二次函数中考综合题(亚压轴题)[1]
- 格式:doc
- 大小:448.00 KB
- 文档页数:6
B铅垂高水平宽haA专题五中考压轴试题——二次函数综合训练一 .二次函数求最值问题(一)求线段最值1.平行于x轴的线段最值问题首先用自变量(如m)表示出线段两个端点的坐标,用右端点的横坐标减去左端点的横坐标(大横-小横),得到一个线段长关于自变量的二次函数,将其化为顶点式,根据m的正负及其取值范围判断最值.2.平行于y轴的线段最值问题首先用自变量(如m)表示出线段两个端点的坐标,用上端点的纵坐标减去下端点的纵坐标(大纵-小纵),得到一个线段长关于自变量的二次函数,将其化为顶点式,并根据m的正负及其取值范围判断最值.3.既不平行于x轴,又不平行于y轴的线段最值问题将斜线段用竖直线段(或水平线段)表示(一般用到相似或三角函数知识,如补充1和补充2)(二)求周长最值建立周长与动点的横坐标之间的二次函数关系式,利用二次函数的性质求其最值.(三)求面积最值问题1.规则图形面积最值(规则图形指三角形有一边平行于坐标轴,四边形有一组对边平行于坐标轴)首先用自变量(如m)表示出所需的边长及高,利用面积公式表示出面积,得到一个面积关于自变量的二次函数,将其化为顶点式,并根据m的正负及其取值范围判断最值.2.不规则图形面积最值法一:分割;法二:铅直高度与水平高度积的一半(针对三角形而言).二.存在性问题问题或AB2=(x1-x2)2+(y1-y2)21.等腰三角形(分类讨论用距离公式)2.直角三角形(分类讨论用距离公式)3.相似三角形(分类讨论列比例)4.平行四边形(分“两定两动”和“三定一动”两种情况,用全等三角形知识)三.补充知识1.二次函数存在性问题中,往往会用到两点间的距离公式,在使用该公式时,如果出现平方的平方(即4次方),一般改设动点的坐标为(x,y),即设两个变量x和y,根据满足的条件(比如直角三角形、等腰三角形)先得到y 与x函数关系式,再联立已知的二次函数关系式,解方程组即可(如补充3)。
2.解二次函数问题,要关注数形结合,当用代数法所列式子比较复杂或思路受阻,可观察图形中是不是有特殊的图形(如等腰三角形、含有特殊角的直角三角形、等腰直角三角形),可以利用相似等几何知识进行求解;当几何图形复杂,难以画出符合条件的图形,可以直接列式子用代数法求解.一最值问题 (面积最值)1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.3.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.一最值问题(线段最值)4.如图:已知抛物线265y x x=-+与x轴交于A、B两点,(A在B的左边),与y轴交于点C,若M是抛物线在x轴下方图像上一动点,过点M作MN∥y轴交直线BC于N,求线段MN的最大值。
中考二次函数压轴题(共23道题目)一.选择题(共10小题)1.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个2.如图是某二次函数的图象,将其向左平移2个单位后的图象的函数解析式为y=ax2+bx+c(a≠0),则下列结论中正确的有()(1)a>0;(2)c<0;(3)2a﹣b=0;(4)a+b+c>0.A.1个B.2个C.3个D.4个3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0;其中正确的个数为()A.1个B.2个C.3个D.4个4.已知点(x1,y1)、(x2,y2)、(x3,y3)都在抛物线y=x2+bx上,x1、x2、x3为△ABC的三边,且x1<x2<x3,若对所有的正整数x1、x2、x3都满足y1<y2<y3,则b的取值范围是()A.b>﹣2 B.b>﹣3 C.b>﹣4 D.b>﹣55.如图,点A(m,n)是一次函数y=2x的图象上的任意一点,AB垂直于x轴,垂足为B,那么三角形ABO的面积S关于m的函数关系的图象大致为()A.B.CD.6.抛物线y=ax2+bx+c的图象经过原点和第一、二、三象限,那么下列结论成立的是()A.a>0,b>0,c=0 B.a>0,b<0,c=0 C.a<0,b>0,c=0 D.a<0,b<0,c=07.已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.9.已知抛物线y=x2+bx+c(c<0)经过点(c,0),以该抛物线与坐标轴的三个交点为顶点的三角形面积为S,则S可表示为()A.|2+b||b+1| B.c(1﹣c)C.(b+1)2 D.10.下列关于函数y=(m2﹣1)x2﹣(3m﹣1)x+2的图象与坐标轴的公共点情况:①当m≠3时,有三个公共点;②m=3时,只有两个公共点;③若只有两个公共点,则m=3;④若有三个公共点,则m≠3.其中描述正确的有()个.A.一个B.两个C.三个D.四个二.填空题(共10小题)11.已知:如图,过原点的抛物线的顶点为M(﹣2,4),与x轴负半轴交于点A,对称轴与x轴交于点B,点P是抛物线上一个动点,过点P作PQ⊥MA于点Q.(1)抛物线解析式为.(2)若△MPQ与△MAB相似,则满足条件的点P的坐标为.12.将抛物线y=x2﹣2向左平移3个单位,所得抛物线的函数表达式为.13.如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE﹣EO|,再以CM、CO为边作矩形CMNO.令m=,则m= ;又若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,则抛物线与边AB的交点坐标是.15.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P的坐标是.16.如图为二次函数y=ax2+bx+c的图象,在下列结论中:①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=5;③a+b+c<0;④当x<2时,y随着x的增大而增大.正确的结论有(请写出所有正确结论的序号).17.已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y 2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y 1<y2<y3,则实数m的取值范围是.18.如图,已知一动圆的圆心P在抛物线y=x2﹣3x+3上运动.若⊙P半径为1,点P的坐标为(m,n),当⊙P与x轴相交时,点P的横坐标m的取值范围是.19.如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=﹣x2+6x上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为.20.若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),则y=a+b+c的取值范围是.三.解答题(共4小题)21.已知抛物线y=ax2﹣2x+c与x轴交于A(﹣1,0)、B两点,与y轴交于点C,对称轴为x=1,顶点为E,直线y=﹣x+1交y轴于点D.(1)求抛物线的解析式;(2)求证:△BCE∽△BOD;(3)点P是抛物线上的一个动点,当点P运动到什么位置时,△BDP的面积等于△BOE的面积?22.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.23.已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC 于点Q.①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.24.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l 于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.二次函数压轴题(共24道题目)参考答案与试题解析一.选择题(共10小题)1.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,对称轴为x=<1,∵a<0,∴2a+b<0,而抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵>2,∴4ac﹣b2<8a,∴b2+8a>4ac,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a﹣b+c<0.由①,③得到2a+2c<2,由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故选:D.2.如图是某二次函数的图象,将其向左平移2个单位后的图象的函数解析式为y=ax2+bx+c(a≠0),则下列结论中正确的有()(1)a>0;(2)c<0;(3)2a﹣b=0;(4)a+b+c>0.A.1个B.2个C.3个D.4个【分析】如图是y=ax2+bx+c的图象,根据开口方向向上知道a>0,又由与y轴的交点为在y轴的负半轴上得到c<0,由对称轴x==﹣1,可以得到2a﹣b=0,又当x=1时,可以判断a+b+c的值.由此可以判定所有结论正确与否.