高中物理匀加速直线运动知识点汇总
- 格式:doc
- 大小:129.50 KB
- 文档页数:5
高一物理~必修一匀变速直线运动知识点归纳一、【概念及公式】沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。
若速度方向与加速度方向同向(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动。
速度无变化(a=0时),若初速度等于瞬时速度,且速度不改变,不增加也不减少,则运动状态为,匀速直线运动;若速度为0,则运动状态为静止。
基本公式:匀速直线运动的速度和时间公式为:v(t)=v(0)+at匀速直线运动的位移和时间公式为:s=v(0)t+1/2at^2匀速直线运动的位移和速度公式为:v(t)^2-v(0)^2=2as其中a为加速度,v(0)为初速度,v(t)为t秒时的速度s(t)为t秒时的位移条件:物体作匀变速直线运动须同时符合下述两条:1、受恒外力作用2、合外力与初速度在同一直线上。
二、【规律】位移公式推导:由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度。
匀变速直线运动的路程s=平均速度*时间,故s=[(v0+v)/2]*t利用速度公式v=v0+at,得s=[(v0+v0+at)/2]*t=[v0+at/2]*t=v0*t+1/2at^2平均速度=(初速度+末速度)/2=中间时刻的瞬时速度△X=aT^2(△X代表相邻相等时间段内位移差,T代表相邻相等时间段的时间长度)X为位移V为末速度Vo为初速度三、【初速度为零的匀变速直线运动的比例关系】基本比例关系①第1秒末、第2秒末、……、第n秒末的速度之比V1:V2:V3……:Vn=1:2:3:……:n。
②前1秒内、前2秒内、……、前n秒内的位移之比s1:s2:s3:……sn=1:4:9……:n^2。
③第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比xⅠ:xⅡ:xⅢ……:xn=1:3:5:……:(2n-1)。
匀加速直线运动知识点一:两种图象的比较及应用二:基本公式两个基本公式(规律): V t = V 0 + atS = v o t +12at 2 及几个重要推论: 1、 推论:V t 2 -V 02 = 2as (匀加速直线运动:a 为正值 匀减速直线运动:a 为正值)2、 A B 段中间时刻的即时速度: V t/ 2 =V V t 02+=s t(若为匀变速运动)等于这段的平均速度 3、 AB 段位移中点的即时速度: V s/2 = v v o t 222+ V t/ 2 =V =V V t 02+=s t ≤ V s/2 = v v o t 222+ 匀速:V t/2 =V s/2 ; 匀加速或匀减速直线运动:V t/2 <V s/24、 S 第t 秒 = St-S t-1= (v o t +12a t 2) -[v o ( t -1) +12a (t -1)2]= V 0 + a (t -12) 5、初速为零的匀加速直线运动规律①在1s 末 、2s 末、3s 末……ns 末的速度比为1:2:3……n ;②在1s 、2s 、3s ……ns 内的位移之比为12:22:32……n 2;③在第1s 内、第 2s 内、第3s 内……第ns 内的位移之比为1:3:5……(2n-1);④从静止开始通过连续相等位移所用时间之比为1:()21-:)23-……(n n --1) ⑤通过连续相等位移末速度比为1:2:3……n6、 匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.(先考虑减速至停的时间). 例1: 一个物体从距地面高为H 处的P 点自由下落,最后1S 内通过的位移是整个位移的9/25,则H=125M 2516gt 5.0)1t (g 5.022=-例2:将一物体竖直上抛,物体在第s 6内落下,距离为m 35,求此物体抛出时的初速度,2/10s m g =。
分析与解答:设初速度为v o ,取竖直向上为正方向,则第5.5s 末的瞬速度等于第6s 内平均速度。
高中物理匀变速直线运动知识点以下是高中物理中关于匀变速直线运动的一些重要知识点:1. 位移和位移公式:位移是物体从初始位置到最终位置的直线距离,用Δx表示。
当物体做匀变速直线运动时,位移与物体的初速度v0、末速度v、加速度a以及时间间隔t 之间满足位移公式:Δx = v0t + 1/2at²。
2. 速度和速度公式:速度是物体在单位时间内移动的距离,用v表示。
当物体做匀变速直线运动时,速度与物体的初速度v0、加速度a和时间间隔t之间满足速度公式:v = v0 + at。
3. 加速度和加速度公式:加速度是速度的改变率,用a表示。
当物体做匀变速直线运动时,加速度与位移Δx、初速度v0和时间间隔t之间满足加速度公式:a = 2(Δx -v0t) / t²。
4. 时间和时间公式:时间是运动持续的时间,用t表示。
当物体做匀变速直线运动时,时间与位移Δx、初速度v0和加速度a之间满足时间公式:t = (v - v0) / a。
5. 加速度与运动方程:当物体做匀变速直线运动时,速度与时间t的关系可由运动方程表示:v = v0 + at。
位移与时间t的关系可由运动方程表示:Δx = v0t + 1/2at²。
另外还有另一种形式的运动方程:v² = v0² + 2aΔx。
6. 匀变速直线运动的图像表示:匀变速直线运动可以用速度-时间图、位移-时间图和加速度-时间图来表示。
在速度-时间图中,匀速直线表示匀速运动,斜线表示匀变速运动;在位移-时间图中,直线表示匀速运动,抛物线表示匀变速运动;在加速度-时间图中,横线表示匀速运动,直线表示匀变速运动。
7. 自由落体运动:自由落体运动是一种特殊的匀变速直线运动,加速度恒定为重力加速度g。
自由落体运动的速度可用v = v0 + gt表示,位移可用Δx = v0t + 1/2gt²表示。
8. 瞬时速度和瞬时加速度:瞬时速度是物体在某一时刻的速度,用v表示;瞬时加速度是物体在某一时刻的加速度,用a表示。
高二物理《匀变速直线运动基本规律》知识点总结一、匀变速直线运动的规律1. 匀变速直线运动沿一条直线且加速度不变的运动。
