五年级数学下册长方体和正方体的认识、表面积、体积单位及进率
- 格式:pptx
- 大小:1.34 MB
- 文档页数:47
第三讲正方体和长方体一、知识梳理长方体和正方体都是立体图形,其特征如下:长方体和正方体的表面积及体积的计算:长方体和正方体的关系:如图(2) 长方体所具备的特征正方体都具备,所以正方体是一种特殊的长方体。
它们的关系可以用下图来表示。
表面积 体积长方体 bh ah ab S 222++=表()bh ah ab S ++⨯=2表 (长×宽 + 长×高 + 宽×高)×2abh V = 或=V 长×宽×高 sh V =正方体 26a S =表=表S 棱长×棱长×63a V = 或=V 棱长×棱长×棱长h s V ⨯=二、方法归纳1.理解长方体、正方体中挖去一个正方体的,体积变小了,但是表面积增加了,把底下的面与上面挖去的面结合,在原来的表面积不变的情况下表面积每减去一个正方体就增加4个小正方形的面积。
2.理解图形的截去和增加相同的一部分,减少或增加的是这一部分的表面积。
三、课堂精讲:例1 一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是()平方厘米。
【本题设计意图】理解长方体的棱长和公式。
【搭配课堂训练题】【难度分级】 A1、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。
2.一个长7厘米,宽6厘米,高3厘米的礼盒,用绳子将它捆起来,接头处5厘米,至少要()分米的绳子。
例2一块长方形铁皮,长32厘米,在它四个顶角分别剪去边长4厘米的正方形,然后折起来焊成一个无盖的长方体铁皮盒。
已知这个铁皮盒的容积是768立方厘米。
原来这块铁皮的面积是多少?【本题设计意图】理解平面图形转化为立体图形的过程中数量的变化,理解长方体四角截去一个正方形折叠起来的长方体的长等于原来长方形的长减去4×2,长方体的,宽等于原来长方形的宽减去4×2,长方体的高等于原来长方形中减去的正方形的边长。
正方体长方体重点题型精讲(一)知识1:长方体和正方体的认识注意:长方体至少可以有两个面是正方形,最多可以有6个面是正方形,但不会存在3个、4个、5个面是正方形 练习:(1)判断和填空:长方体的六个面一定是长方形; ( ) 正方体的六个面面积一定相等; ( )一个长方体(非正方体) 最多有四个面面积相等; ( )相交于一个顶点的三条棱相等的长方体一定是正方体。
( ) 一个长方体中,可能有4个面是正方形。
( ) 正方体是特殊的长方体。
( )有两个面是正方形的长方体一定是正方体。
( )一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)一个长方体(非正方体)最多有( )个面是正方形,最多有( )条棱长度相等。
(3)一个长方体(非正方体)的底面是一个正方形,则它的4个侧面是( )形。
(4)正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
(5)把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
知识2:棱长和公式变形长方体棱长和=(长+宽+高)×长+宽+高=棱长和÷4 长方体棱长和=右面周长×2+长×4长方体棱长和=下面周长×2+高×4 长方体棱长和=前面周长×2+宽×4 正方体棱长和=棱长×12 棱长=棱长和÷12 例题:1、一只鱼缸,棱长和为280cm ,其中,底面周长为50cm ,右面周长为40cm ,前面周长为50cm ,鱼缸的长、宽、高各是多少?2、有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?练习1、一个长方体的棱长总和是 80厘米,其中长是 10厘米,宽是 7厘米,高是()厘米。
2、有一个长方体的鱼缸,长50厘米,宽30厘米,高30厘米,需要在用铝合金包裹玻璃连接处,需要()米的铝合金3、把两个棱长 1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析教学目标1、通过观察、操作,认识长方体和正方的特征以及它们的展开图。
2、通过实例,理解体积(包括容积)的含义,认识常用的度量单位(立方米、立方分米、立方厘米、升、毫升),建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,会利用单位间的进率进行简单的换算。