【解答】解:(1)∵将其向左平移2个单位后的图象的函数解析式为y=ax2+bx+c (a≠0)(如虚线部分),∴y=ax2+bx+c的对称轴为:直线x=﹣1;∵开口方向向上,∴a>0,故①正确;(2)∵与y轴的交点为在y轴的负半轴上∴c<0,故②正确;(3)∵对称轴x==﹣1,∴2a﹣b=0,故③正确;(4)当x=1时,y=a+b+c>0,故④正确.故选:D.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0;其中正确的个数为()A.1个B.2个C.3个D.4个【分析】由抛物线开口向上得到a大于0,再由对称轴在y轴右侧得到a与b异号,即b小于0,由抛物线与y轴交于正半轴,得到c大于0,可得出abc的符合,对于(3)作出判断;由x=1时对应的函数值小于0,将x=1代入二次函数解析式得到a+b+c小于0,(1)错误;根据对称轴在1和2之间,利用对称轴公式列出不等式,由a大于0,得到﹣2a小于0,在不等式两边同时乘以﹣2a,不等号方向改变,可得出不等式,对(2)作出判断;由x=﹣1时对应的函数值大于0,将x=﹣1代入二次函数解析式得到a﹣b+c大于0,又4a大于0,c大于0,可得出a﹣b+c+4a+c大于0,合并后得到(4)正确,综上,即可得到正确的个数.【解答】解:由图形可知:抛物线开口向上,与y轴交点在正半轴,∴a>0,b<0,c>0,即abc<0,故(3)错误;又x=1时,对应的函数值小于0,故将x=1代入得:a+b+c<0,故(1)错误;∵对称轴在1和2之间,∴1<﹣<2,又a>0,∴在不等式左右两边都乘以﹣2a得:﹣2a>b>﹣4a,故(2)正确;又x=﹣1时,对应的函数值大于0,故将x=﹣1代入得:a﹣b+c>0,又a>0,即4a>0,c>0,∴5a﹣b+2c=(a﹣b+c)+4a+c>0,故(4)错误,综上,正确的有1个,为选项(2).故选:A.4.已知点(x1,y1)、(x2,y2)、(x3,y3)都在抛物线y=x2+bx上,x1、x2、x3为△ABC的三边,且x1<x2<x3,若对所有的正整数x1、x2、x3都满足y1<y2<y3,则b的取值范围是()A.b>﹣2 B.b>﹣3 C.b>﹣4 D.b>﹣5【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,结合已知条件,可知x1、x2、x3的最小一组值是2、3、4;根据抛物线,知它与x轴的交点是(0,0)和(﹣b,0),对称轴是x=﹣.因此要满足已知条件,则其对称轴应小于2.5.【解答】解:∵x1、x2、x3为△ABC的三边,且x1<x2<x3,∴x1、x2、x3的最小一组值是2、3、4.∵抛物线y=x2+bx与x轴的交点是(0,0)和(﹣b,0),对称轴是x=﹣,∴若对所有的正整数x1、x2、x3都满足y1<y2<y3,则﹣<2.5解,得b>﹣5.故选:D.5.如图,点A(m,n)是一次函数y=2x的图象上的任意一点,AB垂直于x轴,垂足为B,那么三角形ABO的面积S关于m的函数关系的图象大致为()A.B.C.D.【分析】因为A(m,n)是一次函数y=2x的图象上的任意一点,所以n=2m.根据三角形面积公式即可得出S与m之间的函数关系,根据关系式即可解答.【解答】解:由题意可列该函数关系式:S=|m|•2|m|=m2,因为点A(m,n)是一次函数y=2x的图象上的任意一点,所以点A(m,n)在第一或三象限,又因为S>0,所以取第一、二象限内的部分.故选:D.6.抛物线y=ax2+bx+c的图象经过原点和第一、二、三象限,那么下列结论成立的是()A.a>0,b>0,c=0 B.a>0,b<0,c=0 C.a<0,b>0,c=0 D.a<0,b<0,c=0【分析】先根据图象经过象限的情况判断出a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理.【解答】解:∵抛物线经过原点,∴c=0,∵抛物线经过第一,二,三象限,可推测出抛物线开口向上,对称轴在y轴左侧∴a>0,∵对称轴在y轴左侧,∴对称轴为x=<0,又因为a>0,∴b>0.故选:A.7.已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数【分析】因为抛物线y=x2﹣(4m+1)x+2m﹣1与x轴有一个交点的横坐标大于2,另一个交点的横坐标小于2,且抛物线开口向上,所以令f(x)=x2﹣(4m+1)x+2m﹣1,则f(2)<0,解不等式可得m>,又因为抛物线与y轴的交点在点(0,)的下方,所以f(0)<﹣,解得m<,即可得解.【解答】解:根据题意,令f(x)=x2﹣(4m+1)x+2m﹣1,∵抛物线y=x2﹣(4m+1)x+2m﹣1与x轴有一个交点的横坐标大于2,另一个交点的横坐标小于2,且抛物线开口向上,∴f(2)<0,即4﹣2(4m+1)+2m﹣1<0,解得:m>,又∵抛物线与y轴的交点在点(0,)的下方,∴f(0)<﹣,解得:m<,综上可得:<m<,故选:A.8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.9.已知抛物线y=x2+bx+c(c<0)经过点(c,0),以该抛物线与坐标轴的三个交点为顶点的三角形面积为S,则S可表示为()A.|2+b||b+1| B.c(1﹣c)C.(b+1)2 D.【分析】把点(c,0)代入抛物线中,可得b、c的关系式,再设抛物线与x轴的交点分别为x1、x2,则x1、x2满足x2+bx+c=0,根据根的判别式结合两点间的距离公式可求|x1﹣x2|,那么就可得到以该抛物线与坐标轴的三个交点为顶点的三角形面积.【解答】解:∵抛物线y=x2+bx+c(c<0)经过点(c,0),∴c2+bc+c=0;∴c(c+b+1)=0;∵c<0,∴c=﹣b﹣1;设x1,x2是一元二次方程x2+bx+c=0的两根,∴x1+x2=﹣b,x1•x2=c=﹣b﹣1,∴抛物线与x轴的交点间的距离为|x1﹣x2|=====|2+b|,∴S可表示为|2+b||b+1|.故选:A.10.下列关于函数y=(m2﹣1)x2﹣(3m﹣1)x+2的图象与坐标轴的公共点情况:①当m≠3时,有三个公共点;②m=3时,只有两个公共点;③若只有两个公共点,则m=3;④若有三个公共点,则m≠3.其中描述正确的有()个.A.一个B.两个C.三个D.四个【分析】令y=0,可得出(m2﹣1)x2﹣(3m﹣1)x+2=0,得出判别式的表达式,然后根据m的取值进行判断,另外要注意m的取值决定函数是一次函数还是二次函数,不要忘了考虑一次函数的情况.【解答】解:令y=0,可得出(m2﹣1)x2﹣(3m﹣1)x+2=0,△=(3m﹣1)2﹣8(m2﹣1)=(m﹣3)2,①当m≠3,m=±1时,函数是一次函数,与坐标轴有两个交点,故错误;②当m=3时,△=0,与x轴有一个公共点,与y轴有一个公共点,总共两个,故正确;③若只有两个公共点,m=3或m=±1,故错误;④若有三个公共点,则m≠3且m≠±1,故错误;综上可得只有②正确,共个.故选:A.二.填空题(共10小题)11.已知:如图,过原点的抛物线的顶点为M(﹣2,4),与x轴负半轴交于点A,对称轴与x轴交于点B,点P是抛物线上一个动点,过点P作PQ⊥MA于点Q.(1)抛物线解析式为y=﹣x2﹣4x .(2)若△MPQ与△MAB相似,则满足条件的点P的坐标为(﹣,)、(﹣,).【分析】(1)设抛物线的解析式为:y=a(x+2)2+4,因为抛物线过原点,把(0,0)代入,求出a即可.(2)由于PQ⊥MA,即∠MQP=∠MBA=90°;所以只要满足∠PMQ=∠MAB或∠PMQ=∠AMB.①∠PMQ=∠AMB时,先找出点B关于直线MA的对称点(设为点C),显然有AC=AB=2、MC=MB=4,可根据该条件得到点C的坐标,进而求出直线MC(即直线MP)的解析式,联立抛物线的解析式即可得到点P的坐标;②∠PMQ=∠MAB时,若设直线MP与x轴的交点为D,那么△MAD必为等腰三角形,即MD=AD,根据此条件先求出点D的坐标,进而得出直线MP的解析式,联立抛物线的解析式即可得解.【解答】解:(1)∵过原点的抛物线的顶点为M(﹣2,4),∴设抛物线的解析式为:y=a(x+2)2+4,将x=0,y=0代入可得:4a+4=0,解得:a=﹣1,∴抛物线解析式为:y=﹣(x+2)2+4,即y=﹣x2﹣4x;(2)∵PQ⊥MA∴∠MQP=∠MBA=90°;若△MPQ、△MAB相似,那么需满足下面的其中一种情况:①∠PMQ=∠AMB,此时MA为∠PMB的角平分线,如图①;取点B关于直线MA的对称点C,则AC=AB=2,MC=MB=4,设点C(x,y),有:,解得(舍),∴点C的坐标为(﹣,);设直线MP的解析式:y=kx+b,代入M(﹣2,4)、(﹣,)得:,解得∴直线MP:y=x+联立抛物线的解析式,有:,解得,∴点P的坐标(﹣,);②∠PMQ=∠MAB,如右图②,此时△MAD为等腰三角形,且MD=AD,若设点D(x,0),则有:(x+4)2=(x+2)2+(0﹣4)2,解得:x=1∴点D(1,0);设直线MP的解析式:y=kx+b,代入M(﹣2,4)、D(1,0)后,有:,解得:∴直线MP:y=﹣x+联立抛物线的解析式有:,解得:,∴点P的坐标(﹣,)综上,符合条件的P点有两个,且坐标为(﹣,)、(﹣,).故答案:(1)y=﹣x2﹣4x;(2)(﹣,)、(﹣,).12.