=1;若DP=DA,则7;若AP=AD,则BP=7.(1)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=12 BC.∵BC=11,∴EF=4.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=4,∴EF与BC之间的距离为4.∴OQ=4∴OQ=OE=4.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴3∴3∴当∠EQF=90°时,BQ的长为3.(4)在线段CD上存在点M,使∠AMB=40°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP 与AK 交于点O ,以点O 为圆心,OA 为半径作⊙O ,过点O 作OH ⊥CD ,垂足为H ,如图③.则⊙O 是△ABG 的外接圆,∵△ABG 是等边三角形,GP ⊥AB ,∴AP=PB=12AB . ∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG 是等边三角形,AK ⊥BG ,∴∠BAK=∠GAK=40°.∴OP=AP•tan40° =145×33∴3∴OH <OA .∴⊙O 与CD 相交,设交点为M ,连接MA 、MB ,如图③.∴∠AMB=∠AGB=40°,3.∵OH ⊥CD ,OH=6,3∴2222=(903)150OM OH --2∵AE=200,3∴3.若点M 在点H 的左边,则32.∵32>420,∴DM >CD .∴点M 不在线段CD 上,应舍去.若点M 在点H 的右边,则.∵420,∴DM <CD .∴点M 在线段CD 上.综上所述:在线段CD 上存在唯一的点M ,使∠AMB=40°,此时DM 的长为()米.【点睛】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键. 20.(1)21m m -+;(2)﹣2<x<1 【解析】【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】 (1)原式=21(2)(2)2m 2(1)1m m m m m m ++--⋅=+++; (2)不等式组整理得:12x x <⎧⎨>-⎩, 则不等式组的解集为﹣2<x<1.【点睛】此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.21. (1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解析】【分析】(1)根据图1找出8、9、10℃的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.【详解】(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,补全统计图如图;(2)根据条形统计图,7℃出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,所以,中位数为12(7+8)=7.5;平均数为110(6×2+7×3+8×2+10×2+11)=110×80=8,所以,方差=110[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=110(8+3+0+8+9),=110×28,=2.8;(3)6℃的度数,210×360°=72°,7℃的度数,310×360°=108°,8℃的度数,210×360°=72°,10℃的度数,210×360°=72°,11℃的度数,110×360°=36°,作出扇形统计图如图所示.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.22.22(1)a +,15. 【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:22212321121a a a a a a a +++-÷+--+=()()()()()211211112a a a a a a a -+-⨯++-++ =()21111a a a --++ =()221a +, ∵a 2+2a=9,∴(a+1)2=1.∴原式=21105=. 23.(1)x=1(2)4<x≤【解析】【分析】(1)先将整理方程再乘以最小公分母移项合并即可;(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可.【详解】(1)+=4,方程整理得:=4, 去分母得:x ﹣5=4(2x ﹣3),移项合并得:7x=7,解得:x=1;经检验x=1是分式方程的解;(2)解①得:x≤解②得:x >4 ∴不等式组的解集是4<x≤,在数轴上表示不等式组的解集为:.【点睛】本题考查了解一元二次方程组与分式方程,解题的关键是熟练的掌握解一元二次方程组与分式方程运算法则.24.(1)a=2,k=8(2)OBC S V =1.【解析】分析:(1)把A (-1,a )代入反比例函数2x得到A (-1,2),过A 作AE ⊥x 轴于E ,BF ⊥x 轴于F ,根据相似三角形的性质得到B (4,2),于是得到k=4×2=8; (2)求的直线AO 的解析式为y=-2x ,设直线MN 的解析式为y=-2x+b ,得到直线MN 的解析式为y=-2x+10,解方程组得到C (1,8),于是得到结论.详解:(1)∵反比例函数y=﹣2x (x <0)的图象过点A (﹣1,a ), ∴a=﹣21-=2, ∴A (﹣1,2),过A 作AE ⊥x 轴于E ,BF ⊥⊥x 轴于F ,∴AE=2,OE=1,∵AB ∥x 轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF ,∴△AEO ∽△OFB , ∴AE OE OF BF=,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解2108y xyx=-+⎧⎪⎨=⎪⎩得,1482x xy y=-=⎧⎧⎨⎨==⎩⎩或,∴C(1,8),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=12⨯5×10﹣12×10×1﹣12×5×2=1.点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.25.(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E 的圆心角度数是360°×1602000=28.8°, (3)D 选项的人数为2000×25%=500, 补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.开口方向:向上;点坐标:(-1,-3);称轴:直线1x =-.【解析】【分析】将二次函数一般式化为顶点式,再根据a 的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【详解】解:()2221y x x =+-, ()222121y x x =++--,()2213y x =+-,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线1x =-.【点睛】熟练掌握将一般式化为顶点式是解题关键.27.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.。
最新山西省2019年中考模拟数学试卷分满分120 时间120分钟一分)36、选择题:(每小题3分,共1.﹣8的相反数是()D. ﹣8B.8C. A.2.下列变形正确的是()变形得.A.变形得B C变形得.变形得.D3.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是(). D. B . C A.4.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()D.平均数 C.中位数 A.方差 B.众数5.下列计算中,正确的是()A.a+a11=a12B.5a﹣4a=aC.a6÷a5=1.D.(a2)3=a56.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( )A.精确到十分位,B.精确到个位,C.精确到百位,D.精确到千位6. )分式方程的解是( D. A.﹣ 2C. ﹣ B.﹣7.下列说法正确的是()A.任何数都有算术平方根;B.只有正数有算术平方根;C.0和正数都有算术平方根;D.负数有算术平方根。
8.一定质量的干木,当它的体积V=4 m3时,它的密度ρ=0.25×103 kg/m3,则ρ与V的函数关系式是( )1000100ρρ== D. A.ρ=1000V B.ρ=V+1000 C.VV8.在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是( )A.(3,-3)B.(-3,3)C.(3,3)或(-3,-3)D.(3,-3)或(-3,3)9.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()D. A. B. C..10.如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()D.70°B.60°A.55° C.65°11.则,相交于一点O,若∠1=42°⊥GH,CD⊥GH,直线CD,EF,GH如图,已知AB2等于( ) ∠A.130° B.138° C.140°D.142°12.ABE,将△∠B=45°,AE为BC边上的高如图,在边长为2的菱形ABCD中,的长度为FF,则B′CD所在直线翻折得△AB′E,AB′与边交于点AE沿() D.2 ﹣2 A.1 B. C.2-二 4分,共16分)、填空题:(每小题13.12a2b+12ab2= 3a3﹣分解因式:14.元,为了响应国家解决老百姓看病贵的号召,经过某药品原价每盒25元,则该药品平均每次降价的百分率16连续两次降价,现在售价每盒是.15.的长为O5的⊙上,如果底边BC已知等腰△ABC的三个顶点都在半径为) 8,那么BC边上的高为(16.为边作AG,是正方形ABCD对角线CA的延长线上任意一点以线段,如图点G.AB=,AG=1,则EB= H.若.和一个正方形AEFG,线段EBGD相交于点14分)、计算题:(每小题7分,共三17.18. 解不等式组:,并在数轴上表示不等式组的解集.40分,共分)四、解答题:(每题1019.9人无法安排;若每室住8人,则有12学校安排学生住宿,若每室住个房间.这个学校的住宿生有多少人?宿舍有多少房间?人,可空出220.)班部分同学接受一次内容为“最适合自己的考前减压方1某校初三(式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了两个不完整的统计图,请根据图中的信息解答下列问题.、图2图1 1 ()班接受调查的同学共有多少名;并计算扇形统计图中的“体育活)补全条形统计图,(2 C”所对应的圆心角度数;动名同学中有三名男生和两5(3)若喜欢“交流谈心”的名同学中任选两名同学进行交流,直接写出选取的两5名女生;老师想从名同学都是女生的概率..21.°,当光线与地面的夹角是22AB的后面有一建筑物CD如图,某办公楼,而当光线与地面夹角是米的影子CE时,办公楼在建筑物的墙上留下高2C,B,F有在地面上的影子F与墙角C25米的距离(45°时,办公楼顶A在一条直线上).(1)求办公楼AB的高度;之间的距离.(参考数E之间挂一些彩旗,请你求出A,2)若要在A,E()°≈,tan22°≈0.4据:sin22°≈,cos2215316822.上任是对角线BD如图,在正方形ABCD中,E ,连接AE.>BEDE),CE的延长线交AD于点F意一点(∽△FDE;(1)求证:△ABE 1的值.BE=3DE(2 )当时,求tan∠分)五、综合题:(本题1423.),B、B(A左右0)y=﹣0.5 (x+m)(x﹣4)(m>交x轴于点A,如图抛物线. B过点的直线y=0.5x+b交y轴于点Dy交轴于点C,(1)求点D的坐标;.(2)把直线BD沿x轴翻折,交抛物线第二象限图象上一点E,过点E 作x轴垂线,垂足为点F,求AF的长;(3)在(2)的条件下,点P为抛物线上一点,若四边形BDEP为平行四边形,求m的值及点P的坐标.参考答案1.D2.C3.C4.B5.C6.A7.C8.D9.D 10.A 11.C12.B13.C 14.C15.答案为3a(a﹣2b)2 . 16.答案为百分率为20%. 17.答案为8或2.答案为:; 18.19.原式=-49+18-54=-85; 20.答案为:-2<x≤1.21.【解答】解:宿舍有x间房,则:8x+12=9(x﹣2),解得x=30,∴8x+12=252.答:这个学校的住宿生有252人,宿舍有30个房间.22.【解答】解:(1)由题意可得总人数为10÷20%=50 名;(2)听音乐的人数为50﹣10﹣15﹣5﹣8=12名,“体育活动C”所对应的圆心角度数108°,补全统计图得:.(3)画树状图得:∵共有20种等可能的结果,选出都是女生的有2种情况,∴选取的两名同学都是女生的概率=0.1.1)如图, 23.试题解析:(过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=AM:ME,则5(x-2)=2(x+25),解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=ME:AE.∴ME=AEcos22°,即A、E之间的距离约为48m.24.【解答】(1)证明:在正方形ABCD中,∵AB=BC,∠ABE=∠CBE=∠FDE=45°,中,,∴△ABE≌△CBE,∴∠CBEBAE=∠ECB,在△ABE与△∵AD∥BC,∴∠DFE=∠BCE,∴∠BAE=∠DFE,∴△ABE∽△FDE;BO=OD=OC=a,,aa设正方形ABCD的边长为,∴BD=,交2()连接ACBD 于O.=. 1=tan∠ BE=3DE,∴OEC=OE=OD=a,∴tan∠∵25.【解答】解:(1)∵抛物线y=﹣0.5(x+m)(x﹣4)(m>0)交x 轴于点A、B(A左B右)当y=0时,0=﹣0.5(x+m)(x﹣4),∴x1=﹣m,x2=4∴A(﹣m,0),B(4,0)∵点B在直线y=0.5x+b上,∴4×0.5+b=0,b=﹣2∴直线y=0.5x﹣2,当x=0时y=﹣2∴D(0,﹣2),(2)设E(t,﹣0.5(t+m)(t﹣4)),∵EF⊥x轴,∴∠EFO=90° EF∥y轴,∴F(t,0),由(1)可知D(0,﹣2)B(4,0),∴OD=2 OB=4,∴在Rt△BDO 中,=,tan∠DBO=∵直线BD沿x轴翻折得到BE,∴∠DBO=∠EBF,∴tan∠DBO=tan∠EBF,,∴ =0.5,∴BF=2EF,∴EF=﹣0.5(t+m)∴tan∠EBF=0.5(t﹣4)BF=4﹣t∴4﹣t=2×[﹣0.5(t+m)(t﹣4)]∴t+m=1,∴AF=t﹣(﹣m)=t+m=1,∴AF=1,(3)如图,.轴于点yEP交作y轴的平行线交于点Q 设x过点E作轴的平行线,过点P MDB EP=DB∥是平行四边形∴EP ∵四边形BDEP EPQ,EPQ,∴∠ODB=∠EMD=∥y轴,∴∠∠ODB∠EMD=∠∵EP∥DB PQPQ=OD=2 EQ=OB=4,≌△DBO,∴∵∠PQE=∠DOB=90° EP=BD,∴△PEQ),+24)t+m)(t﹣,﹣(t+m)t﹣4)),∴P(t+40.5(0.5E∵(t,﹣()4)(t﹣﹣+2)在抛物线 y=0.5(t+m)))(,﹣∵P(t+40.5(t+mt ﹣4.。
2019学年山西省九年级下学期中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 在﹣,0,﹣2,,1这五个数中,最小的数为()A.0 B.﹣ C.﹣2 D.2. 四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15810用科学记数法表示为()A.1.581× B.1.581×C.15.81× D.15.81×3. 下列四个图案中,属于中心对称图形的是()A. B. C. D.4. 不等式组的解集在数轴上表示正确的是()A. B.C. D.5. 下面的几何体中,主视图为三角形的是()A. B. C. D.6. 下列运算正确的是()A. B.+=C. D.x÷(﹣xy)=﹣7. 如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°8. 甲乙两组数据的频数直方图如下,其中方差较大的一组是()A.甲 B.乙 C.一样大 D.不能确定9. 如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC 延长线上的点D′处,点D经过的路径为,则图中阴影部分的面积是()A.﹣1 B.﹣C.﹣ D.π﹣210. 如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC 上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C.D.二、填空题11. 计算:= .12. 因式分【解析】 4﹣12+9a= .13. 如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为.14. 小明玩一种挪动珠子的游戏,每次挪动珠子的颗数与对应所得的分数如下表:15. 挪动珠子数(颗)23456…对应所得分数26122030…td16. 如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是.17. 如图是二次函数y=a+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,),(,)是抛物线上两点,则>,其中正确的序号是.三、解答题18. (1)计算:-8sin45°-(2)先化简,然后x在﹣1、0、1、2四个数中任选一个合适的数代入求值.19. 如图,已知△ABC中AB=AC.(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠E=∠ACF.20. 如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=10,求线段BF的长.21. 某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?22. 已知直线y=﹣3x与双曲线y=交于点P (﹣1,n).(1)求m的值;(2)若点A (,),B(,)在双曲线y=上,且<<0,试比较,的大小.23. 如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).24. 如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC= AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.25. 如图,在平面直角坐标系中,抛物线y=a+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PB Q的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