3、探索并掌握长方体、正方体的体积和表面积的计算方法,并能解决一些简单的实际问题。
4、探索某些实物体积的测量方法。
二、内容安排三、各小节的教材说明和教学建议例1、例2例3例1、例2例6(一)长方体和正方体的认识(第18~22页)a、理解长方体各部分的名称,面、棱、顶点。
b、理解和掌握长方体的特征,形成长方体的概念。
长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
c、认识长方体的长、宽、高。
d、理解和掌握正方体的特征,形成正方体的概念。
正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
e、长方体和正方体的相同点和不同点f、长方体和正方体的关系本小节学生应掌握的基本技能正确找出长方体横放、竖放、侧放几种不同情况下摆放的长、宽、高。
培养学生的动手能力和观察能力。
例如:用附页的图样做长方体和正方体;用小棒、橡皮泥做长方体框架;测量长方体的长、宽、高;用棱长1厘米的小正方体搭一搭等等。
运用所学知识解决实际问题。
例如:练习五中的第6题,学生要明确需要的彩灯线实际上是哪些棱长之和。
再例如练习五的第9题,要教给学生做这类题的方法对例题的理解主题图教材首先呈现了一些长方体或正方体形状的建筑物和生活用品。
让学生观察它们的形状,其落脚点是让学生感受到生活中很多物品的形状都是长方体和正方体的。
为进一步研究长方体,正方体的特征做准备。
看完主题图后,可以让学生说一说生活中还有哪些物体的形状是长方体或正方体的。
然后从实物图中抽象出长方体的几何直观图,让学生观察这个长方体,图中有什么?学生回答有面、线段、顶点。
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
第3单元长方体和正方体本单元的内容是在学生已经初步认识了一些简单的立体图形——长方体、正方体、圆柱和球的基础上,比较深入地研究立体图形,是从二维空间到三维空间的一次重要转化,系统学习长方体、正方体的有关知识,是学生发展空间观念的一次飞跃。
长方体和正方体是最基本的立体图形,通过学习长方体、正方体,可使学生对周围的空间和空间中的物体形成初步的空间观念,是学生进一步学习其他立体图形的基础。
另外,长方体和正方体体积的计算,也是形成体积的概念,掌握体积的计量单位和计算各种几何形体体积的基础。
教科书非常注重与实际生活的联系,结合学生熟悉的事物进行概念理解,注重用所学的知识解决实际问题。
分三小节编排:1.长方体和正方体的认识,主要教学生认识长方体、正方体的特征;2.长方体和正方体的表面积;3.长方体和正方体的体积。
在“长方体和正方体的体积”一节中,还介绍了容积的概念及体积单位、容积单位间的进率、名数的换算,并探索了某些实物体积的测量方法。
教学重点是认识长方体和正方体的特征,理解表面积、体积、容积的概念,掌握长方体和正方体的表面积、体积的计算方法,建立体积、容积单位表象,灵活运用所学知识解决简单的实际问题。
在学习本单元内容之前,学生已经能够直观地认识一些平面图形和立体图形,能从生活中找到大量的立体图形素材,并能通过这些素材发现一些基本特征。
本单元是在此基础上系统学习长方体和正方体的有关知识。
其中,表面积是学生对面积概念的拓展,体积对学生来说更是一个全新的概念,且学生对“物体占有一定的空间”这句话的理解有一定的困难。
因此,教学时要充分利用故事、实验、比较等方法,让学生切实感悟到物体占有空间,不同物体所占空间有大有小,从而深刻地理解体积的含义,为后面学习圆柱的体积计算作铺垫。
1.充分调动学生已有的知识经验,利用学生熟悉的教学资源,通过指、摸、比、剪、倒、估等操作实验活动认识长方体、正方体的特征,建立体积、容积单位表象,培养、发展学生的空间观念。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析1.通过观察、操作,学生能够认识长方体和正方体的特征以及它们的展开图。
2.学生能够理解体积(包括容积)的含义,并能够使用常用的度量单位(立方米、立方分米、立方厘米、升、毫升)建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,并能够进行简单的换算。
3.学生能够掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
4.学生能够探索某些实物体积的测量方法。