将抛物线y=x2﹣2向左平移3个单位,所得抛物线的函数表达式为y=x2+6x+7 .【分析】根据二次函数图象的平移规律:左右平移,x改变:左加右减,y不变;上下平移,x不变,y改变,上加下减进行计算即可.【解答】解:根据平移规律:将抛物线y=x2﹣2向左平移3个单位得到:y=(x+3)2﹣2,y=x2+6x+7.故答案为:y=x2+6x+7.13.如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE﹣EO|,再以CM、CO为边作矩形CMNO.令m=,则m= 1 ;又若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,则抛物线与边AB的交点坐标是(,).【分析】求出CM=OE﹣CE,求出四边形CFGH的面积是CO×(OE﹣CE),求出四边形CMNO的面积是(OE﹣CE)×CO,即可求出m值;求出EF值,得出EF=QF,得出等边三角形EFQ,求出EQ,求出∠CEF、∠OEA,过Q作QD⊥OE于D,求出Q 坐标,代入抛物线求出抛物线的解析式,把x=代入抛物线即可求出y,即得出答案.【解答】解:∵沿AE折叠,O和F重合,∴OE=EF,∵在Rt△CEF中,EF>CE,即OE>CE,∴CM=|CE﹣EO|=OE﹣CE,∵S=CF2=EF2﹣EC2=EO2﹣EC2=(EO+EC)(EO﹣EC)=CO×(EO﹣EC),四边形CFGH=CM×CO=(OE﹣CE)×OC,S四边形CMNO∴m==1;∵CO=1,CE=,QF=,∴EF=EO==QF,C(0,1),∴sin∠EFC==,∴∠EFC=30°,∠CEF=60°,∴∠FEA=×(180°﹣60°)=60°,∵EF=QF,∴△EFQ是等边三角形,∴EQ=,过Q作QD⊥OE于D,ED=EQ=.∵由勾股定理得:DQ=,∴OD=﹣=,即Q的坐标是(,),∵抛物线过C、Q,m=1代入得:,解得:b=﹣,c=1,∴抛物线的解析式是:y=x2﹣x+1,AO=EO=,∵把x=代入抛物线得:y=,∴抛物线与AB的交点坐标是(,),故答案为:1,.14.该试题已被管理员删除15.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P的坐标是(,5).【分析】分别求得线段AB、线段AC、线段BC的解析式,分析每一条线段上横、纵坐标的乘积的最大值,再进一步比较.【解答】解:线段AB的解析式是y=x+1(0≤x≤4),此时w=x(x+1)=+x,则x=4时,w最大=8;线段AC的解析式是y=x+1(0≤x≤2),此时w=x(x+1)=+x,此时x=2时,w最大=12;线段BC的解析式是y=﹣2x+10(2≤x≤4),此时w=x(﹣2x+10)=﹣2x2+10x,此时x=时,w最大=12.5.综上所述,当w=xy取得最大值时,点P的坐标是(,5).16.如图为二次函数y=ax2+bx+c的图象,在下列结论中:①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=5;③a+b+c<0;④当x<2时,y随着x的增大而增大.正确的结论有②④(请写出所有正确结论的序号).【分析】根据抛物线的开口向下判断出a<0,再根据与y轴的交点判断出c>0,然后判断出①错误;根据与x轴的交点坐标判断出②正确;取x=1的函数值判断出③错误;先求出抛物线对称轴为直线x=2,然后根据二次函数的增减性判断出④正确.【解答】解:∵抛物线开口向下,∴a<0,∵与y轴的正半轴相交,∴c>0,∴ac<0,故①错误;∵抛物线与x轴的交点坐标为(﹣1,0),(5,0),∴方程ax2+bx+c=0的根是x1=﹣1,x2=5,故②正确;由图可知,当x=1时,函数值y>0,即a+b+c>0,故③错误;抛物线对称轴为直线x==2;当x<2时,y随着x的增大而增大,故④正确;综上所述,正确的结论是②④.故答案为:②④.17.已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y 2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y 1<y2<y3,则实数m的取值范围是m>﹣.【分析】根据三角形的任意两边之和大于第三边判断出a最小为2,再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2,即小于2.5,然后列出不等式求解即可.【解答】方法一:解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,∵y1<y2<y3,∴﹣<2.5,解得m>﹣2.5.方法二:解:当a<b<c时,都有y1<y2<y3,即,∴,∴,∵a,b,c恰好是一个三角形的三边长,a<b<c,∴a+b<b+c,∴m>﹣(a+b),∵a,b,c为正整数,∴a,b,c的最小值分别为2、3、4,∴m>﹣(a+b)≥﹣(2+3)=﹣,∴m>﹣,故答案为:m>﹣.18.如图,已知一动圆的圆心P在抛物线y=x2﹣3x+3上运动.若⊙P半径为1,点P的坐标为(m,n),当⊙P与x轴相交时,点P的横坐标m的取值范围是3﹣<m<2或4<m<3+.【分析】由圆心P在抛物线y=x2﹣3x+3上运动,点P的坐标为(m,n),可得n=m2﹣3m+3,又由⊙P半径为1,⊙P与x轴相交,可得|m2﹣3m+3|<1,继而可求得答案.【解答】解:∵圆心P在抛物线y=x2﹣3x+3上运动,点P的坐标为(m,n),∴n=m2﹣3m+3,∵⊙P半径为1,⊙P与x轴相交,∴|n|<1,∴|m2﹣3m+3|<1,∴﹣1<m2﹣3m+3<1,解m2﹣3m+3<1,得:3﹣<m<3+,解m2﹣3m+3>﹣1,得:m<2或m>4,∴点P的横坐标m的取值范围是:3﹣<m<2或4<m<3+.故答案为:3﹣<m<2或4<m<3+.19.如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=﹣x2+6x上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为l=﹣2m2+8m+12 .【分析】求l与m的函数解析式就是把m当作已知量,求l,先求AD,它的长就是D点的纵坐标,再把D点纵坐标代入函数解析式求C点横坐标,C点横坐标与D点横坐标的差就是线段CD的长,用l=2(AD+CD),建立函数关系式.【解答】解:把x=m代入抛物线y=﹣x2+6x中,得AD=﹣m2+6m把y=﹣m2+6m代入抛物线y=﹣x2+6x中,得﹣m2+6m=﹣x2+6x解得x1=m,x2=6﹣m∴C的横坐标是6﹣m,故AB=6﹣m﹣m=6﹣2m∴矩形的周长是l=2(﹣m2+6m)+2(6﹣2m)即l=﹣2m2+8m+12.20.若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),则y=a+b+c的取值范围是0<y<2 .【分析】由二次函数的解析式可知,当x=1时,所对应的函数值y=s=a+b+c.把点(0,1),(﹣1,0)代入y=ax2+bx+c,得出c=1,a﹣b+c=0,然后根据顶点在第一象限,可以画出草图并判断出a与b的符号,进而求出y=a+b+c的变化范围.【解答】解:∵二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),∴易得:c=1,a﹣b+c=0,a<0,b>0,由a=b﹣1<0得到b<1,结合上面b>0,所以0<b<1①,由b=a+1>0得到a>﹣1,结合上面a<0,所以﹣1<a<0②,∴由①②得:﹣1<a+b<1,且c=1,得到:0<a+b+c<2,则y=a+b+c的取值范围是0<y<2.故答案为:0<y<2三.解答题(共4小题)21.已知抛物线y=ax2﹣2x+c与x轴交于A(﹣1,0)、B两点,与y轴交于点C,对称轴为x=1,顶点为E,直线y=﹣x+1交y轴于点D.(1)求抛物线的解析式;(2)求证:△BCE∽△BOD;(3)点P是抛物线上的一个动点,当点P运动到什么位置时,△BDP的面积等于△BOE的面积?【分析】(1)在抛物线y=ax2﹣2x+c中,已知对称轴x=﹣=1,可求出a的值;再将点A的坐标代入抛物线的解析式中,可确定c的值,由此得解.(2)首先由抛物线的解析式,确定点B、C、E的坐标,由直线BD的解析式能得到点D的坐标;在求出△BCE、△BOD的三边长后,由SSS来判定这两个三角形相似.(3)△BOE的面积易得,而在(2)中求出了BD的长,由△BDP、△BOE的面积相等先求出点P到直线BD的距离,如何由这个距离求出点P的坐标?这里需要进行适当的转化;首先在y轴上取一点(可设为点M),使得点M到直线BD的距离等于点P到直线BD的距离,通过解直角三角形先求出DM的长,由此确定点M 的坐标,然后过M作平行于直线BD的直线,再联立抛物线的解析式即可确定点P的坐标.【解答】解:(1)抛物线y=ax2﹣2x+c中,对称轴x=﹣=﹣=1,∴a=1;将点A(﹣1,0)代入y=ax2﹣2x+c中,得:1+2+c=0,c=﹣3;∴抛物线的解析式:y=x2﹣2x﹣3.(2)∵抛物线的解析式:y=x2﹣2x﹣3=(x﹣1)2﹣4=(x+1)(x﹣3),∴点C(0,﹣3)、B(3,0)、E(1,﹣4);易知点D(0,1),则有:OD=1、OB=3、BD=;CE=、BC=3、BE=2;∴==,∴△BCE∽△BOD.