2. 匀变速直线运动的基本规律(1)速度公式:v =v 0+at ;(2)位移公式:x =v 0t +12at 2; (3)位移速度关系式:v 2-v 20=2ax 。
二、匀变速直线运动的推论1. 三个推论(1)做匀变速直线运动的物体在某段时间内的中间时刻的瞬时速度等于这段时间内的平均速度,等于这段时间初、末时刻速度矢量和的一半。
平均速度公式:2v t =v =v 0+v 2; (2)连续相等的相邻时间间隔T 内的位移差为一定值:即∆x =aT 2(或x m −x n =(m −n)aT 2);(3)位移中点速度2v x =v 20+v 22。
2. 初速度为零的匀加速直线运动的四个重要推论(1)1T 末,2T 末,3T 末,…,nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n ;(2)1T 内,2T 内,3T 内,…,nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2 ;(3)第1个T 内,第2个T 内,第3个T 内,…,第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶(2-3)∶…∶(n -n -1) .三、自由落体运动和竖直上抛运动1. 自由落体运动 (1)条件:物体只在重力作用下,从静止开始下落;(2)基本规律①速度公式:v =gt ;②位移公式:x =12gt 2; ③速度位移关系式:v 2=2gx 。
2.竖直上抛运动(1)运动特点:加速度为g ,上升阶段做匀减速运动,下降阶段做自由落体运动;(2)运动性质:匀变速 直线运动;(3)基本规律①速度公式:v =v 0-gt ;②位移公式:x =v 0t -12gt 2。
高一物理匀变速直线运动知识点沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。
s(t)=1/2·at^2+v(0)t=【v(t)^2-v(0)^2】/(2a)={【v(t)+v(0)】/2}*tv(t)=v(0)+at其中a为加速度,v(0)为初速度,v(t)为t秒时的速度 s(t)为t秒时的位移速度公式:v=v0+at位移公式:x=v0t+1/2at²位移---速度公式:2ax=v2;-v02;条件:物体作匀变速直线运动须同时符合下述两条:⑴受恒外力作用⑵合外力与初速度在同一直线上。
高一物理匀变速直线运动考点问题一匀变速直线运动的基本应用解答运动学问题的基本思路[典题1](2016·南昌调研)出租车载客后,从高速公路入口处驶入高速公路,并从10时10分55秒开始做初速度为零的匀加速直线运动,经过10 s时,速度计显示速度为54 km/h。
求:(1)这时车离出发点距离;(2)车继续做匀加速直线运动,当速度计显示速度为108 km/h 时,车开始做匀速直线运动。
10时12分35秒时计价器里程表示数应为多少米?(车起动时,计价器里程表示数为零)[答案](1)75 m(2)2 700 m问题二两类特殊的匀减速直线运动1.刹车类问题。
汽车匀减速到速度为零后即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。
如果问题涉及最后阶段(到停止运动)的运动,可把该阶段看成反向的初速度为零、加速度不变的匀加速直线运动。
[典题2](2016·湛江模拟)以36 km/h的速度沿平直公路行驶的汽车,遇障碍物刹车后获得大小为a=4 m/s2的加速度,刹车后第三个2 s内,汽车走过的位移为()A.12.5 mB.2 mC.10 mD.0[答案]D2.双向可逆类问题。
第二章匀变速直线运动知识点匀变速直线运动,速度均匀变化的直线运动,即加速度不变的直线运动。
其速度时间图像是一条倾斜的直线,表示在任意相等的时间内速度的变化量都相同,即速度(v)的变化量与对应时间(t)的变化量之比保持不变(加速度不变),这样的运动是变速运动中最简单的运动形式,叫做匀变速直线运动。
[1]基本公式速度时间公式:位移时间公式:速度位移公式:其中a为加速度,;为初速度, 为末速度,t为该过程所用时间,x为该过程中的位移。
V=V0+at条件物体作匀变速直线运动须同时符合下述两条:(1)所受合外力不为零,且保持不变;(2)合外力与初速度在同一直线上。
分类在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
若速度方向与加速度方向相同(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动。
规律推导一、位移公式推导:(1)由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度中间时刻的瞬时速度=平均速度:平均速度公式:(2) 相邻相等时间段内位移差:二、速度公式推导(1)中间位移的速度(2)中间时刻的速度比例关系(1)重要比例关系由,得。
由,得,或。
由,得,或。
(2)基本比例(当初速度为0的匀加速运动)①第1秒末、第2秒末、……、第n秒末的速度之比推导:②前1秒内、前2秒内、……、前n秒内的位移之比推导:③第1个t内、第2个t内、…、第n个t内(相同时间内)的位移之比推导:④通过前1s、前2s、前3s……、前ns的位移所需时间之比推导:,当位移等比例增大时,根号内的比值也等比例增大。
⑤通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比推导:自由落体运动一、概念物体只在重力的作用下从静止开始下落的运动。
1、运动学特点:自由落体运动是初速度为零的匀加速直线运动。
高中物理匀加速直线运动知识点汇总一、机械运动一个物体相对于另一个物体的位置的改变,叫做机械运动,简称运动,它包括平动、转动和振动等运动形式.①运动是绝对的,静止是相对的。
②宏观、微观物体都处于永恒的运动中。
二、参考系:在描述一个物体运动时,选作标准的物体(假定为不动的物体)①描述一个物体是否运动,决定于它相对于所选的参考系的位置是否发生变化,由于所选的参考系并不是真正静止的,所以物体运动的描述只能是相对的。