2019届山西省中考模拟试卷数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 在下列四个数中,比0小的数是()A.0.2 B.|﹣1| C. D.2. “珍惜生命,注意安全”是一永恒的话题.在现代化的城市,交通安全晚不能被忽视,下列几个图形是国际通用的几种交通标志,其中不是中心对称图形是()A. B.C. D.3. 如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图(1)变到图(2),不改变的是()A.主视图 B.主视图和左视图C.主视图和俯视图 D.左视图和俯视图4. 一条直线y=kx+b,其中k+b=﹣5,kb=6,那么该直线经过()A.第二、四象限 B.第一、二、三象限C.第一、三象限 D.第二、三、四象限5. 在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合 B.转化思想 C.模型思想 D.特殊到一般6. 如图,已知E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,按比例尺2:1把△EFO缩小,则E点对应点E′的坐标为()A.(2,1) B.(,) C.(2,﹣1) D.(2,﹣)7. 如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4 B.4+4 C.8﹣4 D. +18. 正六边形的边心距为,则该正六边形的边长是()A. B.2 C.3 D.29. 某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:10. 候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392<td><td><td><td><td><td>td11. 如图,正方形ABCD的对角线BD长为,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1 B.2 C.3 D.4二、填空题12. 如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 度.13. 如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于.14. 请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x=(写出一个x的值即可).15. 某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.16. 如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= .17. 如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下列四个结论:①AE=6cm;②sin∠EBC=;③当0<t≤10时,y=t2;④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是.三、解答题18. (1)计算:(﹣2)2sin60°﹣(﹣)•﹣(﹣)0;(2)已知x,y满足方程组,求2x﹣2y的值.19. 已知A=.(1)化简A;(2)当x满足不等式组,且x为奇数时,求A的值.20. (1)如图,在△ABC中用直尺和圆规作AB边上的高CD(保留作图痕迹,不写作法).(2)图中的实线表示从A到B需经过C点的公路,且AC=10km,∠CAB=25°,∠CBA=37°.现因城市改造需要在A、B两地之间改建一条笔直的公路.问:公路改造后比原来缩短了多少千米?(参考数据:sin25°≈0.41,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75,结果精确到0.01)21. 暑假快要到了,某市准备组织同学们分别到A、B、C、D四个地方进行夏令营活动,前往四个地方的人数如图所示:(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数.(2)若把同学们去A、B、C、D四个地点的人数情况绘制成扇形统计图,则“去B地”的扇形圆心角为多少?(3)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?说明理由.22. 如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.23. 如图,一次函数y1=mx+n的图象分别交x轴、y轴于A、C两点,交反比例函数y2=(k>0)的图象于P、Q两点.过点P作PB⊥x轴于点B,若点P的坐标为(2,2),△PAB的面积为4.(1)求一次函数与反比例函数的解析式.(2)当x为何值时,y1<y2?24. 问题情境:如图将边长为8cm的正方形纸片ABCD折叠,使点B恰好落在AD边的中点F处,折痕EG分别交AB、CD于点E、G,FN与DC交于点M,连接BF交EG于点P.独立思考:(1)AE= cm,△FDM的周长为 cm;(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.拓展延伸:如图2,若点F不是AD的中点,且不与点A、D重合:①△FDM的周长是否发生变化,并证明你的结论.②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).25. 如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
山西省临汾市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2×(﹣5)的值是()A.﹣7 B.7 C.﹣10 D.102.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形3.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位4.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:35.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=906.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B6cm C.2.5cm D5cm7.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:A→C→B;乙的路线为:A→D→E→F→B,其中E为AB的中点;丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为()A .甲=乙=丙B .甲<乙<丙C .乙<丙<甲D .丙<乙<甲8.两个有理数的和为零,则这两个数一定是( )A .都是零B .至少有一个是零C .一个是正数,一个是负数D .互为相反数 9.下列实数中是无理数的是( )A .227B .πC .9D .13- 10.如图,△ABC 中,AB=AC ,BC=12cm ,点D 在AC 上,DC=4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E 、F 分别落在边AB 、BC 上,则△EBF 的周长是( )cm .A .7B .11C .13D .1611.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .12.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,AB=AC ,以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD ,若∠A=32°,则∠CDB 的大小为_____度.14.要使式子2x -有意义,则x 的取值范围是__________.15.若反比例函数2k y x-=的图象位于第二、四象限,则k 的取值范围是__. 16.如果a 2﹣b 2=8,且a+b=4,那么a ﹣b 的值是__.17.一个正多边形的一个外角为30°,则它的内角和为_____.18.如图,四边形ABCD 是菱形,☉O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE ,若∠D=78°,则∠EAC=________°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=m x (m≠0)分别交于点P ,与y 轴、x 轴分别交于点A 和点B ,且cos ∠ABO=5,过P 点作x 轴的垂线交于点C ,连接AC , (1)求一次函数的解析式.(2)若AC 是△PCB 的中线,求反比例函数的关系式.20.(6分)求抛物线y=x 2+x ﹣2与x 轴的交点坐标.21.(6分)抛物线23y ax bx a =+-经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .求此抛物线的解析式;已知点D (m,-m-1) 在第四象限的抛物线上,求点D 关于直线BC 对称的点D’的坐标;在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使PCB CBD ∠=∠,若存在,请求出P 点的坐标;若不存在,请说明理由.22.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.23.(8分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.成绩分组组中值频数25≤x<30 27.5 430≤x<35 32.5 m35≤x<40 37.5 2440≤x<45 a 3645≤x<50 47.5 n50≤x<55 52.5 4(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?24.(10分)如图所示,一次函数y=kx+b与反比例函数y=mx的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.25.(10分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?26.(12分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)(1)求抛物线的表达式;(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.27.(12分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:a=%,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据有理数乘法法则计算.【详解】﹣2×(﹣5)=+(2×5)=10.故选D.【点睛】考查了有理数的乘法法则,(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;(2) 任何数同0相乘,都得0;(3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4) 几个数相乘,有一个因数为0时,积为0.2.C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.3.D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.4.A【解析】【分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.5.A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.6.D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.详解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,22224845BE EC+=+=∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴OF OCBE BC=,即445OF=解得:5故选D.点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.7.A【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.∵AE=BE=12AB,∴AD=EF=12AC,DE=BE=12BC,∴甲=乙.图3与图1中,三个三角形相似,所以JKAI=JBAJ=BK AIIJ AC,=AJAB=IJBC.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故选A.点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.8.D【解析】解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.9.B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、227是分数,属于有理数;B、π是无理数;C9,是整数,属于有理数;D、-13是分数,属于有理数;故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.C【解析】【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【详解】∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC ,BC=12cm ,∴∠B=∠C ,BF=5cm ,∴∠B=∠BFE ,∴BE=EF=4cm ,∴△EBF 的周长为:4+4+5=13(cm ).故选C .【点睛】此题主要考查了平移的性质,根据题意得出BE 的长是解题关键.11.A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A 、此图形是中心对称图形,不是轴对称图形,故此选项正确;B 、此图形不是中心对称图形,是轴对称图形,故此选项错误;C 、此图形是中心对称图形,也是轴对称图形,故此选项错误;D 、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A .点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴. 12.B【解析】试题解析:方差越小,波动越小.22,A B s s Q数据B 的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC 中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=12∠ACB=1°.【详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=12∠ACB=1°,故答案为1.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.14.x2≤【解析】【分析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.15.k>1【解析】【分析】根据图象在第二、四象限,利用反比例函数的性质可以确定1-k的符号,即可解答.【详解】∵反比例函数y=2kx-的图象在第二、四象限,∴1-k<0,∴k>1.故答案为:k>1.【点睛】此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.16.1.【解析】【分析】根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【详解】∵a1-b1=8,∴(a+b)(a-b)=8,∵a+b=4,∴a-b=1,故答案是:1.【点睛】考查了平方差,关键是掌握(a+b)(a-b)=a1-b1.17.1800°【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.考点:多边形内角与外角.18.1.【解析】【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=12(180°-∠D)=51°,又∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案为:1°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(2)y=2x+2;(2)y=4x.【解析】【分析】(2)由cos∠ABO=5tan∠ABO=2,从而可得到k=2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m 的值.【详解】(2)∵cos ∠ ∴tan ∠ABO=2.又∵OA=2∴OB=2.B(-2,0)代入y=kx+2得k=2∴一次函数的解析式为y=2x+2.(2)当x=0时,y=2,∴A (0,2).当y=0时,2x+2=0,解得:x=﹣2.∴B (﹣2,0).∵AC 是△PCB 的中线,∴P (2,4).∴m=xy=2×4=4,∴反例函数的解析式为y=4x. 【点睛】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k =tan ∠ABO 是解题的关键.20.(1,0)、(﹣2,0)【解析】试题分析:抛物线与x 轴交点的纵坐标等于零,由此解答即可.试题解析:解:令0y =,即220x x +-=.解得:11x =,22x =-.∴该抛物线与x 轴的交点坐标为(-2,0),(1,0).21.(1)2y x 2x 3=-- (2)(0,-1)(3)(1,0)(9,0)【解析】【分析】(1)将A (−1,0)、C (0,−3)两点坐标代入抛物线y =ax 2+bx−3a 中,列方程组求a 、b 的值即可; (2)将点D (m ,−m−1)代入(1)中的抛物线解析式,求m 的值,再根据对称性求点D 关于直线BC 对称的点D'的坐标;(3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.【详解】解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,得3033a b aa--=⎧⎨-=-⎩,解得12 ab=⎧⎨=-⎩∴y=x2−2x−3;(2)将点D(m,−m−1)代入y=x2−2x−3中,得m2−2m−3=−m−1,解得m=2或−1,∵点D(m,−m−1)在第四象限,∴D(2,−3),∵直线BC解析式为y=x−3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,∴点D关于直线BC对称的点D'(0,−1);(3)存在.满足条件的点P有两个.①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,∵直线BD解析式为y=3x−9,∵直线CP过点C,∴直线CP的解析式为y=3x−3,∴点P坐标(1,0),②连接BD′,过点C作CP′∥BD′,交x轴于P′,∴∠P′CB=∠D′BC,根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直线BD′的解析式为113y x=-∵直线CP′过点C,∴直线CP′解析式为133y x=-,∴P′坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0).【点睛】本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.22.(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】【分析】(1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b 的值,可得抛物线L的表达式;(2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC 内(包括△OBC的边界)时h的取值范围.