长方体和正方体的认识本小节介绍了长方体和正方体的特征和形状,学生需要理解长方体各部分的名称,面、棱、顶点,并能够形成长方体和正方体的概念。
长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形,而正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
长方体和正方体的体积和表面积计算本小节介绍了长方体和正方体的体积和表面积的计算方法,学生需要掌握体积计算公式的推导和体积单位间的进率及名数的换算。
同时,学生需要理解表面积的含义,并能够计算出长方体和正方体的表面积。
容积和容积单位本小节介绍了容积和容积单位的概念,学生需要理解容积的含义,并能够使用常用的容积单位(升、毫升)进行换算。
不规则物体的体积本小节介绍了如何测量不规则物体的体积,学生需要探索并掌握测量不规则物体体积的方法。
总体来说,本单元的教学目标是让学生通过观察、操作,认识长方体和正方体的特征以及它们的展开图,理解体积(包括容积)的含义,掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
同时,学生需要探索某些实物体积的测量方法。
同。
第二个价值是通过操作让学生深入理解长、宽、高的概念。
建议在活动中引导学生思考:为什么要把12条棱分成三组?为什么这三组棱分别叫长、宽、高?通过思考和操作,学生会逐渐理解长、宽、高的概念和它们之间的关系。
练五是应用题,要求学生根据长方体的特征计算面积、体积等。
页眉内容第二单元:《长方体(一)》一、长方体的认识知识点:1、认识长方体、正方体,了解各部分的名称。
2、长方体、正方体各自的特点长方体有6个面,每个面都是长方形,相对的两个面完全相同;有8个顶点;有12条棱,12条棱分成3组,每组4条棱一样长。
同一个顶点的3条棱分别代表长方体的长、宽、高。
当长方体有一组相对的面是正方形时,它的另外4个面是完全相同的长方形,此时它有8条棱一样长。
是完全一样的正方形;8个顶点;12条棱一样长。
4、能计算长方体、正方体的棱长总和;知道棱长总和,会求长、宽、高。
长方体的棱长总和=(长+宽+高)×4,或者:长方体的棱长总和= 长×4+宽×4+高×4用字母表示: L=(a+b+h) ×4 或者:L=a ×4+b×4+c×4.长方体的长=棱长总和÷4-(宽+高)用字母表示: a=L÷4-(b+h)长方体的宽=棱长总和÷4-(长+高)用字母表示: b=L÷4-(a+h)长方体的高=棱长总和÷4-(长+宽)用字母表示: h=L÷4-(a+b)正方体的棱长总和=棱长×12用字母表示: L=12a正方体的棱长=棱长总和÷12用字母表示: a=L÷12知识巩固:二、展开与折叠知识点:1、认识并了解长方体和正方体的平面展开图。
2、了解正方体平面展开图的几种形式,并以此来判断。
一、正方体表面展开图的三种情况1、正方体展开后有四个面在同一层正方体因为有两个面必须作为底面,所以平面展开图中,最多有四个面展开后处在同一层,作为底的两个面只能处在四个面这一层的两侧,利用排列组合知识可得如下六种情况:2、正方体展开后有三个面在同一层有三个面在同一层,剩下的三个面分别在两侧,有如下三种情形:3、二面三行,像楼梯;三面二行,两台阶知识巩固:三、长方体的表面积1、理解表面积的意义:长方体的表面积是指六个面的面积之和。
五年级数学下册第三单元《长方体和正方体》整体规划教学内容:人教版义务教育课程标准实验教科书五年级数学下册第三单元的内容《长方体和正方体》。
教材分析:《长方体和正方体》是人教版数学第十册第三单元内容,本单元分三小节编排:长方体和正方体的认识,长方体和正方体的表面积,长方体和正方体的体积。
在长方体和正方体的体积一节中,还介绍了容积的概念。
同时,按照《标准》的要求,新增加了探索某些实物体积的测量方法。
具体内容安排如下:本单元非常重视与实际生活的联系,主要体现在以下几方面。
(1)图形和概念的认识,结合学生所熟悉的事物进行。
如长方体、正方体特征的认识,安排了让学生说出纸巾盒、数学课本、粉笔盒等的形状、长、宽、高等练习。
(2)注意用所学的知识解决实际问题。
在各部分知识的学习中,都注意学以致用。
如在长方体、正方体认识时,安排了计算俱乐部四周要安多长的彩灯线等练习;在学习表面积时,安排了大量的根据具体情况计算物体表面积的内容。
(3)选取具有鲜明时代特征的素材。
如计算拼插奥运墙所用积木的体积,为“神舟五号”载人航天飞船返回舱的容积选取合适的容积单位等。
即巩固了所学数学知识,又激发了学生的民族自豪感。