②描述同一运动时,若以不同的物体作为参考系,描述的结果可能不同③参考系的选取原则上是任意的,但是有时选运动物体作为参考系,可能会给问题的分析、求解带来简便,例:甲、乙、丙三架观光电梯,甲中乘客看一高楼在向下运动;乙中乘客看甲在向下运动;丙中乘客看甲、乙都在向上运动.这三架电梯相对地面的运动情况是 [ ]A.甲向上、乙向下、丙不动B.甲向上、乙向上、丙不动C.甲向上、乙向上、丙向下D.甲向上、乙向上、丙也向上,但比甲、乙都慢三、质点研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代替物体的有质量的点做质点.质点没有形状、大小,却具有物体的全部质量。
质点是一个理想化的物理模型,实际并不存在,是为了使研究问题简化的一种科学抽象。
把物体抽象成质点的条件是:(1)作平动的物体由于各点的运动情况相同,可以选物体任意一个点的运动来代表整个物体的运动,可以当作质点处理。
(2)物体各部分运动情况虽然不同,但它的大小、形状及转动等对我们研究的问题影响极小,可以忽略不计(如研究绕太阳公转的地球的运动,地球仍可看成质点).由此可见,质点并非一定是小物体,同样,小物体也不一定都能当作质点.【平动的物体不一定都能看成质点,{物体的形状与运动的距离相比不能忽略};转动的物体可能看成质点来处理{研究绕太阳公转的地球的运动}】【能否看成质点一看研究问题,二看物理的形状与研究物体的关系】【一个实际物体能否看成质点,决定于物体的尺寸与物体间距相比的相对大小】例:下列关于质点的说法中,正确的是 [ ]A.体积很小的物体都可看成质点2B.质量很小的物体都可看成质点C.不论物体的质量多大,只要物体的尺寸跟物体间距相比甚小时,就可以看成质点D.只有低速运动的物体才可看成质点,高速运动的物体不可看作质点 四、位置、位移与路程1、位置:质点的位置可以用坐标系中的一个点来表示,在一维、二维、三维坐标系中表示为s(x) 、s (x ,y) 、s (x ,y ,z)2、位移:【矢量】①位移是表示质点位置的变化的物理量.用从初位置指向末位置的有向线段来表示,线段的长短表示位移的大小,箭头的方向表示位移的方向。
《匀变速直线运动》知识点整理《匀变速直线运动》知识点整理一、【概念及公式】沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。
s(t)=1/2?at^2+v(0)t=【v(t)^2-v(0)^2】/(2a)={【v(t)+v(0)】/2}*t v(t)=v(0)+at其中a为加速度,v(0)为初速度,v(t)为t秒时的速度 s(t)为t秒时的位移速度公式:v=v0+at位移公式:x=v0t+1/2at2;位移---速度公式:2ax=v2;-v02;条件:物体作匀变速直线运动须同时符合下述两条:受恒外力作用合外力与初速度在同一直线上。
二、【规律】瞬时速度与时间的关系:V1=V0+at位移与时间的关系:s=V0t+1/2?at^2瞬时速度与加速度、位移的关系:V^2-V0^2=2as位移公式 X=Vot+1/2?at ^2=Vo?t(匀速直线运动)位移公式推导:⑴由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度而匀变速直线运动的路程s=平均速度*时间,故s=[(v0+v)/2]?t利用速度公式v=v0+at,得s=[(v0+v0+at)/2]?t=[v0+at/2]?t=v0?t+1/2?at^2⑵利用微积分的基本定义可知,速度函数(关于时间)是位移函数的导数,而加速度函数是关于速度函数的导数,写成式子就是ds/dt=v,dv/dt=a,d2s/dt2=a于是v=∫adt=at+v0,v0就是初速度,可以是任意的常数进而有s=∫vdt=∫(at+v0)dt=1/2at^2+v0?t+C,(对于匀变速直线运动),显然t=0时,s=0,故这个任意常数C=0,于是有s=1/2?at^2+v0?t这就是位移公式。
推论 V^2-Vo^2=2ax平均速度=(初速度+末速度)/2=中间时刻的瞬时速度△X=aT^2(△X代表相邻相等时间段内位移差,T代表相邻相等时间段的时间长度)X为位移。
匀变速直线运动规律
一、加速度与运动性质:
1.a=0 时,其运动形式为匀速直线运动;
2.a 为恒量时,其运动形式为匀加速直线运动,若 a 与 v 同向,为匀加速直线运动, a 与 v 反向,为匀减速直线运动。
二、匀变速直线运动的公式:
1.匀变速直线运动的速度公式:υt=υ0+a t
2.匀变速直线运动的位移公式:S=υ0 t+1/2a t^2
3.匀变速直线运动的速度位移公式:υt^2=υ0^2+2aS
三、速度时间图像与位移时间图像
1.匀速直线运动的速度时间图像是一条与时间轴平
行的直线。
匀速直线运动的位移时间图像是一条与
倾斜的直线。
2.匀变速直线运动的位移时间图像是一条
抛物线。
匀变速直线运动的速度时间图像
是一条倾斜的直线。
例题一:
用升降机从井底提升物体。
升降机先由静止开始作匀加速运动,经过 5s 达到
10m/s,然后匀速运动 2s 后作匀减速运动,又经过 5s 恰好到达井口而停止, 试画出该
过程的速度图象,并求出井的深度?
例题二:
电车由静止开始作匀加速直线运动,加速度 0.5m/s2,途径相隔 125 米的 AB 两点,共用 10 秒钟,那么,电车经过 B 点的速度是多少?。