(3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,通过证明△BNP≌△PMQ求解即可.【详解】(1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,9303b cc-++=⎧⎨=⎩解得:23 bc=⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,设原抛物线的顶点为D,∵点B(3,0),点C(0,3).易得BC的解析式为:y=﹣x+3,当x=1时,y=2,如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范围是2≤h≤4;(3)设P(m,﹣m2+2m+3),如图2,△PQB是等腰直角三角形,且PQ=PB,过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(图3)或m2=1,∴P(1,4)或(0,3).【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明△BNP≌△PMQ.23.(1)详见解析(2)2400【解析】【分析】(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.【详解】解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=100﹣4﹣12﹣24﹣36﹣4=1.补全频数分布直方图如下:(2)∵优秀的人数所占的比例是:=0.6,∴该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)24.(1)反比例函数解析式为y=8x,一次函数解析式为y=x+2;(2)△ACB的面积为1.【解析】【分析】(1)将点A坐标代入y=mx可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【详解】解:(1)将点A(2,4)代入y=mx,得:m=8,则反比例函数解析式为y=8x,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:2442k bk b+=⎧⎨-+=-⎩,解得:12kb=⎧⎨=⎩,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=12×2×1=1.【点睛】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.25.(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.26.(1)y=﹣12x2+32x+2;(2)满足条件的点P的坐标为(32,54)或(32,﹣54)或(32,5)或(32,﹣5).【解析】【分析】(1)利用待定系数法求抛物线的表达式;(2)使△BMP与△ABD相似的有三种情况,分别求出这三个点的坐标. 【详解】(1)∵抛物线与x轴交于点A(﹣1,0),B(4,0),∴设抛物线的解析式为y=a(x+1)(x﹣4),∵抛物线与y轴交于点C(0,2),∴a×1×(﹣4)=2,∴a=﹣12,∴抛物线的解析式为y=﹣12(x+1)(x﹣4)=﹣12x2+32x+2;(2)如图1,连接CD,∵抛物线的解析式为y=﹣12x2+32x+2,∴抛物线的对称轴为直线x=32, ∴M (32,0),∵点D 与点C 关于点M 对称,且C (0,2), ∴D (3,﹣2),∵MA=MB ,MC=MD ,∴四边形ACBD 是平行四边形,∵A (﹣1,0),B (4,0),C (3,﹣22),∴AB 2=25,BD 2=(4﹣1)2+22=5,AD 2=(3+1)2+22=20, ∴AD 2+BD 2=AB 2,∴△ABD 是直角三角形,∴∠ADB=90°,设点P (32,m ),∴MP=|m|,∵M (32,0),B (4,0),∴BM=52,∵△BMP 与△ABD 相似,∴①当△BMP ∽ADB 时, ∴BMMPAD BD =,5=∴m=±54,∴P (32,54)或(32,﹣54),②当△BMP ∽△BDA 时,BMMPBD AD =,5=∴m=±5,∴P (32,5)或(32,﹣5),即:满足条件的点P 的坐标为P (32,54)或(32,﹣54)或(32,5)或(32,﹣5).【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.27.(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
山西省临汾市2019年中考数学试卷(一)(解析版)一、选择题,每小题3分,共30分1.要使二次根式有意义,x 必须满足( )A .x ≤2B .x ≥2C .x >2D .x <22.已知x=1是关于x 的一元二次方程2x 2﹣x +a=0的一个根,则a 的值是( ) A .2B .﹣2C .1D .﹣1 3.下列式子为最简二次根式的是( )A .B .C .D .4.我们解一元二次方程3x 2﹣6x=0时,可以运用因式分解法,将此方程化为3x (x ﹣2)=0,从而得到两个一元一次方程:3x=0或x ﹣2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A .转化思想B .函数思想C .数形结合思想D .公理化思想 5.下列各式计算正确的是( )A .+=B .4﹣3=1C .2×=6D .÷=26.三角形两边的长是3和4,第三边的长是方程x 2﹣12x +35=0的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对7.若=2﹣a ,则a 的取值范围是( )A .a=2B .a >2C .a ≥2D .a ≤28.若关于x 的方程x 2+3x +a=0有一个根为﹣1,则另一个根为( )A .﹣2B .2C .4D .﹣39.若(m ﹣1)2+=0,则m +n 的值是( )A .﹣1B .0C .1D .210.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m二、填空题,每小题3分,共18分11.若实数a满足=2,则a的值为.12.写一个你喜欢的实数m的值,使关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.13.若二次根式是最简二次根式,则最小的正整数a=.14.如图,是一个简单的数值运算程序.则输入x的值为.15.三角形的三边长分别为3、m、5,化简﹣=.16.将一些半径相同的小圆按如图的规律摆放,请仔细观察,第个图形有94个小圆.三、解答题17.计算:(1)9+5﹣3;(2)2;(3)()2019(﹣)2019.18.选用合适的方法解下列方程(1)(x+4)2=5(x+4);(2)(x+3)2=(1﹣2x)2.19.如图,面积为48cm2的正方形四个角是面积为3cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?(精确到0.1)20.小明同学在解一元二次方程时,他是这样做的:解一元二次方程3x2﹣8x(x﹣2)=0…第一步3x﹣8x﹣2=0…第二步﹣5x﹣2=0…第三步﹣5x=2…第四步x=﹣…第五步(1)小明的解法从第步开始出现错误;此题的正确结果是.(2)用因式分解法解方程:x(2x﹣1)=3(2x﹣1).21.交警通常根据刹车后轮滑行的距离来测算车辆行驶的速度,所用的经验公式是u=16.其中u表示车速(单位:km/h),d表示刹车距离(单位:m),f表示摩擦系数.在一次交通事故中,测得d=20m,f=1.44,而发生交通事故的路段限速为80km/h,肇事汽车是否违规超速行驶?说明理由.(参考数据:≈1.4,≈2.2)22.满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?23.观察下列各式及其验证过程:(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反应的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并说明它成立.24.如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形水池面积的,求道路的宽.2019年山西省临汾市中考数学试卷(一)参考答案与试题解析一、选择题,每小题3分,共30分1.要使二次根式有意义,x必须满足()A.x≤2 B.x≥2 C.x>2 D.x<2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故选B.【点评】本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.已知x=1是关于x的一元二次方程2x2﹣x+a=0的一个根,则a的值是()A.2 B.﹣2 C.1 D.﹣1【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=1代入关于x的一元二次方程2x2﹣x+a=0,列出关于a的方程,通过解该方程求得a值即可.【解答】解:∵x=1是关于x的一元二次方程2x2﹣x+a=0的一个根,∴x=1满足关于x的一元二次方程2x2﹣x+a=0,∴2×12﹣1+a=0,即1+a=0,解得,a=﹣1;故选D.【点评】本题考查了一元二次方程的解.一元二次方程ax2+bx+c=0(a≠0)的解均满足该方程的解析式.3.下列式子为最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.我们解一元二次方程3x2﹣6x=0时,可以运用因式分解法,将此方程化为3x(x﹣2)=0,从而得到两个一元一次方程:3x=0或x﹣2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是()A.转化思想B.函数思想C.数形结合思想D.公理化思想【考点】解一元二次方程-因式分解法.【分析】上述解题过程利用了转化的数学思想.【解答】解:我们解一元二次方程3x2﹣6x=0时,可以运用因式分解法,将此方程化为3x (x﹣2)=0,从而得到两个一元一次方程:3x=0或x﹣2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是转化思想,故选A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×=6D.÷=2【考点】二次根式的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=,错误;C、原式=6×3=18,错误;D、原式===2,正确,故选D【点评】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.6.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.【点评】本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.7.若=2﹣a,则a的取值范围是()A.a=2 B.a>2 C.a≥2 D.a≤2【考点】平方根.【分析】根据二次根式的性质可得=|a|,再根据绝对值的性质进行计算即可.【解答】解:∵=|a﹣2|=2﹣a,∴a﹣2≤0,故选:D.【点评】此题主要考查了二次根式的性质,关键是掌握绝对值的性质.8.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1x2=.9.若(m﹣1)2+=0,则m+n的值是()A.﹣1 B.0 C.1 D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m【考点】一元二次方程的应用.【分析】本题可设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故选:A.【点评】本题考查了一元二次方程的应用.学生应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.二、填空题,每小题3分,共18分11.若实数a满足=2,则a的值为.【考点】二次根式的定义.【分析】根据算术平方根平方运算等于被开方数,可得关于a的方程.【解答】解:平方,得a﹣1=4.解得a=5,故答案为:5.【点评】本题考查了二次根式的定义,利用算术平方根平方运算等于被开方数得出关于a 的方程是解题关键12.写一个你喜欢的实数m的值,使关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.【考点】根的判别式.【分析】由一元二次方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集得到m的范围,即可求出m的值.【解答】解:根据题意得:△=1﹣4m>0,解得:m<,则m可以为0,答案不唯一.故答案为:0【点评】此题考查了根的判别式,熟练掌握一元二次方程根的判别式的意义是解本题的关键.13.若二次根式是最简二次根式,则最小的正整数a=.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:二次根式是最简二次根式,则最小的正整数a=2,故答案为:2.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.14.如图,是一个简单的数值运算程序.则输入x的值为.【考点】一元二次方程的应用.【分析】首先根据题意列出方程:(x﹣1)2×(﹣3)=﹣9,解方程即可求得答案.【解答】解:根据题意得:简单的数值运算程序为:(x﹣1)2×(﹣3)=﹣9,化简得:(x﹣1)2=3,∴x﹣1=±,∴x=1±.故答案为:或.【点评】本题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.15.三角形的三边长分别为3、m、5,化简﹣=.【考点】二次根式的性质与化简;三角形三边关系.【分析】先利用三角形的三边关系求出m的取值范围,再化简求解即可.【解答】解:∵三角形的三边长分别为3、m、5,∴2<m<8,∴﹣=m﹣2﹣(8﹣m)=2m﹣10.故答案为:2m﹣10.【点评】本题主要考查了二次根式的性质与化简及三角形三边关系,解题的关键是熟记三角形的三边关系.16.将一些半径相同的小圆按如图的规律摆放,请仔细观察,第个图形有94个小圆.【考点】一元二次方程的应用;规律型:图形的变化类.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n个图形中小圆的个数为n(n+1)+4.依此列出方程即可求得答案.【解答】解:设第n个图形有94个小圆,依题意有n2+n+4=94即n2+n=90(n+10)(n﹣9)=0解得n1=9,n2=﹣10(不合题意舍去).故第9个图形有94个小圆.故答案为:9.【点评】考查了一元二次方程的应用和规律型:图形的变化类,本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题17.计算:(1)9+5﹣3;(2)2;(3)()2019(﹣)2019.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2019(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2019(+)=(5﹣6)2019(+)=﹣(+)=﹣﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.选用合适的方法解下列方程(1)(x+4)2=5(x+4);(2)(x+3)2=(1﹣2x)2.【考点】解一元二次方程-因式分解法.【分析】(1)移项后分解因式得到(x+4)(x+4﹣5)=0,推出方程x+4=0,x+4﹣5=0,求出方程的解即可;(2)此题等式两边都是一个平方的形式,则这两个式子相等或互为相反数,据此即可转化为一元一次方程,即可求解.【解答】解:(1)移项得:(x+4)2﹣5(x+4)=0,分解因式得:(x+4)(x+4﹣5)=0,即x+4=0,x﹣1=0,解得x1=﹣4,x2=1;(2)∵(x+3)2=(1﹣2x)2∴原式可变为x+3=±(1﹣2x)解得x=﹣或4.【点评】本题主要考查了解一元二次方程的知识,根据方程的特点选择合适的方法解一元二次方程是解决此类问题的关键.一般解一元二次方程的方法有直接开平方法、因式分解法、公式法、配方法.19.如图,面积为48cm2的正方形四个角是面积为3cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?(精确到0.1)【考点】二次根式的应用.【分析】已知大正方形的面积和小正方形的面积,可用二次根式表示两个正方形的边长,从而可求这个长方体的底边长和高.【解答】解:设大正方形的边长为xcm,小正方形的边长为ycm,则:x2=48,y2=3∴,∴这个长方体的底面边长为:高为:≈1.7答:这个长方体的底面边长约为3.5cm,高约为1.7cm.【点评】已知正方形的面积,可用二次根式表示正方形的边长,再根据边长进行有关运算.20.小明同学在解一元二次方程时,他是这样做的:解一元二次方程3x2﹣8x(x﹣2)=0…第一步3x﹣8x﹣2=0…第二步﹣5x﹣2=0…第三步﹣5x=2…第四步x=﹣…第五步(1)小明的解法从第步开始出现错误;此题的正确结果是.(2)用因式分解法解方程:x(2x﹣1)=3(2x﹣1).【考点】解一元二次方程-因式分解法.【分析】(1)利用提取公因式法分解因式解方程得出即可;(2)利用提取公因式法分解因式解方程得出即可.【解答】解:(1)小明的解法从第2步开始出现错误;3x2﹣8x(x﹣2)=0x[3x﹣8(x﹣2)]=0,解得:x1=0,x2=,故此题的正确结果是:x1=0,x2=,故答案为:2;x1=0,x2=;(2)x(2x﹣1)=3(2x﹣1)(2x﹣1)(x﹣3)=0,解得:x1=,x2=3.【点评】此题主要考查了提取公因式法分解因式解方程,正确分解因式是解题关键.21.交警通常根据刹车后轮滑行的距离来测算车辆行驶的速度,所用的经验公式是u=16.其中u表示车速(单位:km/h),d表示刹车距离(单位:m),f表示摩擦系数.在一次交通事故中,测得d=20m,f=1.44,而发生交通事故的路段限速为80km/h,肇事汽车是否违规超速行驶?说明理由.(参考数据:≈1.4,≈2.2)【考点】二次根式的应用.【分析】先把d=20m,f=1.44,分别代入u=16,求出当时汽车的速度再和80km/h比较即可解答.【解答】解:肇事汽车超速行驶.理由如下:把d=20,f=1.44代入v=16,v=16=16×2.4×≈38.4×2.2=84.48km/h>80km/h,所以肇事汽车超速行驶.【点评】本题考查了二次根式的应用,读懂题意是解题的关键,另外要熟悉实数的相关运算.22.(9分)(2019山西模拟)满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?【考点】一元二次方程的应用.【分析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1﹣每次下调的百分率)2=开盘每平方米销售价格列方程解答即可;(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价×100×0.98;②方案:下调后的均价×100﹣两年的物业管理费,比较确定出更优惠的方案.【解答】解:(1)设平均每次降价的百分率是x,根据题意列方程得,5000(1﹣x)2=4050,解得:x1=10%,x2=1.9(不合题意,舍去);答:平均每次降价的百分率为10%.(2)方案一的房款是:4050×100×0.98=396900(元);方案二的房款是:4050×100﹣1.5×100×12×2=401400(元)∵396900元<401400元.【点评】考查了一元二次方程的应用,同学们应注重培养应用题的分析理解能力,通过列出方程求出未知解.23.观察下列各式及其验证过程:(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反应的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并说明它成立.【考点】二次根式的性质与化简.【分析】根据观察,可得规律,根据规律,可得答案.【解答】解:(1)5=验证:5====;(2)n=,证明:n====.【点评】本题考查了二次根式的性质与化简,运用n=的规律是解题关键.24.如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形水池面积的,求道路的宽.【考点】一元二次方程的应用.【分析】首先假设道路的宽为x米,根据道路的宽为正方形边长的,得出正方形的边长以及道路与正方形的面积进而得出答案.【解答】解:设道路的宽为x米,则可列方程:x(12﹣4x)+x(20﹣4x)+16x2=×20×12,即:x2+4x﹣5=0,解得:x1=l,x2=﹣5(舍去).答:道路的宽为1米.【点评】此题主要考查了一元二次方程的应用,根据已知表示出阴影部分的面积是解题关键.。