体积对学生来说是一个新概念,物体占有一定的空间对学生来说理解有一定的困难。
为此,教材先通过学生熟悉的“乌鸦喝水”的故事,以形象、生动的方式,让学生初步感知物体占有空间。
然后通过把石头放入有水的玻璃杯里的实验,让学生进一步体验物体确实占有空间,为引出体积概念做充分的感知准备。
在学习容积时,计算不规则物体的体积,让学生利用已建立的体积概念想到可以用排水法求得不规则物体的体积,加深对体积概念的认识。
本单元一些概念和计算方法都是通过学生动手操作、自主探索来学习的。
如,体积单位,就是通过让学生回顾旧知、迁移类推引出来的。
教材通过比较两个不容易看出大小的长方体的体积,让学生由比较物体的长度有统一的长度单位,比较物体的面积有统一的面积单位,想到比较物体的体积应有统一的体积单位,由此引出体积单位。
五年级数学(下)第三单元整理复习集体备课教案
主备老师:甘世鹏参与成员:沈小琴、周晓妮、谭汝红、杨剑辉
知识点3:正方体和长方体的联系与区别。
正方体是特殊的长方体,长方体中包含着正方体,用集合圈表示为:
我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。
知识点4:棱长和的计算:
长方体棱长总和=(长+宽+高)×4 正方体棱长和=棱长×12 棱长=棱长和÷12 知识点5:长方体和正方体表面积的计算方法。
长方体的表面积=(长×宽+长×高+宽×高) ×2 正方体的表面积=边长×边长×6知识点6:体积概念的引入。
物体所占空间的大小叫做物体的体积。
常用的体积单位有立方厘米,立方分米,立方米。
分别写成cm3,dm3,m3。
知识点7:体积单位间的进率。
1立方分米=1000立方厘米1立方米=1000立方分米
三、巩固练习
四、课堂小结。
五年级下册《长方体(一)》单元整合教学设计及说明各位老师,大家好!今天我将以北师大版五年级下册《长方体(一)》这一单元为例,进行简单的单元整体框架梳理,并结合一节课例与大家一起探讨。
我将从教材分析、学情诊断、单元思考及课例分享等几个方面进行阐述。
一、教材分析1.教材逻辑结构(横纵对比)纵向对比北师大的各册教材,在一年级下册《认识图形》这一单元中,已经初步认识了长方体、正方体、圆柱、球的基本形状特征,本单元在此基础上进行教学长方体和正方体的有关知识。
后续第四单元《长方体(二)》将进一步学习长方体和正方体的体积,这也是形成体积概念,掌握体积的计量单位和计算其它各种几何形体体积的基础。
长方体和正方体是最基本的立体图形,通过长方体和正方体这两类直柱体的学习,可以使学生对周围的空间和空间中的物体形成初步的空间观念,是进一步学习其他立体图形(圆柱、圆锥)的基础。
本单元内容,具体目录、课时及要求如下:《长方体(一)》这个单元由4部分主要内容,分6个课时完成教学。
在教学中,设计了搭一搭、剪一剪、涂一涂等多种探索活动,来帮助学生提高空间想象、空间推理的能力,发展孩子们的空间观念,帮助孩子们积累研究立体图形的经验和方法。
横向对比北师大版、苏教版、浙教版、人教版,4大版本教材的知识体系都差不多,其中苏教版、人教版、浙教版的对这块内容的知识编排尤为相似我们。
选择了北师版和人教版为例进行了对比。
北师大版将长方体和正方体的认识安排在同个课时,而其它教版则拆分成两个课时进行教学;其次北师大专列了一课时进行学习“露在外面的面”,苏教版增学了一个“表面涂色的正方体”;另外也只有北师大版教材将“长方体与正方体的体积、容积”的知识推后单元进行教学,其它教版则紧跟其后进行教学,更加关注知识间的连续性,而北版教材则经常将一些大单元内容切分成小单元,冷却一下后再进行后续学习,避免学习疲劳,降低学习难度。
二、学情分析:基于这样的思考,我们进行了学情分析。
西师大版数学五年级下册第三单元全部教案(教学设计)第3单元长方体、正方体■教材分析本单元知识是学生已有对立体图形知识的直观把握的基础上,并在已经掌握的平面图形面积计算的情况下进行的深入教学,本单元的主要教学内容和教学要达到的目标如下:1.长方体和正方体的认识。
主要认识长、正方体的面、棱、顶点间的关系。
2.长方体和正方体的表面积。
认识表面积的定义,总结出求立体图形的表面积的计算规律和方法。
3.体积与体积单位。
认识体积和容积的定义。
认识立体图形的体积和容积的单位,掌握体积和容积单位间的换算关系。
4.长方体和正方体的体积计算。
明白体积的计算方法。
会灵活运用这些方法。
5.解决问题。
综合运用体积和表面积的计算知识来解决生活中的实际问题。
6.整理与复习。