1 匀变速直线运动1.匀变速直线运动:沿着一条直线,且加速度不变的运动. 2.基本规律 (1)两个基本公式 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.(2)常用的导出公式①速度和位移公式:v 2-v 02=2ax . ②平均速度公式:v =v t 2=v 0+v2.③位移差公式:Δx =x n +1-x n =aT 2.即任意两个连续相等时间内的位移差是一个恒量.1.匀变速直线运动公式的选用一般情况下用两个基本公式可以解决,当遇到以下特殊情况时,用导出公式会提高解题的速度和准确率:(1)不涉及时间,比如从v 0匀加速到v 后求位移x ,可用v 2-v 02=2ax .(2)平均速度公式的应用:纸带运用v t 2=xt =v 求瞬时速度;传送带问题、板块问题、追及问题运用x =v 0+v2t 求位移或相对位移;带电粒子在匀强电场中的运动运用类平抛运动两个方向的速度、位移联系,如x =v 0t ,y =v y2t ,根据x 、y 的大小关系,确定v y 和v 0的关系.(3)位移差公式的应用:纸带运用Δx =x 2-x 1=aT 2,x m -x n =(m -n )aT 2求加速度,已知4段、5段、6段位移用逐差法求加速度.研究平抛运动实验,利用平抛运动轨迹,根据y 2-y 1=gT 2求时间间隔或求重力加速度. (4)初速度为零的比例式:特别应记住运动开始连续相等时间内的位移之比为1∶3∶5∶7∶…. 2.三种常见的方法:(1)全过程法:全过程中若加速度不变,虽然有往返运动,但可以全程列式,此时要注意各矢量的方向(即正负号).如竖直上抛运动、沿光滑斜面上滑等.(2)逆向思维法:对于末速度为零的匀减速直线运动,可以采用逆向思维法,倒过来看成是初速度为零的匀加速直线运动.如一个人投篮球垂直砸到篮球板上,这是一个斜抛运动,也可以运用逆向思维当作反向的平抛运动.(3)图象法:比如带电粒子在交变电场中的运动,可借助v -t 图象分析运动过程. 3.分析匀变速直线运动的技巧:“一画、二选、三注意” 一画:根据题意画出物体运动示意图,使运动过程直观清晰; 二选:选用合适的方法和公式;三注意:列方程前首先选取正方向,且所列的方程式中每一个物理量均需对应同一个物理过程.4.一个二级结论如图1,两段匀变速直线运动,先从静止匀加速再匀减速,若经相同时间,又回到原位置. 根据x 2=-x 1,可得到a 2=-3a 1.图1示例1 (平均速度法)(2016·上海卷·14)物体做匀加速直线运动,相继经过两段距离为16 m 的路程,第一段用时4 s ,第二段用时2 s ,则物体的加速度是( ) A.23 m/s 2 B.43 m/s 2 C.89 m/s 2 D.169m/s 2 答案 B解析 物体做匀加速直线运动,t 时间内的平均速度等于中间时刻的瞬时速度,在第一段内中间时刻的瞬时速度为:v 1=x t 1=164 m /s =4 m/s ;在第二段内中间时刻的瞬时速度为:v 2=xt 2=162 m /s =8 m/s ;则物体加速度为:a =v 2-v 1Δt =8-43 m/s 2=43 m/s 2,故选项B 正确. 示例2 (逆向思维法)(2019·全国卷Ⅰ·18)如图2,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H 4所用的时间为t 1,第四个H4所用的时间为t 2.不计空气阻力,则t 2t 1满足( )图2A .1<t 2t 1<2B .2<t 2t 1<3C .3<t 2t 1<4D .4<t 2t 1<5答案 C解析 本题应用逆向思维法求解,即运动员的竖直上抛运动可等同于从一定高度处开始的自由落体运动的逆运动,所以第四个H4所用的时间为t 2=2×H 4g ,第一个H4所用的时间为t 1=2H g-2×34H g ,因此有t 2t 1=12-3=2+3,即3<t 2t 1<4,选项C 正确. 示例3 (全过程法)如图3所示,一个可视为质点的滑块从倾角为30°的光滑固定斜面底端A 以10 m /s 的初速度上滑,斜面足够长,求:(g =10 m/s 2)图3(1)滑块从A 点开始又回到A 点所用的时间; (2)滑块到达距A 点7.5 m 处的B 点时所用的时间. 答案 (1)4 s (2)1 s 或3 s解析 (1)设滑块在斜面上的加速度为a . 由牛顿第二定律:mg sin θ=ma得a =g sin 30°滑块上滑、下滑过程中加速度不变 由全过程法分析,位移x 1=0由x 1=v 0t 1-12at 12,得t 1=4 s(另一解不符合题意,舍去)(2)滑块由A 至B ,位移x 2=7.5 m , 由x 2=v 0t -12at 2得t =1 s 或t =3 s.示例4 (初速度为零的比例式)两块足够大的平行金属极板水平放置,如图4甲所示,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向).在t =0时刻,由负极板释放一个初速度为零的带负电的粒子(不计重力).若电场强度E 0、磁感应强度B 0、粒子的比荷q m 均已知,且t 0=2πm qB 0.粒子在0~t 0时间内运动的位移为L ,且在5t 0时刻打在正极板上(在此之前未与极板相碰).求:图4(1)两极板之间的距离;(2)粒子在两极板之间做圆周运动的最大半径. 答案 (1)9L (2)4πmE 0qB 02解析 在0~t 0时间内粒子只受电场力作用,做初速度为零的匀加速直线运动.在t 0~2t 0时间内粒子只受洛伦兹力作用做匀速圆周运动,因为t 0=2πmqB 0,所以t 0~2t 0时间内粒子完成完整的圆周运动,在0~5t 0时间内粒子的运动轨迹如图所示.(1)粒子在电场中做直线运动的三段位移之比为x1∶x2∶x3=1∶3∶5,又x1=L所以两板距离d=x1+x2+x3=9L(2)t0末粒子的速度v1=at0=qE0m t0,3t0末粒子的速度v2=a·2t0=qE0m·2t0由q v B0=m v2r ,得r=m vqB0,则r1=E0t0B0,r2=2E0t0B0,r2>r1,所以粒子最大半径为r2,由于t0=2πmqB0则粒子最大半径r2=4πmE0qB20.。
1高中物理-必修一第2章-匀变速直线运动-知识点梳理 1、物体只在重力作用下从静止开始下落的运动称为自由落体运动。
自由落体运动是一个理想模型,当空气阻力对物体下落的影响小到可以忽略不计的时候,可以近似看做自由落体运动。
自由落体运动是速度均匀增加的的变速直线运动,即匀加速直线运动。
2、自由落体运动物体的v-t 图像为一条经过原点的倾斜直线,斜率就是下落物体的加速度大小,直线与时间轴所围成的“面积”就是自由落体运动经过时间t 的位移大小。
自由落体运动的加速度称为重力加速度,用g 表示,方向竖直向下,大小通常取9.8m/s 2。
3、自由落体的物体,下落速度v 与时间t 的关系为:v= gt ,变形式有t= v/g ;下落高度h 和t 的关系:h= 221gt ,变形式有下落速度v 与下落高度h 的关系为:v 2= 2gh ,也即h= g v2 。