山西省临汾市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2018 年1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是41,45,41,44,40,42,41,这组数据的中位数、众数分别是()A.42,41 B.41,42 C.41,41 D.42,452.函数y=的自变量x的取值范围是()x2A.x≠2B.x<2 C.x≥2D.x>23.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差4.如图所示图形中,不是正方体的展开图的是()A.B.C.D.5.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<06.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为()A.8 B.9 C.21D.177.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为().A .100︒B .90︒C .80︒D .70︒ 8.﹣23的绝对值是( ) A .﹣322 B .﹣23 C .23 D .3229.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是( )A .2sin AB A =B .2cos AB A =C .2tan BC A =D .2cot BC A =10.a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=﹣2x 的图象上,则( ) A .a <b <0 B .b <a <0 C .a <0<b D .b <0<a11.如图,平行四边形ABCD 中,E ,F 分别为AD ,BC 边上的一点,增加下列条件,不一定能得出BE ∥DF 的是( )A .AE =CFB .BE =DFC .∠EBF =∠FDED .∠BED =∠BFD 12.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t 的取值范围是( ) A .t < B .t > C .t≤ D .t≥二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知圆锥的母线 SA 的长为 4,底面半径 OA 的长为 2,则圆锥的侧面积等于 .14.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=23,∠AEO=120°,则FC的长度为_____.15.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.16.在数学课上,老师提出如下问题:尺规作图:确定图1中»CD所在圆的圆心.已知:»CD.求作:»CD所在圆的圆心O.曈曈的作法如下:如图2,(1)在»CD上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是»CD所在圆的圆心.老师说:“曈曈的作法正确.”请你回答:曈曈的作图依据是_____.17.计算2211xx x---的结果为_____.18.如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为»BC的中点,P是直径AB上一动点,则PC+PD的最小值为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)20.(6分)解不等式组:2(2)3 {3122x xx+>-≥-,并将它的解集在数轴上表示出来.21.(6分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:分别写出y A、y B与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.22.(8分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.23.(8分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用1A、2A、3A表示);田赛项目:跳远,跳高(分别用1B、2B表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.24.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数m yx=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程0xxk bm+-p的解集(请直接写出答案).25.(10分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标.26.(12分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.()1求证:BCE DCF≅V V;()2当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.27.(12分)解不等式组2233134x xx x+≤+⎧⎪+⎨<⎪⎩(),并把解集在数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】从小到大排列此数据为:40,1,1,1,42,44,45,数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.所以本题这组数据的中位数是1,众数是1.故选C.【点睛】考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.D【解析】【分析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】有意义,解:∵函数∴x-2>0,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.3.D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.4.C【解析】【分析】由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.【详解】解:A、B、D都是正方体的展开图,故选项错误;C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.故选C.【点睛】此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题5.A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.6.C【解析】【分析】过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.【详解】过点C 作CM ⊥AB ,垂足为M ,在Rt △AMC 中,∵∠A=60°,AC=4,∴AM=2,3∴BM=AB-AM=3,在Rt △BMC 中, 22BM CM +()22323+21∵DE 是线段AC 的垂直平分线,∴AD=DC,∵∠A=60°,∴△ADC 等边三角形,∴CD=AD=AC=4,∴△BDC 的周长21故答案选C.【点睛】本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.7.B【解析】【分析】如图所示,过O 点作a 的平行线d ,根据平行线的性质得到∠2=∠3,进而求出将木条c 绕点O 旋转到与直线a 平行时的最小旋转角.【详解】如图所示,过O 点作a 的平行线d ,∵a ∥d ,由两直线平行同位角相等得到∠2=∠3=50°,木条c 绕O点与直线d 重合时,与直线a 平行,旋转角∠1+∠2=90°.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.8.C【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】│-322│=322,A 错误; │-23│=23,B 错误;│322│=322,D 错误; 22,故选C. 【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.9.C【解析】【分析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵90︒∠=C ,2AC =, ∴2cos AC A AB AB==, ∴2cos AB A =, 故选项A ,B 错误, ∵tan 2BC BC A AC ==, ∴2tan BC A =,故选项C 正确;选项D 错误.故选C .【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.10.A【解析】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A.11.B【解析】【分析】由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD 均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.【详解】Q四边形ABCD是平行四边形,∴AD//BC,AD=BC,A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;B、∵BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE//DF;C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF.故选B.【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.12.B【解析】【分析】将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.【详解】由题意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴解不等式组,得t>.故选:B.点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8π【解析】【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.【详解】侧面积=4×4π÷2=8π.故答案为8π.【点睛】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.14.1【解析】【分析】先根据矩形的性质,推理得到OF=CF ,再根据Rt △BOF 求得OF 的长,即可得到CF 的长.【详解】解:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=12BD=12, ∴OF=tan30°×BO=1,∴CF=1,故答案为:1.【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分. 15.140°【解析】【分析】【详解】如图,连接BD ,∵点E 、F 分别是边AB 、AD 的中点,∴EF 是△ABD 的中位线,∴EF ∥BD ,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC 2=225,CD 2=81,BD 2=144,∴CD 2+BD 2=BC 2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案为:140°.16.①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)【解析】【分析】(1)在»CD上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是»CD所在圆的圆心.【详解】解:根据线段的垂直平分线的性质定理可知:OC OM OD==,所以点O是»CD所在圆的圆心O(理由①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆):)故答案为①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)【点睛】本题考查作图﹣复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.﹣2【解析】【分析】根据分式的运算法则即可得解.【详解】原式=221xx--=2(1)1xx---=2-,故答案为:2-.【点睛】本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键. 182【解析】【分析】作出D关于AB的对称点D’,则PC+PD的最小值就是CD’的长度,在△COD'中根据边角关系即可求解. 【详解】解:如图:作出D关于AB的对称点D’,连接OC,OD',CD'.又∵点C在⊙O上,∠CAB=30°,D为弧BC的中点,即¶¶'BD BD=,∴∠BAD'=12∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.则△COD'是等腰直角三角形.∵OC=OD'=12AB=1,2CD'=故答案为:2.【点睛】本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析.【解析】【分析】分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.【详解】如图,点P为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.20.-1≤x<4,在数轴上表示见解析.试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x122x x+>-≥-①②,由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:21.解:(1)y A=27x+270,y B=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【解析】【分析】(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【详解】解:(1)由题意,得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x﹣20)=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,y A=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.22.(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.【解析】【分析】(1)根据图形平移的性质画出平移后的△DEC即可;(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴DE=CE,∴四边形OCED是菱形.【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.23.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205=.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)y=﹣8x,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.试题解析:(1)∵B(2,﹣4)在y=mx上,∴m=﹣1.∴反比例函数的解析式为y=﹣8x.∵点A(﹣4,n)在y=﹣8x上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴42 24k bk b-+=⎧⎨+=-⎩,解之得12 kb=-⎧⎨=-⎩.∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=3. (3)不等式0m kx b x+-<的解集为:﹣4<x <0或x >2. 25.(1)y=﹣x 2+2x+1;(2)当△MAC 是直角三角形时,点M 的坐标为(1,83)或(1,﹣23). 【解析】【分析】(1)由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;(2)设点M 的坐标为(1,m ),则,分∠ACM=90°和∠CAM=90°两种情况,利用勾股定理可得出关于m 的方程,解之可得出m 的值,进而即可得出点M 的坐标.【详解】(1)将A (﹣1,0)、C (0,1)代入y=﹣x 2+bx+c 中,得:10{3b c c --+==,解得:2{3b c ==, ∴抛物线的解析式为y=﹣x 2+2x+1.(2)∵y=﹣x 2+2x+1=﹣(x ﹣1)2+4,设点M 的坐标为(1,m ),则, 分两种情况考虑:①当∠ACM=90°时,有AM 2=AC 2+CM 2,即4+m 2=10+1+(m ﹣1)2,解得:m=83, ∴点M 的坐标为(1,83); ②当∠CAM=90°时,有CM 2=AM 2+AC 2,即1+(m ﹣1)2=4+m 2+10,解得:m=﹣23,∴点M的坐标为(1,﹣23).综上所述:当△MAC是直角三角形时,点M的坐标为(1,83)或(1,﹣23).【点睛】本题考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数解析式、二次函数图象的点的坐标特征以及勾股定理等知识点.26.见解析【解析】【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=12DC,OE=12BC,OE∥BC,由(SAS)证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF 是正方形.【详解】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=12DC,OE=12BC,OE∥BC,在△BCE和△DCF中,BE DFB D BC DC=⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△DCF(SAS);(2)当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【点睛】本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.27.不等式组的解集为13x ≤<,在数轴上表示见解析.【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】由2(x+2)≤3x+3,可得:x≥1, 由134x x +<,可得:x <3, 则不等式组的解为:1≤x <3,不等式组的解集在数轴上表示如图所示:【点睛】本题考查了一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。