7.综合实践:设计长方体包装方案,让学生在经历探索长方体和正方体的实用性,并在计算方法的过程中,培养学生终身受用的思想方法与解决问题的策略。
本单元在编排中体现了以下几个主要特征:1.加强了几何知识与生活的联系。
2.加强了平面与立体的转化过程,发展了学生的空间观念。
3.注重渗透了“等积变换”的教学思想。
4.重视学生学习知识的经历的过程性。
在教学中,对于图形的认识,要充分利用直观图或实物来展开探索和学习总结活动。
直观教学中小学数学的教学中,特别是图形的认识方面,显得犹为重要。
是学生由直观形象思维到抽象逻辑思维过程的必经阶段。
■教学目标1.认识长方体和正方体的特征,在三视图观察中培养学生空间观念。
2.掌握长方体和正方体的体积单位及相互间的单位换算。
3.理解和掌握长方体和正方体的表面积和体积的计算。
会计算长方体或正方体容器的容积。
并能运用这些知识解决生活中的实际问题。
4.运用实物观察和理论总结相结合的形式,充分培养学生的空间观念,并在解决问题的过程中训练学生运用数学知识解决问题的能力。
5.培养学生的应用知识的意识和能力。
使学生明白数学的实用性。
从而培养学生学好数学的积极地数学情感。
一、图形的变换l轴对称1.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,那条直线就叫做对称轴.两图形重合时互相重合的点叫做对应点,也叫对称点.2.轴对称图形的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴.3.轴对称图形具有对称性.4轴对称图形的法:(1)找出所给图形的关键点,如图形的顶点、相交点、端点等;(2)数出或量出图形关键点到对称轴的距离;(3)在对称轴的另一侧找出关键点的对称点;(4)按照所给图形的顺序连接各点,就画出所给图形的轴对称图形.l旋转1、旋转的三要素:旋转中心、旋转角度、旋转方向.2、旋转的特征:图形旋转后,形状、大小都没有发生变化,只是位置变了.(时针旋转1小时是30度)3、形旋转的性质:图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转相同的度数,对应点旋转点的距离相等,对应角也相等.4、单图形旋转90度的画法:(1)找出原图形的几个关键点(一般是图形的顶点或线段的交点、端点),借助三角板,作关键点与旋转点所在线段的垂线;(2)从旋转点开始,在所作的垂线上量出与原线段相等的长度,即原图所找关键点的对称点;(3)顺次连结所画出的对称点.l平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的基本性质:(1)平移不改变图形的形状和大小,只改变图形的位置.(2)经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.3.平移图形的画法:(1)确定平移的方向与距离.(2)将关键点按所需方向平移所需距离.(3)按原来图形的连接方式依次连接各对应点并标上相应字母.l设计图案的基本方法:平移、对称、旋转.1.运用旋转设计图案的方法:(1)选好基本图案;(2)根据所选的基本图案确定旋转点;(3)确定旋转度数;(4)依次沿每次旋转后的基本图形的边缘画图.2.运用对称设计图案的方法:(1)先选好基本图案;(2)依据基本图案的特点定好对称轴;(3)画出基本图形的对称图形二、因数与倍数1、如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c得因数,c就是a、b 的倍数.2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身.一个数的倍数的个数是无限的,其中最小的是它本身,没用最大倍数.3、奇数与偶数:自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数.偶数:个位是0,2,4,6,8的数.奇数:个位是1,3,5,7,9的数.4、倍数特征:2的倍数的特征:各位是0,2,4,6,8.3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数.5的倍数的特征:各位是0,5.5、质数与合数:质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数).