(3)S△BOE =×BO×|yE|=×3×4=6;∴S△BDP =×BD×h=S△BOE=6,即 h=.在y轴上取点M,过点M作MN1⊥BD于N1,使得MN1=h=;在Rt△MN1D中,sin∠MDN1=,且 MN1=;则 MD==4;∴点M(0,﹣3)或(0,5).过点M作直线l∥MN2,如右图,则直线l:y=﹣x﹣3或y=﹣x+5,联立抛物线的解析式有:或解得:、、、∴当点P的坐标为(0,﹣3)、(,﹣)、(,)、(,)时,△BDP的面积等于△BOE的面积.22.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.【分析】(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)当△PAC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解.【解答】解:(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,)、B(4,6)在抛物线y=ax2+bx+6上,∴,解得,∴抛物线的解析式为y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣)2+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如答图3﹣1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=2x2﹣8x+6 ②联立①②式,解得:x=3或x=(与点A重合,舍去)∴C(3,0),即点C、M点重合.当x=3时,y=x+2=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如答图3﹣2,作点A(,)关于对称轴x=2的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+2=.∴P2(,).∵点P1(3,5)、P2(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).23.已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC 于点Q.①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)已知了A,B的坐标,可用待定系数法求出函数的解析式.(2)①QP其实就是一次函数与二次函数的差,二次函数的解析式在(1)中已经求出,而一次函数可根据B,C的坐标,用待定系数法求出.那么让一次函数的解析式减去二次函数的解析式,得出的新的函数就是关于PQ,x的函数关系式,那么可根据函数的性质求出PQ的最大值以及相对应的x的取值.(3)分三种情况进行讨论:当∠QOA=90°时,Q与C重合,显然不合题意.因此这种情况不成立;当∠OAQ=90°时,P与A重合,因此P的坐标就是A的坐标;当∠OQA=90°时,如果设QP与x轴的交点为D,那么根据射影定理可得出DQ2=OD•DA.由此可得出关于x的方程即可求出x的值,然后将x代入二次函数式中即可得出P的坐标.【解答】解:(1)∵抛物线过A(3,0),B(6,0),∴,解得:,∴所求抛物线的函数表达式是y=x2﹣x+2.(2)①∵当x=0时,y=2,∴点C的坐标为(0,2).设直线BC的函数表达式是y=kx+h.则有,解得:.∴直线BC的函数表达式是y=﹣x+2.∵0<x<6,点P、Q的横坐标相同,∴PQ=yQ ﹣yP=(﹣x+2)﹣(x2﹣x+2)=﹣x2+x=﹣(x﹣3)2+1∴当x=3时,线段PQ的长度取得最大值.最大值是1.②解:当∠OAQ′=90°时,点P与点A重合,∴P(3,0)当∠Q′OA=90°时,点P与点C重合,∴x=0(不合题意)当∠OQ′A=90°时,设PQ′与x轴交于点D.∵∠OQ′D+∠AOQ′=90°,∠Q′AD+∠AQ′D=90°,∴∠OQ′D=∠Q′AD.又∵∠ODQ′=∠Q′DA=90°,∴△ODQ′∽△Q′DA.∴,即DQ′2=OD•DA.∴(﹣x+2)2=x(3﹣x),10x2﹣39x+36=0,∴x1=,x2=,∴y=×()2﹣+2=;1y=×()2﹣+2=;2∴P(,)或P(,).∴所求的点P的坐标是P(3,0)或P(,)或P(,).24.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l 于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式;(2)①如答图1,作辅助线,利用关系式S △OPH =S △OMH ﹣S △OMP 求解;②本问涉及复杂的分类讨论,如答图2所示.由于点P 可能在OC 、BC 、BK 、AK 、OA 上,而等腰三角形本身又有三种情形,故讨论与计算的过程比较复杂,需要耐心细致、考虑全面.【解答】解:(1)由题意得:A (4,0),C (0,4),对称轴为x=1. 设抛物线的解析式为y=ax 2+bx+c ,则有:,解得.∴抛物线的函数解析式为:y=﹣x 2+x+4.(2)①当m=0时,直线l :y=x . ∵抛物线对称轴为x=1, ∴CP=1.如答图1,延长HP 交y 轴于点M ,则△OMH 、△CMP 均为等腰直角三角形.∴CM=CP=1, ∴OM=OC+CM=5.S △OPH =S △OMH ﹣S △OMP =(OM )2﹣OM •CP=×(×5)2﹣×5×1=﹣=,∴S △OPH =.②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(0,﹣3).假设存在满足条件的点P.a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.设PE=a(0<a≤4),则PD=3+a,PF=PD=(3+a).过点F作FN⊥y轴于点N,则FN=PN=PF,∴EN=|PN﹣PE|=|PF﹣PE|.在Rt△EFN中,由勾股定理得:EF==.若PE=PF,则:a=(3+a),解得a=3(+1)>4,故此种情形不存在;若PF=EF,则:PF=,整理得PE=PF,即a=3+a,不成立,故此种情形不存在;若PE=EF,则:PE=,整理得PF=PE,即(3+a)=a,解得a=3.(0,3).∴P1b)当点P在BC边上时,如答图2﹣2所示,此时PE=4.若PE=PF,则点P为∠OGD的角平分线与BC的交点,有GE=GF,过点F分别作FH ⊥PE于点H,FK⊥x轴于点K,∵∠OGD=135°,∴∠EPF=45°,即△PHF为等腰直角三角形,设GE=GF=t,则GK=FK=EH=t,∴PH=HF=EK=EG+GK=t+t,∴PE=PH+EH=t+t+t=4,解得t=4﹣4,则OE=3﹣t=7﹣4,(7﹣4,4)∴P2c)∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BA与直线l交于点K,则K(,).当点P在线段BK上时,如答图2﹣3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PE=8﹣2a,PQ=11﹣3a,∴PF=(11﹣3a).与a)同理,可求得:EF=.若PE=PF,则8﹣2a=(11﹣3a),解得a=1﹣2<0,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即8﹣2a=•(11﹣3a),解得a=3,符合条件,此时P(3,2);3若PE=EF,则PE=,整理得PF=PE,即(11﹣3a)=(8﹣2a),解得a=5>,故此种情形不存在.。
中考数学—二次函数的综合压轴题专题复习含答案解析一、二次函数1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6),∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.2.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P1),P2(P3P4.【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G (m ,m ),∴PG=m-(m 2-4m+3)=-m 2+5m-3,∴S 四边形AOPE =S △AOE +S △POE , =12×3×3+12PG•AE , =92+12×3×(-m 2+5m-3), =-32m 2+152m , =32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:m=2或52-,∴P ); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m 2+4m-3=m-2,解得:32-;P综上所述,点P 的坐标是:(2,2)或(52-,1212)或(32-,2). 点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.3.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