山西省临汾市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知反比例函数y=﹣6x,当1<x<3时,y的取值范围是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣22.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( )A.①②③B.①③⑤C.②③④D.②④⑤3.如图图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.下列各式中计算正确的是()A.x3•x3=2x6B.(xy2)3=xy6C.(a3)2=a5D.t10÷t9=t 5.cos30°=()A.12B.22C.32D.36.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。
”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()A.4.5112x yy x-=⎧⎪⎨-=⎪⎩B.4.5112x yy x+=⎧⎪⎨-=⎪⎩C.4.5112x yx y-=⎧⎪⎨-=⎪⎩D.4.5112x yx y-=⎧⎪⎨-=⎪⎩7.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A.18πB.27πC.452πD.45π8.下列事件中,必然事件是()A.抛掷一枚硬币,正面朝上B .打开电视,正在播放广告C .体育课上,小刚跑完1000米所用时间为1分钟D .袋中只有4个球,且都是红球,任意摸出一球是红球9.如图,已知O e 的周长等于6cm ,则它的内接正六边形ABCDEF 的面积是( )A .93B .273C .273D .27310.若正六边形的边长为6,则其外接圆半径为( ) A .3B .32C .33D .611.如图,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB ,∠AOC=84°,则∠E 等于( )A .42°B .28°C .21°D .20°12.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n (n>1)个点.当n =2018时,这个图形总的点数S 为( )A .8064B .8067C .8068D .8072二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,则∠ADB′等于_____.14.如图,已知ABC V ,D 、E 分别是边AB 、AC 上的点,且1.3AD AE AB AC ==设AB a u u ur r =,DE b u u u r r =,那么AC =u u u r______.(用向量a r、b r表示)15.若式子123x +有意义,则x 的取值范围是______.16.计算:5-=____.17.如图所示,P 为∠α的边OA 上一点,且P 点的坐标为(3,4),则sinα+cosα=_____.18.图中是两个全等的正五边形,则∠α=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线的顶点为A (1,4),抛物线与y 轴交于点B (0,3),与x 轴交于C 、D 两点.点P 是x 轴上的一个动点.求此抛物线的解析式;求C 、D 两点坐标及△BCD 的面积;若点P 在x 轴上方的抛物线上,满足S △PCD =12S △BCD ,求点P 的坐标. 20.(6分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里:三角形数 1 3 6 10 15 21 a … 正方形数 1 4 9 16 25 b 49 … 五边形数151222C5170…(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n 个“正方形数”是________;若第n 个“三角形数”是x ,则用含x 、n 的代数式表示第n 个“五边形数”是___________.21.(6分)如图,已知在Rt ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线.(1)作一个O e 使它经过A D 、两点,且圆心O 在AB 边上;(不写作法,保留作图痕迹) (2)判断直线BC 与O e 的位置关系,并说明理由.22.(8分)如图,B 、E 、C 、F 在同一直线上,AB =DE ,BE =CF ,∠B =∠DEF ,求证:AC =DF .23.(8分)当a 3b=2时,求代数式222222a b b aba ab b a b+--++-的值. 24.(10分)如图,在平面直角坐标系中,已知抛物线y=x 2+bx+c 过A ,B ,C 三点,点A 的坐标是(3,0),点C 的坐标是(0,-3),动点P 在抛物线上.(1)b =_________,c =_________,点B 的坐标为_____________;(直接填写结果)(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.25.(10分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(I)AC的长等于_____.(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).26.(12分)计算:27.(12分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC =∠ACB=α,(1)如图1所示,当α=60°时,求证:△DCE是等边三角形;(2)如图2所示,当α=45°时,求证:CDDE=2;(3)如图3所示,当α为任意锐角时,请直接写出线段CE与DE的数量关系:CEDE=_____.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据反比例函数的性质可以求得y 的取值范围,从而可以解答本题. 【详解】解:∵反比例函数y=﹣6x,∴在每个象限内,y 随x 的增大而增大,∴当1<x <3时,y 的取值范围是﹣6<y <﹣1. 故选D . 【点睛】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y 的取值范围,利用反比例函数的性质解答. 2.D 【解析】 【分析】根据实数的运算法则即可一一判断求解. 【详解】①有理数的0次幂,当a=0时,a 0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确. 故选D. 3.A 【解析】A. 是轴对称图形,是中心对称图形,故本选项正确;B. 是中心对称图,不是轴对称图形,故本选项错误;C. 不是中心对称图,是轴对称图形,故本选项错误;D. 不是轴对称图形,是中心对称图形,故本选项错误。
临汾市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·太原模拟) 计算的结果为()A .B .C . a-2D . a+22. (2分)如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…,那么所描的第2017个点在()A . 射线OA上B . 射线OC上C . 射线OD上D . 射线OE上3. (2分)(2017·房山模拟) 下列四个命题中,属于真命题的共有()①相等的圆心角所对的弧相等② 若,则a、b都是非负实数③相似的两个图形一定是位似图形④ 三角形的内心到这个三角形三边的距离相等A . 1个B . 2个C . 3个D . 4个4. (2分)(2018·灌南模拟) 某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为()A . 5,7B . 6,7C . 8,5D . 8,75. (2分)(2020·启东模拟) 已知x1 , x2是一元二次方程x2+x﹣3=0的两个根,则x1+x2﹣x1x2的值为()A . 1B . 2C . 3D . 46. (2分)(2020·启东模拟) 若一次函数,当得值减小1,的值就减小2,则当的值增加2时,的值()A . 增加4B . 减小4C . 增加2D . 减小27. (2分)(2020·启东模拟) 用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A . 1B . 2C . 3D . 68. (2分)(2020·金华模拟) 若关于x的不等式组的解集为x<3,则k的取值范围为()A . k>1B . k<1C . k≥1D . k≤19. (2分)(2020·启东模拟) 二次函数y1=ax2+bx+c(a,b,c为常数)的图象如图所示,若y1+y2=2,则下列关于函数y2的图象与性质描述正确的是()A . 函数y2的图象开口向上B . 函数y2的图象与x轴没有公共点C . 当x>2时,y2随x的增大而减小D . 当x=1时,函数y2的值小于010. (2分)(2020·启东模拟) 如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C 重合),将△ABC沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是A . 0个B . 1个C . 2个D . 3个二、填空题 (共8题;共10分)11. (1分) (2019八上·桂林期末) 如图,已知AB=AC,AD=BD=BC.在BC延长线上取点C1 ,连接DC1 ,使DC=CC1 ,在CC1延长线上取点C2 ,在DC1上取点E,使EC1=C1C2 ,同理FC2=C2C3 ,若继续如此下去直到Cn ,则∠Cn的度数为________.(结果用含的代数式表示)12. (1分)(2020·启东模拟) 计算:﹣=________.13. (1分) (2015八上·惠州期末) 分解因式:a3﹣2a2+a=________.14. (1分)(2020·启东模拟) 如图,在矩形ABCD中,E是CD的延长线上一点,连接BE交AD于点F.如果AB=4,BC=6,DE=3,那么AF的长为________.15. (2分)(2020·北京模拟) 《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为________.16. (1分)(2020·启东模拟) 如图,AB是⊙O的弦,半径OC⊥AB,AC∥OB,则∠BOC的度数为________.17. (1分)(2020·启东模拟) 如图,点A在反比例函数的图象上,点B在反比例函数的图象上,AB⊥y轴,若△AOB的面积为2,则k的值为________.18. (2分)(2020·长沙模拟) 如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是________.三、解答题 (共8题;共56分)19. (10分)已知x= ,y= ,求代数式(x+y)2﹣(x﹣y)2的值.20. (10分)(2020·启东模拟)(1)先化简,再求值:(1﹣)÷ ,其中m=1;(2)解方程:=3+ .21. (2分)(2016·重庆A) 如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.22. (6分) (2020·启东模拟) 某市体育中考现场考试内容有三项:50米跑为必测项目.另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.(1)每位考生有________种选择方案;(2)求小明与小刚选择同种方案的概率.23. (5分)(2020·启东模拟) 如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长.(参考数据:≈1.7,结果保留一位小数)24. (10分)(2020·启东模拟) 在平面直角坐标系中,抛物线,与x轴交于A、B两点(点A在点B的左侧).(1)求点A和点B的坐标;(2)若点P(m,n)是抛物线上的一点,过点P作x轴的垂线,垂足为点D.①在的条件下,当时,n的取值范围是,求抛物线的表达式;②若D点坐标(4,0),当时,求a的取值范围.25. (10分)(2020·启东模拟) 如图,已知矩形ABCD中,AB=4,动点P从点A出发,沿AD方向以每秒1个单位的速度运动,连接BP,作点A关于直线BP的对称点E,设点P的运动时间为t(s).(1)若AD=6,P仅在边AD运动,求当P,E,C三点在同一直线上时对应的t的值.(2)在动点P在射线AD上运动的过程中,求使点E到直线BC的距离等于3时对应的t的值.26. (3分)(2020·启东模拟) 定义:当点P在射线OA上时,把的的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA上的射影值均为= .(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形.其中真命题有.A . ①②B . ①③C . ②③D . ①②③(2)已知:点C是射线OA上一点,CA=OA=1,以〇为圆心,OA为半径画圆,点B是⊙O上任意点.①如图2,若点B在射线OA上的射影值为 .求证:直线BC是⊙O的切线;________②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式为.________参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共56分)19-1、20-1、20-2、21-1、22-1、22-2、23-1、24-1、24-2、25-1、26-1、26-2、。
山西省临汾市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列命题中,真命题是( )A .如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B .如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C .如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D .如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离2.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -3.如图,菱形ABCD 的边长为2,∠B=30°.动点P 从点B 出发,沿 B-C-D 的路线向点D 运动.设△ABP 的面积为y(B 、P 两点重合时,△ABP 的面积可以看作0),点P 运动的路程为x ,则y 与x 之间函数关系的图像大致为( )A .B .C .D . 4.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是( )A .75°B .60°C .45°D .30°5.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)6.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×1087.一个多边形的每个内角都等于120°,则这个多边形的边数为( )A .4B .5C .6D .78.cos30°的值为( )A .1B .12C .3D .3 9.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A.110 B.158 C.168 D.178 10.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩11.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.1612.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为()A.76°B.74°C.72°D.70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=__.14.分解因式:2x2-8x+8=__________.15.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.1635_____.17.比较大小:10(填<,>或=).18.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;(2)∠APB=∠ACB的依据是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;四边形ABCD是矩形.20.(6分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?21.(6分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO 绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.22.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?23.(8分)如图,已知△ABC中,AB=BC=5,tan∠ABC=34.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求ADDB的值.24.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?25.(10分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x (元)的关系为y=﹣2x+1.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?26.(12分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.27.(12分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据两圆的位置关系、直线和圆的位置关系判断即可.【详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A 是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B 是假命题;C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C 是假命题;D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D 是真命题;故选:D .【点睛】本题考查了两圆的位置关系:设两圆半径分别为R 、r ,两圆圆心距为d ,则当d >R+r 时两圆外离;当d=R+r 时两圆外切;当R-r <d <R+r (R≥r )时两圆相交;当d=R-r (R >r )时两圆内切;当0≤d <R-r (R >r )时两圆内含.2.