4、如果告诉自由落体运动过程中经过中间某一段距离△h 所用的时间△t ,可以假设其前面所经过路程为h ,所用时间为t ,然后列出两个方程⎪⎪⎩⎪⎪⎨⎧∆+=∆+=22)(2121t t g h h gt h ,解方程组即可。
5、对于自由落体运动,某段时间内的末速度如果如果是v ,则这段时间内的平均速度是v/2。
6、自由落体运动等时间的比例规律:①△t 末、2△t 末、3△t 末......n △t 末的速度之比:v 1:v 2:v 3:...:v n =1:2:3:...:n ;②△t 内、2△t 内、3△t 内......n △t 内的位移之比:h 1:h 2:h 3:...:h n =12:22:32:...:n 2;③第一个△t 内、第二个△t 内、第三个△t 内......第n 个△t 内的位移之比:h ①:h ②:h ③:...:h N =1:3:5:...:(2n-1)。
7、自由落体运动中,求某一段时间△t 内的位移:法①,△h=222121初末gt gt -;法②,△h=v ·△t=t t t g ∆⋅+⋅2末始。
高中物理直线运动知识点(6篇)高中物理直线运动知识点1匀变速直线运动重要知识点讲解基本概念:物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。
也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。
●最核心公式末速度与时间关系:Vt=Vo+at位移与时间关系:x=Vot+at^2/2速度与位移关系:Vt^2-Vo^2=2as●重要公式补充(1)平均速度V=s/t;(2)中间时刻速度V(t)=(Vt+Vo)/2=x/t;(3)中间位置速度V(s)=[(Vo^2+Vt^2)/2]1/2;(4)公式推论Δs=aT^2;备注:式子中Δs为连续相邻相等时间(T)内位移之差,这个公式也是打点计时器求加速度实验的原理方程。
●物体作匀变速直线运动须同时符合下述两条:⑴受恒外力作用⑴合外力与初速度在同一直线上。
●重要比例关系由Vt=at,得Vt⑴t。
由s=(at^2)/2,得s⑴t^2,或t⑴2√s。
由Vt^2=2as,得s⑴Vt^2,或Vt⑴√s。
今天的内容就介绍到这里了。
高中物理直线运动知识点2一、基本关系式v=v0+at x=v0t+1/2at2 v2-vo2=2ax v=x/t=(v0+v)/2二、推论1、vt/2=v=(v0+v)/22、⑴x=at2 { xm-xn=(m-n)at2 }3、初速度为零的匀变速直线运动的比例式(1)初速度为0的n个连续相等的时间末的速度之比:V1:V2:V3: :Vn=1:2:3: :n(2)初速度为0的n个连续相等时间内全位移X之比:X1: X2: X3: :Xn=1:2(3)初速度为0的n个连续相等的时间内S之比:S1:S2:S3::Sn=1:3:5::(2n—1)(4)初速度为0的n个连续相等的位移内全时间t之比t1:t2:t3::tn=1:√2:√3::√n(5)初速度为0的n个连续相等的位移内t之比:t1:t2:t3::tn=1:(√2—1):(√3—√2)::(√n—√n—1) 应用基本关系式和推论时注意:(1)、确定研究对象在哪个运动过程,并根据题意画出示意图。
高中匀变速知识点总结匀变速运动的知识点主要包括直线匀变速运动和曲线匀变速运动的运动规律、位移、速度、加速度以及相关的公式和图解等内容。
一、直线匀变速运动的知识点总结1. 运动规律直线匀变速运动的速度每隔相等的时间段增加相等的数值,这就是匀变速运动的运动规律。
2. 位移直线匀变速运动的位移随时间的变化而变化,其公式为:s=v0t+1/2at^2,其中s表示位移,v0表示初速度,t表示时间,a表示加速度。
3. 速度直线匀变速运动的速度随时间的变化而变化,其公式为:v=v0+at,其中v表示速度,v0表示初速度,a表示加速度,t表示时间。
4. 加速度直线匀变速运动的加速度保持不变,其公式为:a=(v-v0)/t,其中a表示加速度,v表示速度,v0表示初速度,t表示时间。
二、曲线匀变速运动的知识点总结1. 运动规律曲线匀变速运动也遵循速度每隔相等的时间段增加相等的数值的运动规律,但由于其运动方向可能不断改变,所以需要考虑速度的瞬时方向。
2. 位移曲线匀变速运动的位移随时间的变化而变化,其计算方法与直线匀变速运动相似,只是需要考虑速度的瞬时方向。
3. 速度曲线匀变速运动的速度随时间的变化而变化,同样需要考虑速度的瞬时方向。
4. 加速度曲线匀变速运动的加速度保持不变,但由于其运动方向可能不断改变,所以需要考虑速度的瞬时方向。
三、匀变速运动的相关公式和图解1. 位移-时间图像匀变速运动的位移-时间图像通常为一个抛物线,其斜率表示速度,而曲线的弧度表示加速度。
2. 速度-时间图像匀变速运动的速度-时间图像通常为一条直线,其斜率表示加速度。
3. 加速度-时间图像匀变速运动的加速度-时间图像通常为一条水平直线,表示加速度保持不变。
以上就是匀变速运动的主要知识点总结,希望能对学习匀变速运动的同学有所帮助。
匀加速直线运动知识点总结
嘿,朋友们!今天咱就来好好唠唠匀加速直线运动的知识点。
啥是匀加速直线运动呢?简单来说,就是一个物体沿着直线,速度还在
均匀地增加。
就好比一辆汽车在笔直的公路上,油门踩到底,速度越来越快!比如,你看那赛车比赛,赛车在赛道上飞驰,那可不就是匀加速直线运动嘛!
先来说说加速度吧!加速度可是匀加速直线运动的核心哦。
它就像一个
小火箭,推着物体的速度越来越快。
比如说,火箭发射时,那加速度贼大,蹭蹭地往上冲!你说厉不厉害?
那怎么计算速度的变化呢?这时候匀加速直线运动的公式就派上用场啦!速度等于初速度加上加速度乘以时间。
想象一下,你跑步的时候,开始速度不快,但是你越跑越快,每过一秒速度就增加一些,最后冲刺的时候那速度可不得了!
还有位移呢!位移就是物体移动的距离。
它也有个公式,位移等于初速
度乘以时间加上二分之一加速度乘以时间的平方。
好比你骑自行车从家到学校,你走的路程就是位移呀!
在匀加速直线运动中,时间可是个关键因素呢!时间过得越久,速度变化就越大,位移也越大。
就好像你打游戏,时间玩得越长,你的等级就越高一样!
哎呀呀,匀加速直线运动其实一点都不难理解嘛!只要抓住这些关键知识点,再结合实际例子,是不是一下子就清楚啦?