初三⼆次函数压轴题精选-⼆次函数综合压轴题(含答案)⼆次函数压轴题1、如图1,已知抛物线经过坐标原点O 和x 轴上另⼀点E ,顶点M 的坐标为 (2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD=2,AB=3. (1)求该抛物线的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所⽰的位置沿x 轴的正⽅向匀速平⾏移动,同时⼀动点P 也以相同的速度.....从点A 出发向B 匀速移动,设它们运动的时间为t 秒(0≤t≤3),直线AB 与该抛物线的交点为N (如图2所⽰).①当t=25时,判断点P 是否在直线ME 上,并说明理由;②设以P 、N 、C 、D 为顶点的多边形⾯积为S ,试问S 是否存在最⼤值?若存在,求出这个最⼤值;若不存在,请说明理由.2、已知⼆次函数c bx ax y ++=2的图象经过点A (3,0),B (2,-3),C (0,-3).(1)求此函数的解析式及图象的对称轴;(2)点P 从B 点出发以每秒0.1个单位的速度沿线段BC 向C 点运动,点Q 从O 点出发以相同的速度沿线段OA 向A 点运动,其中⼀个动点到达端点时,另⼀个也随之停⽌运动.设运动时间为t 秒.①当t 为何值时,四边形ABPQ 为等腰梯形;②设PQ 与对称轴的交点为M ,过M 点作x 轴的平⾏线交AB 于点N ,设四边形ANPQ 的⾯积为S 求⾯积S 关于时间t 的函数解析式,并指出t 的取值范围;当t 为何值时,S 有最⼤值或最⼩值.O A B C P QMN第2题图3、如图,P为正⽅形ABCD的对称中⼼,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴⽅向以1个单位每秒速度运动,同时,点R 从O出发沿OM⽅向以2个单位每秒速度运动,运动时间为t。
求:(1)C的坐标为;(2)当t为何值时,△ANO与△DMR相似?并求以A、B、C、R为顶点的四边形是梯形时t的值及S的最⼤值。
一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式;(Ⅲ)若11,0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值。
中考数学总复习《二次函数综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,如图,抛物线y=ax2+bx−8与x轴交于A、B两点,与y轴交于点C,OA=6,OB=43点P为x轴下方的抛物线上一点.(1)求抛物线的函数表达式;(2)连接AP、CP,求四边形AOCP面积的最大值;(3)若点P到AB和AC两边的距离相等,求点P的坐标.2.在平面直角坐标系中,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C.过点D(−52,34),且顶点P的坐标为(−1,3).(1)求二次函数的解析式;(2)如图1,若点M是二次函数图象上的点,且在直线CD的上方.连接MC,MD求△MCD面积的最大值;(3)如图2,设点Q是抛物线对称轴上的一点,连接QC,将线段QC绕点Q逆时针旋转90°,点C的对应点为F,连接PF交抛物线于点E,请直接写出点E的坐标.3.在平面直角坐标系中,已知点A(3,3)、B(6,0),AC⊥x轴,垂足为点C,直线y=12x与抛物线y=−14x2+2x相交于点O、D过x轴正半轴上的任意一点P作y轴的平行线PE交射线OA于点E.(1)求点D的坐标;(2)设点P的横坐标为a a≠3求以点A、B、C、E为顶点的四边形的面积S与a的函数关系式;(3)设直线PE交射线OD于点F交抛物线于点Q以FQ为一边在FQ的右边作矩形FQMN若FN=32且矩形FQMN与△AOB重叠部分为轴对称图形求出a的取值范围.4.在平面直角坐标系中设直线l的解析式为:y=kx+m(k、m为常数且.k≠0) 当直线l与一条曲线有且只有一个公共点时我们称直线l与这条曲线“相切” 这个公共点叫做“切点”.(1)求直线l:y=−x+6与双曲线y=9x的切点坐标;(2)已知一次函数y1=2x二次函数y2=x2+1是否存在二次函数y3=ax2+bx+c其图象经过点(−3,2)使得直线y1=2x与y2=x2+1,y3=ax2+bx+c都相切于同一点? 若存在求出y3的解析式;若不存在请说明理由;(3)已知直线l1:y=k1x+m1(k1≠0)直线l2:y2=k2x+m2(k2≠0)是抛物线y=−x2+2x+2的两条切线当l1与l2的交点P的纵坐标为4时试判断k1⋅k2是否为定值并说明理由.5.如图在平面直角坐标系中点O为坐标原点抛物线y=512x2−136x−2与x轴的交点分别为点A B与y轴的交点为点C.(1)求直线BC解析式;(2)点P为第四象限的抛物线上一点连接PB、PC当PB=PC时求点P的坐标;(3)在(2)的条件下连接OP点M在y轴的负半轴上连接MP∠OMP=∠CBP N为OM的中点点Q 在OP上连接MQ、NQ,MQ交抛物线于点R当MQ=2NQ时求R点的横坐标.6.如图在平面直角坐标系中抛物线y=ax2+bx+c(a≠0)若抛物线与x轴交于B(4,0)C(−2,0)两点与y轴交于点A(0,−2).(1)求该抛物线的函数表达式;(2)如图1 若点E是直线CA下方的抛物线上一点过点E作EF∥AB交x轴于点F且EF=√5求点E的横坐标;(3)如图2 点M在点B的正下方连接CM交抛物线于点N直线BN交对称轴于点P作PQ∥CM交射线BM于点Q求BQ的大小.7.如图在平面直角坐标系xOy中已知直线y=−x−3与x轴交于点A与y轴交于点C过A C两点的抛物线y=ax2+bx+c与x轴交于另一点B(1,0)抛物线对称轴为直线l.(1)求抛物线的解析式;(2)点M为直线AC下方抛物线上一点当△MAC的面积最大时求点M的坐标;(3)点P是抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使得以P D E为顶点的三角形与△BOC全等请求出点P点E的坐标;8.如图抛物线y=−x2+bx+c与x轴相交于A B两点与y轴交于点C抛物线的对称轴交x轴于点D.已知A(−1,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P使得|PB−PC|的值最大求此点P的坐标;(3)点M为该抛物线的顶点直线MD⊥x轴于点D在直线MD上是否存在点N使点N到直线MC的距离等于点N到点A的距离?若存在求出点N的坐标;若不存在请说明理由;9.在平面直角坐标系中点O为坐标原点抛物线y=ax2+x+6交x轴负半轴于A交正半轴于B交y 轴于C OB=OC.(1)求抛物线的解析式;(2)如图1 点P是第三象限抛物线上一点连接BP交y轴于点D设点P横坐标为t线段CD长为d求d与t的函数关系;(3)如图2 在(2)的条件下过点C作BP的垂线交x轴于点F垂足为点G E为CF上一点连接BE 若BE=BD∠BEG=2∠PBA求点P坐标.10.如图1 在平面直角坐标系中O为坐标原点AD为等腰直角△ABC底边BC上的高抛物线y=a(x−2)2+4的顶点为点A且经过B C两点B C两点在x轴上.(1)求该抛物线的解析式;(2)如图2 点E为抛物线上位于直线AC上方的一点过点E作EN⊥x轴交直线AC于点N求线段EN的长度最大值及此时点E的坐标;(3)如图2 点M(5,b)是抛物线上的一点点P为对称轴上一动点在(2)的条件下当线段EN的长度最大时求PE+PM的最小值.11.抛物线y=ax2−2ax−3a(a>0)与x轴交于A B两点(点A在点B的左边)与y轴交于点C.(1)求抛物线的对称轴;(2)求证:不论a取何值函数图象必过两个定点;(3)如图若OB=OC点P是直线BC(不与B C重合)上一动点过点P作x轴的垂线交抛物线于M点连接CM将△PCM沿CM对折如果点P的对应点N恰好落在y轴上求此时点P的坐标.12.已知抛物线y=a(x+6)(x−2)经过点(0,2)交x轴于点A和点B(点A在点B的左侧)抛物线的顶点为D对称轴DE交x轴于点E连接EC.(1)直接写出a的值点A的坐标;(2)若点M是抛物线对称轴DE上的点当△MCE是等腰三角形时求点M的坐标;(3)点P是抛物线上的动点连接PC、PE将△PCE沿CE所在的直线对折点P落在坐标平面内的点P′处.直接写出点P′恰好落在直线AD上时点P的横坐标.13.综合与探究如图1 抛物线y=ax2+bx+4与x轴交于A(−4,0)B(3,0)两点与y轴交于点C连接AC BC现将△ABC沿x轴向右平移至△A′B′C′线段A′C′与线段BC交于点E与抛物线交于点F.(1)求出抛物线和直线BC的函数表达式;(2)当线段FE的长度最大时求此时点F的坐标;(3)如图2 连接OC′将△OA′C′沿着A′C′翻折得到△O′A′C′是否存在某一时刻使得点O′恰好在抛物线上若存在请直接写出此时平移的距离;若不存在请说明理由.14.如图1 已知二次函数y=ax2+bx+c(a b c为常数且a≠0)的图像与x轴交于A B两点(A 点在B点左侧)与y轴交于点C(0,3)且其函数表达式可以变形为y=a(x+1)(x−3)的形式.已知点P为该抛物线在第一象限内的一动点设其横坐标为m.(1)求出点A点B的坐标和该二次函数的表达式;(2)连接BC过点P作PQ⊥x轴于点Q交BC于点N直线AP交y轴于点M连接MN.