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.3.C【解析】【分析】先分别求出点P 从点B 出发,沿B→C→D 向终点D 匀速运动时,当0<x≤2和2<x≤4时,y 与x 之间的函数关系式,即可得出函数的图象.【详解】由题意知,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,则当0<x≤2,y=12x , 当2<x≤4,y=1,由以上分析可知,这个分段函数的图象是C .故选C .4.C【解析】【分析】根据直角三角形两锐角互余即可解决问题.【详解】解:∵直角三角形两锐角互余,∴另一个锐角的度数=90°﹣45°=45°,故选C .【点睛】本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.5.C【解析】试题分析:=,∴点M (m ,﹣m 2﹣1),∴点M′(﹣m ,m 2+1),∴m 2+2m 2﹣1=m 2+1.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8).故选C .考点:二次函数的性质.6.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.7.C【解析】试题解析:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=10°,∴边数n=310°÷10°=1.故选C.考点:多边形内角与外角.8.D【解析】cos30°=2.故选D.9.B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.10.B【解析】【分析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,A、不等式组53xx≥-⎧⎨>-⎩的解集为x>-3,故A错误;B、不等式组53xx>-⎧⎨≥-⎩的解集为x≥-3,故B正确;C、不等式组53xx<⎧⎨<-⎩的解集为x<-3,故C错误;D、不等式组53xx<⎧⎨>-⎩的解集为-3<x<5,故D错误.故选B.本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.11.C【解析】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21 63 .故选C.【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.12.B【解析】【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.【详解】解:∵∠A=56°,∠C=88°,∴∠ABC=180°-56°-88°=36°,∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,∴∠BDE=180°-18°-88°=74°.故选:B.【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5:1【解析】【分析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.解:作AE ∥BC 交DC 于点E ,交DF 于点F ,设每个小正方形的边长为a ,则△DEF ∽△DCN , ∴EF CN =DF DN =13, ∴EF=13a , ∵AF=2a ,∴AE=53a , ∵△AME ∽△BMC , ∴AM BM =AE BC =534a a =512, 故答案为:5:1.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.2(x-2)2【解析】【分析】先运用提公因式法,再运用完全平方公式.【详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.15.2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.16.15【解析】分析:直接利用二次根式的性质进行化简即可.详解:35=3555⨯⨯=155.故答案为155.点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键.17.<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3<10,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.18.①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换同弧所对的圆周角相等【解析】【分析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.(2)根据同弧所对的圆周角相等即可得出结论.【详解】(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案是:(2)∵»»AB AB,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD是矩形.20.(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.1,2y =2.1,∵有利于减少库存,∴y =2.1.答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.21. (1)见解析;(2)点A 1的坐标为:(﹣1,3),点A 2的坐标为:(2,﹣6).【解析】【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA 1B 1,△OA 2B 2,即为所求;(2)点A 1的坐标为:(﹣1,3),点A 2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.22.(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.【解析】【分析】(1)可设甲种商品的销售单价x 元,乙种商品的销售单价y 元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;(1)可设销售甲种商品a 万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【详解】(1)设甲种商品的销售单价x 元,乙种商品的销售单价y 元,依题意有:23321500x y x y =⎧⎨-=⎩,解得900600x y =⎧⎨=⎩:. 答:甲种商品的销售单价900元,乙种商品的销售单价600元;(1)设销售甲种商品a 万件,依题意有:900a+600(8﹣a )≥5400,解得:a≥1.答:至少销售甲种商品1万件.【点睛】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.23.(1)10(2)35AD BD =. 【解析】【分析】(1)过A 作AE ⊥BC ,在直角三角形ABE 中,利用锐角三角函数定义求出AC 的长即可;(2)由DF 垂直平分BC ,求出BF 的长,利用锐角三角函数定义求出DF 的长,利用勾股定理求出BD 的长,进而求出AD 的长,即可求出所求.【详解】(1)如图,过点A作AE⊥BC,在Rt△ABE中,tan∠ABC=34AEBE=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC=2231+=10;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=52,∵tan∠DBF=34 DFBF=,∴DF=158,在Rt△BFD中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭=258,∴AD=5﹣258=158,则35 ADBD=.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.24.(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【解析】【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.【详解】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:1010350 3020850x yx y+=⎧⎨+=⎩,解这个方程组得:1520x y =⎧⎨=⎩, 答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x 分,则生产乙种产品用(25×8×60-x )分. 则生产甲种产品15x 件,生产乙种产品2586020x ⨯⨯-件. ∴w 总额=1.5×15x +2.8×2586020x ⨯⨯-=0.1x+1200020x -×2.8=0.1x+1680-0.14x=-0.04x+1680, 又15x ≥60,得x≥900, 由一次函数的增减性,当x=900时w 取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元), 此时甲有90015=60(件), 乙有:2586090020⨯⨯-=555(件), 答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点睛】考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.25.(1)w=(x ﹣200)y=(x ﹣200)(﹣2x+1)=﹣2x 2+1400x ﹣200000;(2)令w=﹣2x 2+1400x ﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x 2+1400x ﹣200000=﹣2(x ﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.【解析】试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;(2)令y=40000代入解析式,求出满足条件的x 的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值.试题解析:(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x 2+1400x-200000;(2)令w=-2x 2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=-2x 2+1400x-200000=-2(x-350)2+45000,当x=250时y=-2×2502+1400×250-200000=25000; 故最高利润为45000元,最低利润为25000元.26.(1)13;(2)13. 【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:13(2)、画树状图得:结果:(A ,B )、(A ,C )、(B ,A )、(B ,C )、(C ,A )、(C ,B )∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13. 考点:概率的计算.27.(1)作图见解析;(2)如图所示,点A 的坐标为(0,1),点C 的坐标为(-3,1);(3)如图所示,点B 2的坐标为(3,-5),点C 2的坐标为(3,-1).【解析】【分析】(1)分别作出点B 个点C 旋转后的点,然后顺次连接可以得到;(2)根据点B 的坐标画出平面直角坐标系;(3)分别作出点A 、点B 、点C 关于原点对称的点,然后顺次连接可以得到.【详解】(1)△A 11B C 如图所示;(2)如图所示,A (0,1),C (﹣3,1);(3)△222A B C 如图所示,2B (3,﹣5),(3,﹣1).。
山西省临汾市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .2.如图,将Rt ABC △绕直角顶点C 顺时针旋转90o ,得到A B C ''V ,连接'A A ,若120︒∠=,则B Ð的度数是( )A .70︒B .65︒C .60︒D .55︒3.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A .25B .5 C .2D .124.在△ABC 中,∠C =90°,tanA =,△ABC 的周长为60,那么△ABC 的面积为( )A .60B .30C .240D .1205.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .246.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下: 选手 1 2 3 4 5 6 7 8 9 10 时间(min)129136140145146148154158165175由此所得的以下推断不正确...的是( )A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好7.已知反比例函数,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若,则8.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为()A.(﹣3,﹣4)或(3,4)B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3)D.(﹣3,﹣4)9.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨) 3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差10.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同11.如图,是一次函数y=kx+b与反比例函数y=2x的图象,则关于x的不等式kx+b>2x的解集为A.x>1 B.﹣2<x<1C.﹣2<x<0或x>1 D.x<﹣212.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留π).14.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.15.比较大小:4 17(填入“>”或“<”号)16.计算(﹣12a 2b )3=__. 17.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.18.不等式组2672x x -≥⎧⎨+>-⎩的解集是____________;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C 距守门员多少米?(取437=)运动员乙要抢到第二个落点D ,他应再向前跑多少米?20.(6分)如图,AB AE =,12∠=∠,C D ∠=∠,求证:ABC AED ≌△△。
山西省临汾市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,半径为1的圆O 1与半径为3的圆O 2相内切,如果半径为2的圆与圆O 1和圆O 2都相切,那么这样的圆的个数是 ( )A .1B .2C .3D .42.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为( ) A .83×105 B .0.83×106 C .8.3×106 D .8.3×1073.如图,△ABC 为等腰直角三角形,∠C=90°,点P 为△ABC 外一点,CP=2,BP=3,AP 的最大值是( )A .2+3B .4C .5D .324.已知二次函数2y ax bx c =++的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .24b ac -<0D .a b c ++<05.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A .EA EG BE EF =B .EG AG GH GD =C .AB BC AE CF =D .FH CF EH AD= 6.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )A .B .C .D .7.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点,那么d 的值可以取( )A .11;B .6;C .3;D .1.8.下列各式中,正确的是( )A .﹣(x ﹣y )=﹣x ﹣yB .﹣(﹣2)﹣1=12C .﹣x x y y -=-D .3882÷= 9.下列计算结果等于0的是( )A .11-+B .11--C .11-⨯D .11-÷ 10.下列计算正确的是( )A .(a 2)3=a 6B .a 2•a 3=a 6C .a 3+a 4=a 7D .(ab )3=ab 311.如图,在平行线l 1、l 2之间放置一块直角三角板,三角板的锐角顶点A ,B 分别在直线l 1、l 2上,若∠l=65°,则∠2的度数是( )A .25°B .35°C .45°D .65°12.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )A .30°B .40°C .50°D .60°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式42x ->4﹣x 的解集为_____. 14.若A (﹣3,y 1),B (﹣2,y 2),C (1,y 3)三点都在y=1x-的图象上,则y l ,y 2,y 3的大小关系是_____.(用“<”号填空) 15.点(-1,a )、(-2,b )是抛物线2y x 2x 3=+-上的两个点,那么a 和b 的大小关系是a_______b (填“>”或“<”或“=”).16.如图,直线(0)y kx k =>交O e 于点A ,B ,O e 与x 轴负半轴,y 轴正半轴分别交于点D ,E ,AD ,BE 的延长线相交于点C ,则:CB CD 的值是_________.17.123=⨯________.18.已知⊙O 半径为1,A 、B 在⊙O 上,且2AB =,则AB 所对的圆周角为__o .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y 1(万件)与时间t (t 为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y 2(万件)与时间t (t 为整数,单位:天)的关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y 1与t 的变化规律,写出y 1与t 的函数关系式及自变量t 的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y 2与时间t 所符合的函数关系式,并写出相应自变量t 的取值范围;(3)设国内、外市场的日销售总量为y 万件,写出y 与时间t 的函数关系式,并判断上市第几天国内、外市场的日销售总量y 最大,并求出此时的最大值.20.(6分)如图,△ABC 中,AB=8厘米,AC=16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C 同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t .