我的观点就是:匀加速直线运动虽然听起来有点深奥,但只要用心去体会,多想想生活中的例子,就会发现它无处不在,也没那么难搞懂!相信大家都能掌握好它!。
高中物理必修一第二章匀变速直线运动的研究知识点总结归纳单选题1、一物体做直线运动,其加速度随时间变化的a−t图像如图所示。
下列v−t图像中,可能正确描述此物体运动的是()A.B.C.D.答案:DACD.t=0时刻,若物体的初速度为零,根据a−t图像可知,0~T2内物体向正方向做匀加速直线运动;T2~T内物体向正方向做匀速直线运动;T~3T2内物体向正方向做加速度大小不变的匀减速直线运动;3T2~2T内物体向负方向做匀加速直线运动,故D正确,AC错误;B.t=0时刻,若物体的初速度为v0,方向为正方向,,根据a−t图像可知,0~T2内物体做匀加速直线运动,T2~T内物体做匀速直线运动;T时刻开始做加速大小不变的匀减速直线运动,故B错误。
故选D。
2、关于自由落体加速度,下列说法正确的是()A.物体的质量越大,下落时加速度越大B.在同一高度同时由静止释放一大一小两个金属球,二者同时着地,说明二者运动的加速度相同,这个加速度就是当地的自由落体加速度C.北京的自由落体加速度比广东的稍小D.以上说法都不对答案:BA.自由落体运动是忽略空气阻力、只在重力作用下的运动,无论质量大小,下落时加速度都是g,A错误;BD.金属球受到的空气阻力远小于金属球的重力,金属球做自由落体运动,故金属球运动的加速度为当地的自由落体加速度,B正确,D错误;C.纬度越高,自由落体加速度越大,故北京的自由落体加速度比广东的稍大,C错误。
故选B。
3、小明和小华操控各自的玩具赛车甲、乙在小区平直的路面上做直线运动,t=0时刻两赛车恰好并排,此后两赛车运动的位移x与时间t的比值随时间t的关系如图所示,对于甲、乙两赛车前2 s的运动,下列说法正确的是()A.t=1 s时,甲在乙的前面且相距最远B.t=1 s时,甲、乙两赛车相遇C.t=2 s时,甲在乙的前面且相距最远D.t=2 s时,甲、乙两赛车相遇答案:B甲赛车xt恒定不变,故做匀速直线运动,速度为v甲=1 m/s。
高考物理匀变速直线运动三大规律总结一、内容简述大家都知道,高考物理中的匀变速直线运动是一大重点。
关于这个知识点,它其实有一些核心规律我们得掌握。
接下来我就给大家简单梳理一下这三大规律,希望能帮大家更好地理解和掌握这部分内容。
毕竟高中物理是个难关,我们得一起加油才行。
第一个规律呢,是关于匀变速直线运动的速度和时间的关系。
简单来说就是物体在固定的速度下加速或者减速,它的速度是怎么随着时间变化的。
这个规律很重要,因为它能帮助我们理解物体运动的速度变化过程。
第二个规律是位移和时间的关系,在匀变速直线运动中,物体在不同的时间段里会走不同的距离。
这个规律就是告诉我们这个距离和时间是怎么关联的,掌握了这一点,我们就能更好地预测物体在一段时间内会移动多远。
这三大规律都是帮助我们理解和预测匀变速直线运动的物体的运动过程。
掌握了这些,我们在解决物理问题时就能事半功倍了。
所以大家得好好琢磨琢磨这些规律,加油哦!1. 简述匀变速直线运动在高考物理中的重要性高考物理中,匀变速直线运动可是个重头戏。
无论是初学者还是资深考生,都得好好掌握。
这个运动规律不仅基础,还非常实用。
毕竟很多物理现象都能用匀变速直线运动来解释,简单地说它就是物体速度一直增加或减少,方向还保持不变的那种运动。
高考物理里,它的重要性可不是闹着玩的。
掌握了匀变速直线运动,就等于迈过了物理学习的一大门槛。
接下来我们就来详细说说匀变速直线运动的三大规律。
2. 引出本文将重点介绍的三大规律接下来就让我带你一起深入了解一下高考物理中的匀变速直线运动的三大规律。
你可能会觉得,高中物理是不是都是高深莫测的公式和理论?其实不然只要你掌握了基础,理解这些规律其实并不难。
接下来我们就一起来揭开这三大规律的神秘面纱,让你在高考物理中轻松应对匀变速直线运动的问题。
二、匀变速直线运动的基本概念高中物理中,匀变速直线运动是考察重点之一,这类运动有规律可循,对于我们高考备考非常关键。
大家都知道什么是匀变速直线运动吗?简单来说就是速度一直按照一定规律变化的直线运动,这种运动有个特点,那就是加速度恒定不变。
高中物理匀加速直线运动公式(原创版)目录1.匀加速直线运动的定义和特点2.匀加速直线运动的速度公式3.匀加速直线运动的位移公式4.匀加速直线运动的加速度公式5.匀加速直线运动的应用举例正文一、匀加速直线运动的定义和特点匀加速直线运动是指物体在一条直线上做运动,其加速度恒定不变,速度随时间均匀变化的运动。
在这种运动中,加速度方向与速度方向平行,速度的变化量与加速度和时间成正比。
二、匀加速直线运动的速度公式1.平均速度:v 平 = s / t(定义式)2.中间时刻速度:v = (v0 + vt) / 2(其中 v0 为初速度,vt 为末速度)3.末速度:v = v0 + at(其中 a 为加速度,t 为时间)三、匀加速直线运动的位移公式1.位移:s = v0t + 1/2at^2(其中v0为初速度,a为加速度,t为时间)2.中间位置速度:v = (v0 + vt) / 2(其中 v0 为初速度,vt 为末速度)四、匀加速直线运动的加速度公式加速度:a = (v - v0) / t(其中 v 为末速度,v0 为初速度,t 为时间)五、匀加速直线运动的应用举例1.物体从静止开始,以 2 m/s^2的加速度沿直线运动,求3秒后的速度和位移。
解:初速度 v0 = 0,加速度 a = 2 m/s^2,时间t = 3 s末速度 v = v0 + at = 0 + 2 * 3 = 6 m/s位移 s = v0t + 1/2at^2 = 0 * 3 + 1/2 * 2 * 3^2 = 9 m2.一物体沿直线以 5 m/s的速度做匀加速运动,加速度为3 m/s^2,求5秒后的速度和位移。