①求出直线AP的函数表达式(用含有m的代数式表示);②设四边形MNQO的面积为S求S关于m的函数关系式并求S的最大值;(3)如图2 若直线l为该二次函数图像的对称轴交x轴于点H直线AP BP分别交直线l于点E F.在点P运动的过程中HF+HE是否为定值?若是请求出该定值;若不是请说明理由.15.在平面直角坐标系中关于x的二次函数y=ax2+bx+c(a b c为常数且a<0)与x轴交于两个不同的点A(x1,0)B(x2,0)(x1<x2)与y轴交于点C抛物线的顶点为M.(1)如图1 已知a=−1b=2c=3.①求此二次函数图象的顶点M的坐标;②点E是x轴正半轴上的一个动点过点E作直线PE⊥x轴交抛物线于点P交直线BC于点F.当点E在线EF求此时点P的坐标.段OB上运动时(不与点O B重合)恰有线段PF=12(2)如图2 当c=0时点P是抛物线对称轴左侧图像上任意一点过点P作PE⊥x轴于点E连接MP交y轴于点Q连接EQ MB.则EQ MB有怎样的位置关系?说明理由.16.如图抛物线的顶点坐标为(2,−3)与y轴交于点C(0,1).(1)求抛物线的解析式;(2)求点A B的坐标及线段AB的长;(3)求△ABC的外接圆⊙D的半径;(4)若(3)中的⊙D交抛物线的对称轴于M N两点(点M在点N的上方)在对称轴右边的抛物线上有一动点P连接PM PN PC线段PC交弦MN于点G.若PC把图形PMCN(指圆弧MCN和线段PM PN组成的图形)分成两部分当这两部分面积之差等于4时求出点P的坐标.17.如图在平面直角坐标系中抛物线y=12x2−32x−2与x轴分别交于点A点B与y轴交于点C.(1)如图1 连接AC直接写出sin∠ACO的值;(2)如图2 连接BC.点G(1,a)在抛物线上连接CG、BG若异于点G的点H也在抛物线上且S△BCH= S△BCG求点H的坐标;(3)如图3 若直线y=mx+n与抛物线交于点P Q连接AP交y轴正半轴于点M连接AQ交y轴负半轴于点N若OM⋅ON=32求4m+n的值.18.如图1 已知二次函数图象与y轴交点为C(0,3)其顶点为D(1,2).(1)求二次函数的表达式;(2)直线CD与x轴交于M现将线段CM上下移动若线段CM与二次函数的图象有交点求CM向上和向下平移的最大距离;(3)若将(1)中二次函数图象平移使其顶点与原点重合然后将其图象绕O点顺时针旋转90°得到抛物线G如图2所示直线y=−x+2与G交于A B两点P为G上位于直线AB左侧一点求ΔABP面积最大值及此时点P的坐标.19.如图在平面直角坐标系中抛物线y=ax2+bx+4(a≠0)经过点(−1,6)与x轴交于点A(−4,0)B 两点与y轴交于点C.(1)求抛物线的解析式;(2)点P是直线AC上方抛物线上一动点过点P作PD∥y轴交AC于点D求PD的最大值及此时点P的坐标;个单位长度得到新抛物线y′新抛物线y′的对称轴交x轴于点M点N是直(3)将该抛物线沿x轴向右平移52线AC上一点在平面内确定一点K使得以C,M,N,K为顶点的四边形是以CN为边的菱形写出所有符合条件的点K的坐标并写出求解点K坐标的其中一种情况的过程.20.如图抛物线y=x2+bx+c与x轴交于A(1,0)B两点与y轴交于点C(0,3).(1)求该抛物线的解析式;(2)如图(1)点P是线段BC上的一动点过点P作PQ∥y轴交抛物线于点Q连接CQ若CQ平分∠OCB求点P的坐标;(3)如图(2)过A B C三点作⊙I直线y=t(t>3)交⊙I于点M N交抛物线于点E F.若EM+FN=MN求t的值参考答案:1.(1)y =x 2+143x −8 (2)51(3)P (56,−4112)【分析】(1)利用待定系数法求解即可;(2)如图所示 连接AC 过点P 作PD ⊥x 轴交AC 于D 先求出直线AC 的解析式 设P (t,t 2+143t −8) 则D (t,−43t −8) 则PD =−t 2−6t 求出S △APC 的最大值 再由S 四边形AOCP =S △ACP +S △AOC 可知当S △APC最大时 S 四边形AOCP 最大 由此即可得到答案;(3)如图所示 取点E 使其坐标为(4,0) 连接AC 、CE 取CE 中点F 连接AF 先证明AE =AC 进而得到AF 平分∠CAE 则直线AF 上的点到AC AB 的距离相等 由此即可知点P 即为直线AF 与抛物线的交点 据此求解即可.【详解】(1)解:∵OA =6∵A (−6,0)∵可设抛物线解析式为y =a (x +6)(x −43)又∵当x =0时 y =−8 即C (0,−8)∵6×(−43)a =−8 ∵a =1∵抛物线解析式为y =(x +6)(x −43)=x 2+143x −8;(2)解:如图所示 连接AC 过点P 作PD ⊥x 轴交AC 于D 设直线AC 的解析式为y =kx +b 1∵{−6k +b 1=0b 1=−8∵{k =−43b 1=−8∵直线AC 的解析式为y =−43x −8设P(t,t2+143t−8)则D(t,−43t−8)∵PD=−43t−8−(t2+143t−8)=−t2−6t∵S△APC=S△APD+S△CPD=12PD⋅(x P−x A)+12PD⋅(x C−x P)=12PD⋅(x C−x A)=3PD=−3(t+3)2+27∵−3<0∵当t=−3时S△APC最大最大为27∵S四边形AOCP=S△ACP+S△AOC∵S四边形AOCP=S△ACP+24∵当S△APC最大时S四边形AOCP最大最大为27+24=51;(3)解:如图所示取点E使其坐标为(4,0)连接AC、CE取CE中点F连接AF∵A(−6,0)C(0,−8)∠AOC=90°∵AE=10,AC=√OA2+OC2=10∵AC=AE∵F是CE的中点∵AF平分∠CAE∵直线AF上的点到AC AB的距离相等设直线AF的解析式为y=k1x+b2∵{−6k1+b2=0 2k1+b2=−4∵{k1=−12 b2=−3∵直线AF的解析式为y=−12x−3联立{y=−12x−3y=x2+14x3−8得6x2+31x−30=0解得{x=56y=−4112或{x=−6y=0(舍去)∵点P的坐标为(56,−4112).【点睛】本题主要考查了二次函数的综合一次函数与几何综合角平分线的性质等腰三角形的性质与判定勾股定理等等正确作出辅助线是解题的关键.2.(1)y=−x2−2x+2(2)12564(3)(−2,2)或(−1,3)【分析】(1)用待定系数法即可求解;(2)由△MCD面积=S△MHD+S△MHC即可求解;(3)①当点Q在点C的下方时证明△QNF≌△CQH(AAS)得到CG=2−t=QN QH=1=FN则点F(t−3,t+1)求出直线PF的表达式进而求解;②当点Q在点C的上方时同理可得:点F′的坐标为(t−3,t−1)进而求解.【详解】(1)解:设抛物线的表达式为:y=a(x−ℎ)2+k则y=a(x+1)2+3将点C的坐标代入上式并得:34=a(−52+1)2+3解得:a=−1故抛物线的表达式为:y =−(x +1)2+3=−x 2−2x +2 即y =−x 2−2x +2;(2)解:由抛物线的表达式知 点C (0,2)如图1 过点M 作MH∥y 轴交CD 于点H设直线CD 的表达式为:y =sx +t则{34=−52s +t t =2解得{s =12t =2 故直线CD 的表达式为:y =12x +2 设点M(m,−m 2−2m +2) 点H(m,12m +2) 则△MCD 面积=S △MHD +S △MHC =12MH ×(x C −x D )=12×[(−m 2−2m +2)−(12m +2)]×52 =−54(m 2+52m) ∵ −54<0 故函数由最大值当m =−54时 △MCD 面积的最大值为12564;(3)设点Q(−1,t) 如图2①当点Q 在点C 的下方时过点Q 作x 轴的平行线交y 轴于点H 交过点F 与y 轴的平行线于点N∵∠FQN +∠QFN =90°∴∠QFF =∠CQH∵∠N =∠CHQ =90°∴△QNF ≌△CQH (AAS )∴CH =2−t =QN∴点F(t −3,t +1)设直线FP 的表达式为:y =px +q则{3=−p +q t +1=p(t −3)+q解得{p =1q =4 故直线PF 的表达式为:y =x +4②联立直线PE 与抛物线的:{y =x +4y =−x 2−2x +2解得:{x =−2y =2(不合题意的值已舍去) 即点E(−2,2);②当点Q 在点C 的上方时同理可得:点F′的坐标为(t −3,t +1)由点P F ′的坐标得:直线PF ′的表达式为y =x +4 同情况①故点E(−2,2);当点F 与点E 重合时 也符合题意综上 点E 的坐标为(−2,2)或(−1,3).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质和旋转的性质;会利用三角形全等的知识解决线段相等的问题;会解一元二次方程;理解坐标与图形性质.3.(1)D(6,3)(2)S ={9−32a (0<a <3)3a −92(a >3)(3)a =3−√3或a =94或3≤a <4【分析】(1)联立两个函数解析式解方程组即可;(2)先求解直线OA 的解析式为y =x 可得点E(a,a) 再分两种情况讨论即可;(3)分情况讨论:①如图 当a <3 且FQ =FN 时 矩形FQMN 与△AOB 重叠部分为轴对称图形 ②如图 当AC 为矩形FQMN 的对称轴时 矩形FQMN 与△AOB 重叠部分为轴对称图形 ③如图 当PQ 与AC 重合时 矩形FQMN 与△AOB 重叠部分为等腰直角三角形 是轴对称图形 ④如图 当点F 为直线OD 与AB 的交点时 可得当3≤a <4时 矩形FQMN 与△AOB 重叠部分为等腰直角三角形 是轴对称图形 从而可得答案.