合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数.1既不是质数也不是合数.6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数.偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97三、长方体的认识、表面积、体积和容积1、长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高.2、正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等.3、表面积长方体6个面的总面积叫作它的表面积.长方体相对的面的面积相等,前后面的面积=长×高;左右面的面积=宽×高;上下面的面积=长×宽正方体6个面的总面积叫作它的表面积,6个面的面积都相等.4、体积:物体所占空间的大小叫作物体的体积.5、容积:容器所能容纳物体的体积叫作容器的容积.常用的容积单位有:升和毫升6、进率:相邻的的体积单位之间的互化:(高化低乘进率,低化高除进率)长度单位:1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米质量单位:1吨=1000千克 1千克=1000克面积单位:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米体积单位:1立方米=1000立方分米 1立方分米=1000立方厘米容积单位:1升=1000毫升 1立方分米=1升 1立方厘米=1毫升时间单位:1小时=60分钟 1分钟=60秒7、总棱长、表面积与体积公式:a=长b=宽h=高 S=面积 v=体积长方体的总棱长=4×(长+宽+高)长方体的表面积=2×(长×宽+长×高+宽×高长方体的体积=长×宽×高正方体的总棱长=12×棱长正方体的表面积=6×棱长×棱长正方体的体积=棱长×棱长×棱长长方体(正方体)的体积=底面积×高四、分数的意义和性质:1.分数和分数单位:把单位“1”平均分成若干份,表示其中一份的数叫分数单位,如:的分数单位是.把单位“1”平均分成若干份,表示其中一份或几分的数叫分数.2.分数与除法的联系:被除数÷除数 =a ÷b = (b≠0)3.真分数和假分数:真分数:分子比分母小的分数叫真分数,真分数小于1.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.4.带分数:由不为0的整数和和一个真分数组成的数,叫做带分数.带分数大于1.互化的方法:带分数化假分数:用原来的分母作分母,用分母乘于整数部分加分子做分子.假分数化带分数:用分子除以分母,当分子是分母的倍数时,能化成整数,商就是这个整数,分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变.5.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.6.最大公因数和最小公倍数最大公因数:几个数公有的因数,叫做这几个数的因数数.公因数个数有限个.其中最大的一个叫做这几个数的最大公因数.最小公倍数:几个数公有的倍数,叫做这几个数的公倍数.公倍数有无限个.其中最小的一个叫做这几个数的最小公倍数.倍数关系的两个数,最大公因数为较小数,最小公倍数为较大数.7.互质数:公因数只有1的两个数,叫做互质数.相临的两个数一定互质.两个连续奇数一定互质.互质关系的两个数,最大公约数为1,最小公倍数为乘积.8.通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分.(通分用最小公倍数)9.约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分.10.最简分数:分子、分母是互质数的分数,叫做最简分数.分数计算到最后,得数必须化成最简分数.11.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.五、分数的加减法分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.六、统计1.条形统计图能清楚地表示地各种数量的多少,并且方便进行比较.2.统计图能直观地表示出各种量分别占总量的百分之几.3.折线统计图能直观地表示出数量的变化情况.4.平均数=总数量÷总份数5.把一组数据从小到大(或从大到小)排列,中间的数叫这组数据的中位数.6.一组数据中出现次数最多的数叫这组数据的众数.。