【知识梳理】一、加速度:1.物理意义:描述速度改变快慢及方向的物理量,是矢量.2.定义:速度的改变量跟发生这一改变所用时间的比值.3.公式:a=tv ∆ =t v v 0- 4.大小:等于单位时间内速度的改变量.5.方向:与速度改变量的方向相同.6.理解:要注意区别速度(v)、速度的改变(Δv)、速度的变化率(tv ∆).加速度的大小即t v ∆,而加速度的方向即Δv 的方向. 加速度描述物体速度变化快慢的物理量,a=△v/△t (又叫速度的变化率),是矢量。
a 的方向只与△v 的方向相同(即与合外力方向相同)。
点评1:(1)加速度与速度没有直接关系:加速度很大,速度可以很小、可以很大、也可以为零(某瞬时);加速度很小,速度可以很小、可以很大、也可以为零(某瞬时);(2)加速度与速度的变化量没有直接关系:加速度很大,速度变化量可以很小、也可以很大;加速度很小,速度变化量可以很大、也可以很小。
加速度是“变化率”——表示变化的快慢,不表示变化的大小。
点评2:物体是否作加速运动,决定于加速度和速度的方向关系,而与加速度的大小无关。
加速度的增大或减小只表示速度变化快慢程度增大或减小,不表示速度增大或减小。
(1)当加速度方向与速度方向相同时,物体作加速运动,速度增大;若加速度增大,速度增大得越来越快;若加速度减小,速度增大得越来越慢(仍然增大)。
(2)当加速度方向与速度方向相反时,物体作减速运动,速度减小;若加速度增大,速度减小得越来越快;若加速度减小,速度减小得越来越慢(仍然减小)。
二、匀变速直线运动的v-t 图像(1)这种在任意图 3(2)间变化的v ~t A 、纵轴上的截距其物理意义是运动物体的初速度v 0; B 、图线的斜率其物理意义是运动物体的加速度a ;C 、图线下的“面积”其物理意义是运动物体在相应的时间内所发生的位移s 。
v v三、匀变速直线运动1、请同学写出匀变速直线运动的三个基本公式。
高中物理匀加速直线运动知识点汇总一、机械运动一个物体相对于另一个物体的位置的改变,叫做机械运动,简称运动,它包括平动、转动和振动等运动形式.①运动是绝对的,静止是相对的。
②宏观、微观物体都处于永恒的运动中。
二、参考系:在描述一个物体运动时,选作标准的物体(假定为不动的物体)①描述一个物体是否运动,决定于它相对于所选的参考系的位置是否发生变化,由于所选的参考系并不是真正静止的,所以物体运动的描述只能是相对的。
②描述同一运动时,若以不同的物体作为参考系,描述的结果可能不同③参考系的选取原则上是任意的,但是有时选运动物体作为参考系,可能会给问题的分析、求解带来简便,三、质点研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代替物体的有质量的点做质点.质点没有形状、大小,却具有物体的全部质量。
质点是一个理想化的物理模型,实际并不存在,是为了使研究问题简化的一种科学抽象。
把物体抽象成质点的条件是:(1)作平动的物体由于各点的运动情况相同,可以选物体任意一个点的运动来代表整个物体的运动,可以当作质点处理。
(2)物体各部分运动情况虽然不同,但它的大小、形状及转动等对我们研究的问题影响极小,可以忽略不计(如研究绕太阳公转的地球的运动,地球仍可看成质点).由此可见,质点并非一定是小物体,同样,小物体也不一定都能当作质点.【平动的物体不一定都能看成质点,{物体的形状与运动的距离相比不能忽略};转动的物体可能看成质点来处理{研究绕太阳公转的地球的运动}】【能否看成质点一看研究问题,二看物理的形状与研究物体的关系】【一个实际物体能否看成质点,决定于物体的尺寸与物体间距相比的相对大小】四、位置、位移与路程1、位置:质点的位置可以用坐标系中的一个点来表示,在一维、二维、三维坐标系中表示为s(x) 、s (x,y) 、s (x,y,z)2、位移:【矢量】①位移是表示质点位置的变化的物理量.用从初位置指向末位置的有向线段来表示,线段的长短表示位移的大小,箭头的方向表示位移的方向。
②位移是矢量,既有大小,又有方向。
它的方向由初位置指向末位置.注意:位移的方向不一定是质点的运动方向。
如:竖直上抛物体下落时,仍位于抛出点的上方;弹簧振子向平衡位置运动时。
③单位:m 3、路程【标量】:路程是指质点所通过的实际轨迹的长度.路程是标量,只有大小,没有方向;路程和位移是有区别的:一般地路程大于位移的大小,只有做直线运动的质点始终向着同一个方向运动时,位移的大小才等于路程. 五、速度速度:表示质点的运动快慢和方向,是矢量。
它的大小用位移和时间的比值定义,方向就是物体的运动方向;轨迹是曲线,则为该点的切线方向。
速率:在某一时刻物体速度的大小叫做速率,速率是标量.瞬时速度:由速度定义求出的速度实际上是平均速度,它表示运动物体在某段时间内的平均快慢程度,它只能粗略地描述物体的运动快慢,要精确地描述运动快慢,就要知道物体在某个时刻(或经过某个位置)时运动的快慢,因此而引入瞬时速度的概念。
瞬时速度的含义:运动物体在某一时刻(或经过某一位置)时的速度,叫做瞬时速度平均速度:运动物体位移和所用时间的比值叫做平均速度。
定义式:tsv ∆∆==时间位移一平均速率:平均速率等于路程与时间的比值。
tSv ==时间路程一平均速度的大小不一定等于平均速率。
六、加速度物理意义:描述速度变化快慢的物理量(包括大小和方向的变化),速度矢端曲线的切线方向。
大小定义:速度的变化与所用时间的比值。
定义式:a=tv v t v 0t -=∆∆(即单位时间内速度的变化)a 也叫做速度的变化率。
加速度是矢量:现象上与速度变化方向相同,本质上与质点所受合外力方向一致。
判断质点作加减速运动的方法:是加速度的方向与速度方向的比较,若同方向表示加速。
若反方向表示减速。