【详解】(1)解:联立y =12x 和y =−14x 2+2x 得{x =0,y =0 或{x =6y =3∵点D(6,3).(2)设直线OA 的解析式为y =kx∵点A(3,3)∴3k =3 解得k =1∴直线OA 的解析式为y =x .∵点P 的横坐标为a,PE ∥y 轴 且交射线OA 于点E∴点E(a,a).当0<a <3时 如图S =S △OAB −S △OCE =12×6×3−12×3a =9−32a . 当a >3时 如图S =S △OBE −S △OAC =12×6a −12×3×3=3a −92. 综上 S ={9−32a (0<a <3)3a −92(a >3); (3)①如图 当a <3 且FQ =FN 时 矩形FQMN 与△AOB 重叠部分为轴对称图形∵FQ=FN∴−14a2+2a−12a=32解得a=3±√3其中a=3+√3不满足a<3∴a=3−√3.②如图当AC为矩形FQMN的对称轴时矩形FQMN与△AOB重叠部分为轴对称图形此时∴32=2(3−a)解得a=94.③如图当PQ与AC重合时矩形FQMN与△AOB重叠部分为等腰直角三角形是轴对称图形此时a=3.④如图当点F为直线OD与AB的交点时∵点A(3,3),B(6,0)∵AB所在的直线方程为y=−x+6联立y=−x+6和y=12x解得x=4.∴当3≤a<4时矩形FQMN与△AOB重叠部分为等腰直角三角形是轴对称图形综上 a 的取值范围是a =3−√3或a =94或3≤a <4. 【点睛】本题考查的是利用二次函数的图象与性质 列二次函数关系式 矩形的性质 轴对称图形的性质 一元二次方程的解法 清晰的分类讨论 熟练的运用数形结合的方法解题是关键.4.(1)切点坐标为(3,3)(2)y 3=12x 2+x +12(3)k 1⋅k 2是定值【分析】(1)联立直线和双曲线解析式得到关于x 的一元二次方程 由相切的定义得出x 的值 解之可得;(2)联立{y =2x y =x 2+1可得切点为(1,2) 从而得出y 3=ax 2+bx +c 经过点(−3,2) (1,2) 利用待定系数法得出y 3=ax 2+2ax +2−3a 联立{y =ax 2+2ax +2−3a y =2x 得:ax 2+(2a −2)x +2−3a =0 利用Δ=0得出a =12 b =1 c =12 即可得解;(3)由l 1与l 2的交点P 的纵坐标为4 可令P(t ,4) 则直线l 1:y =k 1x −k 1t +4 直线 l 2:y 2=k 2x −k 2t +4 联立{y =k 1x −k 1t +4y =−x 2+2x +2得:x 2+(k 1−2)x −k 1t +2=0 由直线l 1:y =k 1x +m 1(k 1≠0)是抛物线y =−x 2+2x +2的切线 可得Δ=k 12+(4t −4)k 1−4=0 同理可得:k 22+(4t −4)k 2−4=0 从而得出k 1,k 2为x 2+(4t −4)x −4=0的两根 最后由一元二次方程根与系数的关系即可得出答案.【详解】(1)解:联立{y =−x +6y =9x得:x 2−6x +9=0 解得:x =3∴切点坐标为(3,3);(2)解:∵直线y 1=2x 与二次函数y 2=x 2+1相切∴联立{y =2x y =x 2+1得:x 2−2x +1=0 解得:x =1∴切点为(1,2)∵ y 1=2x 与y 2=x 2+1,y 3=ax 2+bx +c 都相切于同一点∴ y 3=ax 2+bx +c 经过点(−3,2)∴{a +b +c =29a −3b +c =2解得:{b =2a c =2−3a∴y 3=ax 2+2ax +2−3a联立{y =ax 2+2ax +2−3a y =2x得:ax 2+(2a −2)x +2−3a =0 ∴Δ=(2a −2)2−4×a ×(2−3a )=4a 2−8a +4−8a +12a 2=16a 2−16a +4=(4a −2)2=0 解得:a =12 ∴b =2a =1∴ y 3的解析式为:y 3=12x 2+x +12; (3)解:k 1⋅k 2是定值理由如下:∵ l 1与l 2的交点P 的纵坐标为4∴令P(t ,4)∴直线l 1:y =k 1x +m 1=k 1t +m 1=4 直线 l 2:y 2=k 2x +m 2=k 2t +m 2=4∴m 1=4−k 1t∴直线l 1:y =k 1x −k 1t +4 直线 l 2:y 2=k 2x −k 2t +4联立{y =k 1x −k 1t +4y =−x 2+2x +2得:x 2+(k 1−2)x −k 1t +2=0 ∵直线l 1:y =k 1x +m 1(k 1≠0)是抛物线y =−x 2+2x +2的切线∴Δ=(k 1−2)2−4×1×(2−k 1t )=k 12−4k 1+4−8+4k 1t =k 12+(4t −4)k 1−4=0同理可得:k 22+(4t −4)k 2−4=0∴ k 1,k 2为x 2+(4t −4)x −4=0的两根∴k 1⋅k 2=−4.【点睛】本题是二次函数综合题 考查了新定义 二次函数的性质 一元二次方程的根与系数的关系等知识 解题的关键是理解题意 学会构建方程组解决问题 属于中考压轴题.5.(1)y =13x −2(2)P (4,−4)(3)0或5−√2655【分析】(1)令抛物线y =0 x =0 求出点B C 的坐标 设直线BC 的解析式为y =kx +b (k ≠0) 代入点B C 的坐标 即可求解;(2)由题意得△PBC 是等腰三角形 即点P 在过点B C 的BC 中点且垂直于直线BC 的直线上 求出点B C的中点坐标 设点P (a,512a 2−136a −2) 利用勾股定理即可求出a 的值 求出符合点点P 特征的点即可;(3)过点P 作PF ⊥x 轴 垂足为点F 根据(2)的结论结合已知分别证明△PFO,△PBC,△OPM 是等腰直角三角形 利用等腰直角三角形的性质求出点M 的坐标 进而得到N 点的坐标 求出直线OP 的解析式 设点Q (b,−b ) 利用两点间距离公式结合MQ =2NQ 求出点Q 的坐标 再求出直线MQ 的解析式 联立抛物线即可求解.【详解】(1)解:在抛物线y =512x 2−136x −2中 令x =0 则y=−2∴C (0,−2)令y =0 则512x 2−136x −2=0 即5x 2−26x −24=0解得:x 1=6,x 2=−45 ∵点B 在x 轴的正半轴∴B (6,0)设直线BC 的解析式为y =kx +b (k ≠0) 代入点B C 的坐标 得{−2=b 0=6k +b解得:{b =−2k =13∴直线BC 的解析式为y =13x −2;(2)解:设点P (a,512a 2−136a −2) ∵ PB =PC ∴PB 2=PC 2 即(a −6)2+(512a 2−136a −2)2=a 2+(512a 2−136a −2+2)2整理得:a 2+2a −24=0解得:a =4或a =−6(舍去 不符合题意)当a =4时∴P (4,−4);(3)解:如图 过点P 作PF ⊥x 轴 垂足为点F由(2)知点P(4,−4)∴PF=OF=4∴△PFO是等腰直角三角形∴∠POF=∠POM=45°∵PC=√(4−0)2+[(−4)−(−2)]2=2√5,BC=√(0−6)2+(−2−0)2=2√10又PC2+PB2=BC2∴△PBC是等腰直角三角形∴∠BPC=90°,∠CBP=∠PCB=45°∵∠OMP=∠CBP∴∠OMP=45°∴△OPM是等腰直角三角形∴OP=MP∴OP=√42+(−4)2=4√2=MP∴OM=√OP2+MP2=8∵点M在y轴的负半轴上∴点M(0,−8)∵N为OM的中点∴N(0,−4)设直线OP的解析式为y=k′x(k′≠0)将P(4,−4)代入得−4=4k′解得k′=−1∴直线OP的解析式为y=−x设Q(b,−b)∵MQ=2NQ∴√b2+(−b+8)2=2√b2+(−b+4)2∴b=0或b=83当b=0时此时点Q与点O重合∴MQ与抛物线交点在y轴上∴点R的横坐标为0当b=83时设直线MQ的解析式为y=sx+t将点Q(83,−83)M(0,−8)代入得{−8=t−83=83s+t解得{s=2t=−8∵直线MQ的解析式为y=2x−8联立直线MQ与抛物线y=512x2−136x−2得{y=2x−8y=512x2−136x−2解得{x=5+√2655y=2√2655+2(舍去不符合题意)或{x=5−√2655y=2−2√2655∵此时MQ交抛物线于点R的横坐标为5−√2655综上点R的横坐标为0或5−√2655.【点睛】本题考查二次函数的图象及性质一次函数解析式熟练掌握二次函数的图象及性质等腰直角三角形的判定及性质直角三角形的性质用待定系数法求函数的解析式是解题的关键.6.