⑴用含t 的代数式表示:AP= ,AQ= .⑵当以A ,P ,Q 为顶点的三角形与△ABC 相似时,求运动时间是多少?21.(6分)计算:201()(π7)3---+3〡-2〡+6tan30︒22.(8分)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE ,求证:CE =CF ;如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD ;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE=10, 求直角梯形ABCD 的面积.23.(8分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.求11月份这两种水果的进价分别为每千克多少元?时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了12m %,香橙每千克的进价在11月份的基础上下降了m %,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了5m 8%,香橙购进的数量比11月份增加了2m %,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m 的值. 24.(10分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.25.(10分)如图,在平面直角坐标系xOy 中,直线16y k x =+与函数()20k y x x =>的图象的两个交点分别为A (1,5),B .(1)求1k ,2k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线16y k x =+和函数()20k y x x=>的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.26.(12分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A 、B 两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A 型车高10元,A 、B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”,乙街区每1000人投放8240a a+辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a 的值.27.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.若苗圃园的面积为72平方米,求x;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数. 详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.2.C【解析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n 的形式(其中1≤| a| <10|)的记数法. 【详解】830万=8300000=8.3×106.故选C【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.3.C【解析】【分析】过点C 作CQ CP ⊥,且CQ=CP,连接AQ,PQ,证明ACQ V ≌,BCP V 根据全等三角形的性质,得到3,AQ BP ==2,CQ CP ==根据等腰直角三角形的性质求出PQ 的长度,进而根据AP AQ PQ ≤+,即可解决问题.【详解】过点C 作CQ CP ⊥,且CQ=CP,连接AQ,PQ,90,ACQ BCQ BCP BCQ ∠+∠=∠+∠=o,ACQ BCP ∠=∠在ACQ V 和BCP V 中,AC BC ACQ BCP CQ CP =⎧⎪∠=∠⎨⎪=⎩ACQ V ≌,BCP V3,AQ BP ∴== 2,CQ CP ==222,PQ CQ CP =+=325,AP AQ P ≤++=AP 的最大值是5.【点睛】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.4.B【解析】【分析】根据抛物线的开口方向确定a ,根据抛物线与y 轴的交点确定c ,根据对称轴确定b ,根据抛物线与x 轴的交点确定b 2-4ac ,根据x=1时,y >0,确定a+b+c 的符号.【详解】解:∵抛物线开口向上,∴a >0,∵抛物线交于y 轴的正半轴,∴c >0,∴ac >0,A 错误;∵-2b a>0,a >0, ∴b <0,∴B 正确;∵抛物线与x 轴有两个交点,∴b 2-4ac >0,C 错误;当x=1时,y >0,∴a+b+c >0,D 错误;故选B .【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.5.C【解析】试题解析:∵四边形ABCD 是平行四边形,,AD BF BE DC AD BC ∴=P P ,,,,.EA EG EG AG HF FC CF BE EF GH DG EH BC AD∴==== 故选C.6.C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.故选C【点睛】考核知识点:正方体的表面展开图.7.D【解析】∵圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,∴当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,∴上述四个数中,只有D选项中的1符合要求.故选D.点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.8.B【解析】【分析】A.括号前是负号去括号都变号;B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法.【详解】A选项,﹣(x﹣y)=﹣x+y,故A错误;B选项,﹣(﹣2)﹣1=12,故B正确;C选项,﹣x xy y-=,故C错误;=,故D错误.D=2÷2【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.9.A【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A、原式=0,符合题意;B、原式=-1+(-1)=-2,不符合题意;C、原式=-1,不符合题意;D、原式=-1,不符合题意,故选:A.【点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.10.A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数a b,相加,原式=5a,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=33计算错误;故选A.点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.11.A【解析】【分析】如图,过点C作CD∥a,再由平行线的性质即可得出结论.【详解】如图,过点C作CD∥a,则∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A.【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.12.D【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x>1.【解析】【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.14.y3<y1<y1【解析】【分析】根据反比例函数的性质k <0时,在每个象限,y 随x 的增大而增大,进行比较即可.【详解】解:k=-1<0,∴在每个象限,y 随x 的增大而增大,∵-3<-1<0,∴0<y 1<y 1.又∵1>0∴y 3<0∴y 3<y 1<y 1故答案为:y 3<y 1<y 1【点睛】本题考查的是反比例函数的性质,理解性质:当k >0时,在每个象限,y 随x 的增大而减小,k <0时,在每个象限,y 随x 的增大而增大是解题的关键.15.<【解析】把点(-1,a )、(-2,b )分别代入抛物线223y x x =+-,则有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b ,故答案为<.16.2【解析】【分析】连接BD ,根据90EOD ∠=︒可得90AOD BOE ∠+∠=︒,并且根据圆的半径相等可得△OAD 、△OBE 都是等腰三角形,由三角形的内角和,可得∠C=45°,则有CDB △是等腰直角三角形,可得:2CB CD =即可求求解.【详解】解:如图示,连接BD ,∵90EOD ∠=︒,∴90AOD BOE ∠+∠=︒,∵OB OE =,OA OD =,∴OAD ODA ∠=∠,OBE OEB ∠=∠, ∴()1360901352OAD OBE ︒︒∠+∠=-=︒, ∴45ACB ∠=︒,∵AB 是直径,∴90ADB CDB ∠=∠=︒,∴CDB △是等腰直角三角形,∴:2CB CD =.【点睛】本题考查圆的性质和直角三角形的性质,能够根据圆性质得出CDB △是等腰直角三角形是解题的关键. 17.1【解析】【分析】先将二次根式化为最简,然后再进行二次根式的乘法运算即可.【详解】解:原式=23×3=1.故答案为1.【点睛】本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.18.45º或135º【解析】试题解析:如图所示,∵OC ⊥AB ,∴C 为AB 的中点,即1222AC BC AB ===在Rt △AOC 中,OA=1, 2AC =根据勾股定理得:2OC ==即OC=AC , ∴△AOC 为等腰直角三角形,45AOC ∴∠=o ,同理45BOC ∠=o ,90AOB AOC BOC ∴∠=∠+∠=o ,∵∠AOB 与∠ADB 都对¶AB ,1452ADB AOB o ,∴∠=∠= ∵大角270AOB ∠=o ,135.AEB ∴∠=o 则弦AB 所对的圆周角为45o 或135.o 故答案为45或135.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y 1=﹣15t (t ﹣30)(0≤t≤30);(2)∴y 2=2(020)4120(2030)t t t t ≤<⎧⎨-+≤≤⎩;(3)上市第20天,国内、外市场的日销售总量y 最大,最大值为80万件.【解析】【分析】(1)根据题意得出y 1与t 之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0≤t <20、t=20和20≤t≤30三种情况根据y=y 1+y 2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.【详解】解:(1)由图表数据观察可知y 1与t 之间是二次函数关系,设y 1=a (t ﹣0)(t ﹣30)再代入t=5,y 1=25可得a=﹣15 ∴y 1=﹣15t (t ﹣30)(0≤t≤30) (2)由函数图象可知y 2与t 之间是分段的一次函数由图象可知:0≤t <20时,y 2=2t ,当20≤t≤30时,y 2=﹣4t+120,∴y 2=()2(020)41202030t t t t ≤<⎧⎨-+≤≤⎩, (3)当0≤t <20时,y=y 1+y 2=﹣15t (t ﹣30)+2t=80﹣15(t ﹣20)2 , 可知抛物线开口向下,t 的取值范围在对称轴左侧,y 随t 的增大而增大,所以最大值小于当t=20时的值80,当20≤t≤30时,y=y 1+y 2=﹣15t (t ﹣30)﹣4t+120=125﹣15(t ﹣5)2 , 可知抛物线开口向下,t 的取值范围在对称轴右侧,y 随t 的增大而减小,所以最大值为当t=20时的值80,故上市第20天,国内、外市场的日销售总量y 最大,最大值为80万件.20.(1)AP=2t ,AQ=16﹣3t ;(2)运动时间为167秒或1秒. 【解析】【分析】(1)根据路程=速度⨯时间,即可表示出AP ,AQ 的长度.(2)此题应分两种情况讨论.(1)当△APQ ∽△ABC 时;(2)当△APQ ∽△ACB 时.利用相似三角形的性质求解即可.【详解】(1)AP=2t ,AQ=16﹣3t .(2)∵∠PAQ=∠BAC , ∴当AP AQ AB AC =时,△APQ ∽△ABC ,即2163816t t -=,解得167t =; 当AP AQ AC AB =时,△APQ ∽△ACB ,即2163168t t -=,解得t=1. ∴运动时间为167秒或1秒.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解. 21.10 3【解析】【分析】根据实数的性质进行化简即可计算.【详解】3原式=9-1+2-3+6×=10-323+=10 +3【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.22.(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;试题解析:(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=1.则DE=4+1=2.【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.23.(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.【解析】【详解】(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有4006001520024x yy x+=⎧⎨=+⎩,解得820xy=⎧⎨=⎩,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣12m%)×400(1+58m%)+20(1﹣m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.1.24.(1) 60,90;(2)见解析;(3) 300人【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°; 故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560+=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点. 25.(1)11k =-,25k =;(2)0<n <1或者n >1.【解析】【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【详解】解:(1)∵A (1,1)在直线16y k x =+上,∴11k =-,∵A (1,1)在()20k y x x=>的图象上, ∴25k =.(2)观察图象可知,满足条件的n 的值为:0<n <1或者n >1.【点睛】此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解. 26.问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】【详解】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2:由题可得,1500a×1000+12008240aa×1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为1.27.(1)2(2)当x=4时,y最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-152)2+2252(6≤x≤4).①当x=152时,S有最大值,S最大=2252;②当x=4时,S有最小值,S最小=4×(31-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.。
山西省临汾市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=13.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A.55×103B.5.5×104C.5.5×105D.0.55×1054.如图的立体图形,从左面看可能是()A.B.C.D.5.若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定6.如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.7.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OAB C的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2018的坐标是()A.(1,4)B.(4,3)C.(2,4)D.(4,1)10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.1611.如图1,在等边△ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP 的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4 B.23C.12 D.4312.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.33D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD 相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.14.分解因式x2﹣x=_______________________15.如图,直线a∥b,直线c 分别于a,b 相交,∠1=50°,∠2=130°,则∠3 的度数为()A.50°B.80°C.100°D.130°16.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.17.已知关于x的一元二次方程2x2x a0+-=有两个相等的实数根,则a的值是______.18.如图,在每个小正方形的边长为1的网格中,A,B为格点(Ⅰ)AB的长等于__(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于32,并简要说明点C的位置是如何找到的__________________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.20.(6分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.(1)求证:CD∥AB;(2)填空:①当∠DAE = 时,四边形ADFP 是菱形;②当∠DAE = 时,四边形BFDP 是正方形.21.(6分)如图,△ABC 中,∠C =90°,AC =BC ,∠ABC 的平分线BD 交AC 于点D ,DE ⊥AB 于点E .(1)依题意补全图形;(2)猜想AE 与CD 的数量关系,并证明.22.