【速度增加加速度可能减小】 七、基本公式两个基本公式(规律): V t = V 0 + atS = v o t +12at 2及几个重要推论: 1、 推论:V t 2-V 02= 2as (匀加速直线运动:a 为正值 匀减速直线运动:a 为正值)2、 A B 段中间时刻的即时速度: V t/ 2 =V V t 02+=st(若为匀变速运动)等于这段的平均速度 3、 AB 段位移中点的即时速度: V s/2 = v v o t222+V t/ 2 =V =V V t 02+=s t ≤ V s/2 = v v o t222+匀速:V t/2 =V s/2 ; 匀加速或匀减速直线运动:V t/2 <V s/24、 S 第t 秒 = St-S t-1= (v o t +12a t 2) -[v o ( t -1) +12a (t -1)2]= V 0 + a (t -12) 5、初速为零的匀加速直线运动规律①在1s 末 、2s 末、3s 末……ns 末的速度比为1:2:3……n ; ②在1s 、2s 、3s ……ns 内的位移之比为12:22:32……n 2;③在第1s 内、第 2s 内、第3s 内……第ns 内的位移之比为1:3:5……(2n-1);④从静止开始通过连续相等位移所用时间之比为1:()21-:)23-……(n n --1) ⑤通过连续相等位移末速度比为 1:2:3……n6、 匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.(先考虑减速至停的时间). 例2:将一物体竖直上抛,物体在第s 6内落下,距离为m 35,求此物体抛出时的初速度,2/10s m g =。
分析与解答:设初速度为v o ,取竖直向上为正方向,则第5.5s 末的瞬速度等于第6s 内平均速度。
s /m 35135t s v v 5.5-=-=== 而 gt v v o -=,5.510v 35o ⨯-=- ∴=v m s o 20/ [易错题辨析]例4 :气球以10m/s 的速度匀速竖直上升,从气球上掉下一个物体,经17s 到达地面。
求物体刚脱离气球时气球的高度(1275m)。
(g=10m/s2)例5:经检测汽车A 的制动性能:以标准速度20m/s 在平直公路上行使时,制动后40s 停下来。
现A 在平直公路上以20m/s 的速度行使发现前方180m 处有一货车B 以6m/s 的速度同向匀速行使,司机立即制动,能否发生撞车事故?八、竖直上抛运动:(速度和时间的对称)分过程:上升过程匀减速直线运动,下落过程初速为0的匀加速直线运动. 全过程:是初速度为V 0加速度为-g 的匀减速直线运动。
(1)上升最大高度:H = Vgo 22(2)上升的时间:t=V go(3)上升、下落经过同一位置时的加速度相同,而速度等值反向(忽略阻力) (4)上升、下落经过同一段位移的时间相等。
(忽略阻力) (5)从抛出到落回原位置时间:t =2gV o(忽略阻力) (6)适用全过程S = V o t -12g t 2 ; V t = V o -g t ; V t 2-V o 2= -2gS (S 、V t 的正、负号的理解)(7)有空气阻力时上升时间与下降时间和无法与自由落体上升与下降时间和比较(阻力大小如已知可以计算) 十、游标卡尺与螺旋测微器 1、游标卡尺读数: 主尺刻度+对准刻度*精度如11+7*0.1 (精度0.1即10格9格精确值,7为对齐刻度无估读) 12+15*0.05 (精度0.05即20格对应19格精确值,15为对齐刻度无估读)【当卡尺的零刻度被覆盖时从后往前读数】如第17个格与主尺19厘米对齐,则读书为19-0.95*17 2、螺旋测微器读数11+46.5*0.01 (精度0.01即100格99格精确值,46.5为对准刻度有估读) 十一、实验规律:1、使用电磁打点计时器与电火花计时器区别电磁打点计时器(4-6V 低压交流电源)、 电火花计时器(220V 交流电源) 2、通过打点计时器在纸带上打点(或照像法记录在底片上)来研究物体的运动规律 3、实验中应挂合适的砝码(砝码过多速度过快,过少速度太慢)初速无论是否为零,只要是匀变速直线运动的质点,就具有下面两个很重要的特点:在连续相邻相等时间间隔内的位移之差为一常数;∆s = aT 2(判断物体是否作匀变速运动的依据)。
中间时刻的瞬时速度等于这段时间的平均速度 (运用V 可快速求位移) 【注意】:⑴是判断物体是否作匀变速直线运动的方法。
∆s = aT 2⑵求的方法 V =st 2Ts s t s 2v v v v n 1n t 0t/2+==+==+平⑶求a 方法: ① ∆s = aT 2②3+N S 一N S =3 aT 2③ Sm 一Sn=( m-n) aT 2(4)画出图线根据各计数点的速度,图线的斜率等于a ; 4、识图方法:一轴、二线、三斜率、四面积、五截距、六交点 探究匀变速直线运动实验:右图为打点计时器打下的纸带。
选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O ,然后每5个点取一个计数点A 、B 、C 、D …。
(或相邻两计数点间有四个点未画出)测出相邻计数点间的距离s 1、s 2、s 3 … 利用打下的纸带可以:⑴求任一计数点对应的即时速度v:如T ss vc232+=(其中记数周期:T=5×0.02s=0.1s)⑵利用上图中任意相邻的两段位移求a:如223 T ss a -=⑶利用“逐差法”求a:()()23216549Tssssssa++-++=⑷利用v-t图象求a:求出A、B、C、D、E、F各点的即时速度,画出如图的v-t图线,图线的斜率就是加速度a。
【注意】:点 a. 打点计时器打的点还是人为选取的计数点距离 b. 纸带的记录方式,相邻记数间的距离还是各点距第一个记数点的距离。
周期 c. 时间间隔与选计数点的方式有关(50Hz,打点周期0.02s,常以打点的5个间隔作为一个记时单位)即区分打点周期和记数周期。
d. 注意单位。
一般为cm实验研究4、实验注意事项*******1)电源电压与频率2)实验前检查打点计时器的稳定性与清晰度,必要时调节指针高度和换复写纸3)【开始释放小车时应使小车靠近打点计时器】4)【先通电在放车,车停止时及时断开电源】5)要防止钩码落地和小车与滑轮相撞,【当小车到达滑轮前及时用手按住】6)【牵引小车的钩码个数适量】,(砝码过多速度过快,点太少;过少速度太慢,各段位移无太大差别)7)区别计时器打点与人为取点8)多测几组数据以尽量减少误差9)描点最好使用坐标纸。