(8分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间t (单位:小时),将获得的数据分成四组,绘制了如下统计图(A :07t <≤,B :714t <≤,C :1421t <≤,D :21t >),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示A 组的扇形统计图的圆心角的度数;(3)如果李青想从D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.23.(8分)先化简,再求值:(x+1y)1﹣(1y+x)(1y ﹣x)﹣1x 1,其中x 3,y 3﹣1.24.(10分)为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡AB 长2(即BAC ∠)为45︒,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).若修建的斜坡BE 的坡比为3:1,求休闲平台DE 的长是多少米?一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30°.点B 、C 、A 、G ,H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?25.(10分)如图,在Rt △ABC 中,∠C=90°,BE 平分∠ABC 交AC 于点E ,作ED ⊥EB 交AB 于点D ,⊙O 是△BED 的外接圆.求证:AC 是⊙O 的切线;已知⊙O 的半径为2.5,BE=4,求BC ,AD 的长.26.(12分)如图,在梯形ABCD 中,//AD BC ,5AB DC ==,1AD =,9BC =,点P 为边BC 上一动点,作PH ⊥DC ,垂足H 在边DC 上,以点P 为圆心,PH 为半径画圆,交射线PB 于点E .(1)当圆P 过点A 时,求圆P 的半径;(2)分别联结EH 和EA ,当ABE CEH ∆∆∽时,以点B 为圆心,r 为半径的圆B 与圆P 相交,试求圆B 的半径r 的取值范围;(3)将劣弧¼EH沿直线EH 翻折交BC 于点F ,试通过计算说明线段EH 和EF 的比值为定值,并求出次定值.27.(12分)货车行驶25km 与轿车行驶35km 所用时间相同.已知轿车每小时比货车多行驶20km ,求货车行驶的速度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选B.【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.3.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】55000是5位整数,小数点向左移动4位后所得的数即可满足科学记数法的要求,由此可知10的指数为4,所以,55000用科学记数法表示为5.5×104,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.A【解析】【分析】根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.5.A【解析】【分析】根据正比例函数的增减性解答即可.【详解】∵正比例函数y=﹣k2x(k≠0),﹣k2<0,∴该函数的图象中y随x的增大而减小,∵点M(﹣3,y1),N(﹣4,y2)在正比例函数y=﹣k2x(k≠0)图象上,﹣4<﹣3,∴y2>y1,故选:A.【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时,y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时,y=kx的图象经过二、四象限,y随x的增大而减小. 6.A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.7.A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【详解】解:主视图是三角形的一定是一个锥体,只有D 是锥体.故选D .【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.9.D【解析】【分析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、1(2,0)p 、)(24,1p 、)(30,3p 、()42,4p 、)(54,3p 、)(60,1p 等,故该坐标的循环周期为7则有则有2018128837+L =,故是第2018次碰到正方形的点的坐标为(4,1). 【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.10.C【解析】【分析】根据根与系数的关系得到x 1+x 2=2,x 1•x 2=-5,再变形x 12+x 22得到(x 1+x 2)2-2x 1•x 2,然后利用代入计算即可.【详解】∵一元二次方程x 2-2x-5=0的两根是x 1、x 2,∴x 1+x 2=2,x 1•x 2=-5,∴x 12+x 22=(x 1+x 2)2-2x 1•x 2=22-2×(-5)=1.故选C .【点睛】考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=c a.由图1、图2结合题意可知,当DP⊥AB时,DP最短,由此可得DP最短=y最小=3,这样如图3,过点P 作PD⊥AB于点P,连接AD,结合△ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DP⊥AB时,DP最短,由此可得DP最短=y最小=3,如图3,过点P作PD⊥AB于点P,连接AD,∵△ABC是等边三角形,点D是BC边上的中点,∴∠ABC=60°,AD⊥BC,∵DP⊥AB于点P,此时DP=3,∴BD=332 sin60PD=÷=o,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=23,∴S△ABC=12AD·BC=1234432⨯⨯=.故选D.点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短3是解答本题的关键.12.B【解析】【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】。
山西省临汾市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在下列交通标志中,是中心对称图形的是()A.B.C.D.2.下列事件中,属于不确定事件的是()A.科学实验,前100次实验都失败了,第101次实验会成功B.投掷一枚骰子,朝上面出现的点数是7点C.太阳从西边升起来了D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形3.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含4.下面计算中,正确的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a2•a5=a75.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( )A.-4℃B.4℃C.8℃D.-8℃6.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<1;②a+b=1;③4ac﹣b2=4a;④a+b+c<1.其中正确结论的个数是()A.1 B.2 C.3 D.47.下面四个几何体:其中,俯视图是四边形的几何体个数是( )A .1B .2C .3D .48.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6B .8.23×10﹣7C .8.23×106D .8.23×1079.一、单选题如图,△ABC 中,AB =4,AC =3,BC =2,将△ABC 绕点A 顺时针旋转60°得到△AED ,则BE 的长为( )A .5B .4C .3D .210.下列运算正确的是( )A .a 6÷a 2=a 3B .(2a+b )(2a ﹣b )=4a 2﹣b 2C .(﹣a )2•a 3=a 6D .5a+2b=7ab11.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC=2,则EF 的长度为( )A .B .1C .D .12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在ABC V 中A 60∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM,PN ,则下列结论:①PM PN =,②MN AB BC AC ⋅=⋅,③PMN V 为等边三角形,④当14.如图,在ABC ∆中,AB AC =,点D 、E 分别在边BC 、AB 上,且ADE B ∠=∠,如果:2:5DE AD =,3BD =,那么AC =________.15.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A 处修建通往百米观景长廊BC 的两条栈道AB ,AC .若∠B=56°,∠C=45°,则游客中心A 到观景长廊BC 的距离AD 的长约为_____米.(sin56°≈0.8,tan56°≈1.5)16.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在圆O 上,BD =CD ,AB =10,AC =6,连接OD 交BC 于点E ,DE =______.17.⊙M 的圆心在一次函数y=12x+2图象上,半径为1.当⊙M 与y 轴相切时,点M 的坐标为_____.18.不等式5x ﹣3<3x+5的非负整数解是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲、乙两人分别站在相距6米的A 、B 两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C 处发出一球,乙在离地面1.5米的D 处成功击球,球飞行过程中的最高点H毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.20.(6分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.21.(6分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.22.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为»BD的中点,且BD=8,AC=9,sinC=13,求⊙O的半径.23.(8分)已知,如图1,直线y=34x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为94,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.24.(10分)如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB=32.求反比例函数的解析式;若P (1x ,1y )、Q (2x ,2y )是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.25.(10分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y 万元与科研所到宿舍楼的距离xkm 之间的关系式为y =ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km 时,防辐射费用为720万元;当科研所到宿含楼的距离为3km 或大于3km 时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x 2成正比,且比例系数为m 万元,配套工程费w =防辐射费+修路费.(1)当科研所到宿舍楼的距离x =3km 时,防辐射费y =____万元,a =____,b =____;(2)若m =90时,求当科研所到宿舍楼的距离为多少km 时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km ,求m 的范围? 26.(12分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC 中,D 为边BC 的中点,AE ⊥BC 于E ,则线段DE 的长叫做边BC 的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图②,在△ABC 中,∠B=15°,2,BC=8,AD 为边BC 的中线,求边BC 的中垂距.(3)如图③,在矩形ABCD 中,AB=6,AD=1.点E 为边CD 的中点,连结AE 并延长交BC 的延长线于点F ,连结AC .求△ACF 中边AF 的中垂距.27.(12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC 的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】【详解】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.A【解析】试题分析:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选A.考点:圆与圆的位置关系.4.D【解析】【分析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A. (a+b)2=a2+b2+2ab,故此选项错误;B. 3a+4a=7a,故此选项错误;C. (ab)3=a3b3,故此选项错误;D. a2 a5=a7,正确。
中考数学模拟试卷(解析版)
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题
1.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣2
x
(x<0)的
图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=k
x
(x>0)的图象上,
C1O1与此图象交于点P,则点P的纵坐标是()
A.5
3
B.
3
4
C.
4
3
D.
2
3
解析:C
【解析】
分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.
详解:∵OB=1,AB⊥OB,点A在函数
2
y
x
=- (x<0)的图象上,
∴当x=−1时,y=2,
∴A(−1,2).
∵此矩形向右平移3个单位长度到1111
A B O C的位置,∴B1(2,0),
∵点A1在函数
k
y
x
= (x>0)的图象上,
∴k=4,
∴反比例函数的解析式为
4
y
x
=,O1(3,0),
∵C1O1⊥x轴,
∴当x=3时,
4
3
y=,
∴P
4 (3,).
3
故选C.
点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.
2.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()
A.
9
103
2
π
⎛
-
⎝
米2B.
9
3
2
π⎛
⎝
米2C.
9
63
2
π
⎛
-
⎝
米2D.(693
π-米2
解析:C 【解析】【详解】连接OD,
∵弧AB的半径OA长是6米,C是OA的中点,∴OC=1
2
OA=
1
2
×6=1.
∵∠AOB=90°,CD∥OB,∴CD⊥OA.
在Rt△OCD中,∵OD=6,OC=1,∴2222
CD OD OC6333
=--=
又∵
CD333
sin DOC
OD62
∠===,∴∠DOC=60°.
∴
2
60619
33363
36022
DOC
AOD
S S S
π
π
∆
⋅⋅
=-=-⨯⨯=
阴影扇形
(米2).
3.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表: 甲
2 6 7 7 8 乙 2
3
4 8 8
关于以上数据,说法正确的是( )
A .甲、乙的众数相同
B .甲、乙的中位数相同
C .甲的平均数小于乙的平均数
D .甲的方差小于乙的方差
解析:D
【解析】
【分析】
分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.
【详解】
甲:数据7出现了2次,次数最多,所以众数为7,
排序后最中间的数是7,所以中位数是7, 26778=
=65
x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,
排序后最中间的数是4,所以中位数是4,
23488=
=55
x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,
故选D.
【点睛】
本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.
4.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G ,下列结论:①AC 垂直平分EF ;②BE+DF=EF ;③当∠DAF=15°时,△AEF 为等边三角形;④当∠EAF=60°时,S △ABE =12
S △CEF ,其中正确的是( )
A .①③
B .②④
C .①③④
D .②③④
解析:C
【解析】
【分析】 ①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,
②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;
③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,
④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.
【详解】
①四边形ABCD 是正方形,
∴AB═AD,∠B=∠D=90°.
在Rt△ABE 和Rt△ADF 中,
AE AF AB AD
=⎧⎨=⎩, ∴Rt△ABE≌Rt△ADF(HL ),
∴BE=DF
∵BC=CD,
∴BC -BE=CD-DF ,即CE=CF ,
∵AE=AF,
∴AC 垂直平分EF .(故①正确).
②设BC=a ,CE=y ,
∴BE+DF =2(a-y )
y,
∴BE+DF与EF关系不确定,只有当y=(2)a时成立,(故②错误).③当∠DAF=15°时,
∵Rt△ABE≌Rt△ADF,
∴∠DAF=∠BAE=15°,
∴∠EAF=90°-2×15°=60°,
又∵AE=AF
∴△AEF为等边三角形.(故③正确).
④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:
(x+y)2+y2=2
∴x2=2y(x+y)
∵S△CEF=1
2
x2,S△ABE=
1
2
y(x+y),
∴S△ABE=1
2
S△CEF.(故④正确).
综上所述,正确的有①③④,
故选C.
【点睛】
本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
5.下列各数中是有理数的是()
A.πB.0 C D
解析:B
【解析】
【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.
【详解】A、π是无限不循环小数,属于无理数,故本选项错误;
B、0是有理数,故本选项正确;
C是无理数,故本选项错误;
D
故选B.
【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.
6.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>。