(1)y=14x2−12x−2(2)点E的横坐标为1−√5(3)BQ=92【分析】(1)将B(4,0)C(−2,0)A(0,−2)代入抛物线解析式得到{16a+4b+c=04a−2b+c=0c=−2求出a、b、c的值即可得出答案;(2)先利用待定系数法求出直线AB 的解析式为:y =12x −2 设点E 的坐标为(e ,14e 2−12e −2)(−2<e <0) 从而求出直线EF 的解析式为:y =12x +14e 2−e −2 进而得出F (2e +4−12e 2,0) 表示出EF =√[e −(2e +4−12e 2)]2+(14e 2−12e −2)2=√5(14e 2−12e −2)2=√5 解方程即可得出答案;(3)设点M 的坐标为(4,m)(m <0) 待定系数法求出直线CM 的解析式为:y =m6x +m3 联立{y =m6x +m 3y =14x 2−12x −2得出N (12+2m 3,m2+9m9) 再利用待定系数法求出直线BN 的解析式为:y =m+96x −2m+183 从而得出P (1,−m−92) 利用待定系数法求出直线PQ 的解析式为y =m 6x −4m+276从而得出Q (4,−92) 即可得解. 【详解】(1)解:∵ 抛物线y =ax 2+bx +c (a ≠0)与x 轴交于B(4,0) C(−2,0)两点 与y 轴交于点A(0,−2)∴{16a +4b +c =04a −2b +c =0c =−2解得:{a =14b =−12c =−2∴抛物线的解析式为y =14x 2−12x −2; (2)解:设直线AB 的解析式为:y =k 1x +b 1 将A(0,−2) B(4,0)代入直线得:{0=4k 1+b 1b 1=−2解得:{k 1=12b 1=−2∴直线AB 的解析式为:y =12x −2 ∵点E 是直线CA 下方的抛物线上一点∴设点E 的坐标为(e ,14e 2−12e −2)(−2<e <0)∵EF ∥AB∴设直线EF 的解析式为:y =12x +b 2∴14e 2−12e −2=12e +b 2∴b 2=14e 2−e −2∴直线EF 的解析式为:y =12x +14e 2−e −2令y =0 则12x +14e 2−e −2=0 解得:x =2e +4−12e 2∴F (2e +4−12e 2,0)∴EF =√[e −(2e +4−12e 2)]2+(14e 2−12e −2)2=√(e −2e −4+12e 2)2+(14e 2−12e −2)2=√(12e 2−e −4)2+(14e 2−12e −2)2=√[2(14e 2−12e −2)]2+(14e 2−12e −2)2=√4(14e 2−12e −2)2+(14e 2−12e −2)2=√5(14e 2−12e −2)2∵EF =√5∴√5(14e 2−12e −2)2=√5∴(14e 2−12e −2)2=1 ∴14e 2−12e −2=1或14e 2−12e −2=−1 ∵点E 是直线CA 下方的抛物线上一点∴14e 2−12e −2<0 ∴14e 2−12e −2=−1 ∴e 2−2e −4=0解得:e =1+√5或e =1−√5∵−2<e <0 ∴e =1−√5∴点E 的横坐标为1−√5; (3)解:∵点M 在点B 的正下方 ∴设点M 的坐标为(4,m)(m <0) 设直线CM 的解析式为y =k 2x +b 2将C(−2,0) M(4,m)代入解析式得:{0=−2k 2+b 2m =4k 2+b 2解得:{k 2=m6b 2=m 3∴直线CM 的解析式为:y =m 6x +m3联立{y =m 6x +m 3y =14x 2−12x −2整理得:3x 2−(6+2m )x −(24+4m )=0∴(x +2)(3x −12−2m )=0解得:x 1=−2 ∴点N 的横坐标为12+2m 3纵坐标为y =12+2m36⋅m +m 3=12+2m 18⋅m +m 3=18m+2m 218=m 2+9m9∴N (12+2m 3,m 2+9m 9)设直线BN 的解析式为:y =k 3x +b 3 将B(4,0) N (12+2m 3,m 2+9m9)代入解析式得:{0=4k 3+b 3m 2+9m9=12+2m 3k 3+b 3解得:{k 3=m+96b 3=−2m+183∴直线BN 的解析式为:y =m+96x −2m+183∵抛物线的解析式为y =14x 2−12x −2 ∴对称轴为直线x =−−122×14=1∴点P 的横坐标为1 纵坐标为y =m+96×1−2m+183=−3m−276=−m−92∴P (1,−m −92) ∵PQ ∥CM∴设直线PQ 的解析式为y =m 6x +b 4∴−m −92=m6×1+b 4 解得:b 4=−4m−276∴直线PQ 的解析式为y =m6x −4m+276∵作PQ ∥CM 交射线BM 于点Q ∴点Q 的横坐标为4 纵坐标为y =m 6×4−4m+276=−92∴Q (4,−92)∴BQ =0−(−92)=92.【点睛】本题考查了二次函数综合题 待定系数法求二次函数解析式 一次函数解析式 二次函数综合—线段问题 勾股定理求两点之间的距离等知识点 熟练掌握以上知识点并灵活运用 采用数形结合的思想是解此题的关键. 7.(1)y =x 2+2x −3 (2)M (−32,−154)(3)P 点坐标为(−4,5)或(2,5)或(−2,−3)或(0,−3) E(−1,6)或(−1,4)或(−1,−6)或(−1,0)【分析】(1)先求出A,C 的坐标 进而利用待定系数法求出二次函数解析式即可;(2)过点M 作MF 垂直于x 轴交AC 于点F 设M (x,x 2+2x −3) F(x,−x −3) 则MF =(−x −3)−(x 2+2x −3)=−x 2−3x 由S △AMC =12MF ×|x C −x A |即可求解;(3)抛物线对称轴为直线x=−1.∠PDE =∠BOC OB =1 OC =3.设P (x,x 2+2x −3) 则D (−1,x 2+2x −3) 分两种情况当PD =OC DE =OB 时 △PDE ≌△COB 此时|−1−x |=3 当PD =OB DE =OC 时 △EDP ≌△COB 此时|−1−x |=1 求解即可. 【详解】(1)解:把x =0代入y =−x −3得y=−3; 把y =0代入y =−x −3得x =−3. ∴A(−3,0) C(0,−3).∵抛物线y =ax 2+bx +c 经过A,C,B 三点∴{9a −3b +c =0a +b +c =0c =−3解得{a =1b =2c =−3.∴抛物线的解析式为y =x 2+2x −3;(2)过点M 作MF 垂直于x 轴交AC 于点F 设M (x,x 2+2x −3) 则F(x,−x −3) 则MF =(−x −3)−(x 2+2x −3)=−x 2−3xS △AMC =12MF ×|x C −x A |= 12(−x 2−3x )×3=−32(x +32)2+278∴当x =−32时 S △AMC 最大 此时y =x 2+2x −3=−154. ∴当M 坐标为(−32,−154)时 S △AMC 取得最大值.(3)∵y =x 2+2x −3=(x +1)2−4 ∵抛物线对称轴为直线x=−1. ∵过点P 作l 的垂线 垂足为D ∵∠PDE =∠BOC =90° ∵C(0,−3),A (−3,0) ∵B (1,0)∵OB =1 OC =3.设P (x,x 2+2x −3) 则D (−1,x 2+2x −3) 当PD =OC DE =OB 时 此时|−1−x |=3 解得x =−4或x =2. ∵P 点坐标为(−4,5)或(2,5)∵DE =OB =1∴E(−1,6)或(−1,4). 当PD =OB DE =OC 时 此时|−1−x |=1 解得x =−2或x =0. ∵P 点坐标为(−2,−3)或(0,−3)∵DE =3∴E(−1,−6)或(−1,0).综上:P 点坐标为(−4,5)或(2,5)或(−2,−3)或(0,−3) E(−1,6)或(−1,4)或(−1,−6)或(−1,0).【点睛】本题考查了二次函数求解析式 二次函数的性质 三角形全等的性质 最值问题等 熟练掌握各知识点 能准确作出辅助线 并结合图形列出相应关系式是解题的关键. 8.(1)y =−x 2+2x +3 (2)P (1,6)(3)存在点N 满足要求 点N 坐标为(1,−4+2√6)或(1,−4−2√6)【分析】本题考查了待定系数法求二次函数表达式 二次函数的图像与性质及二次函数与一次函数综合 (1)用待定系数法求二次函数表达式;(2)根据抛物线特征得出当A,C,P 三点共线时 |PA −PC |最大 求出直线AC 的解析式为y =3x +3 即可求出结论;(3)设直线MC 与x 轴交于点E 过点N 作NQ ⊥MC 于Q 先求出直线MC 的解析式为y =x +3 证出MQ =NQ =√22MN 设点N (1,n ) 根据NQ 2=AN 2列方程并解方程即可解决.【详解】(1)解:∵抛物线y =−x 2+bx +c 经过A (−1,0),C (0,3)两点∴{−1−b +c =0c =3解得:{b =2c =3∴该抛物线的解析式为y =−x 2+2x +3;(2)解:由抛物线的对称性得 点B 关于抛物线对称轴的对称点是点A∴PA =PB∴|PB −PC |=|PA −PC |∴当A,C,P 三点共线时 |PA −PC |最大如图 连接AC 并延长AC 交抛物线的对称轴于点P设直线AC 的解析式为y =kx +d 把A (−1,0),C (0,3)代入得:{−k +d =0d =3解得:{k =3d =3∴直线AC 的解析式为y =3x +3 ∵抛物线的对称轴为直线x =−2−2=1当x =1时 ∴点P (1,6);(3)存在N 满足条件 理由如下:∵抛物线y =−x 2+2x +3与x 轴交于A 、B 两点 ∴点A (−1,0)∵y =−x 2+2x +3=−(x −1)2+4∴顶点M 为(1,4) ∵点M 为(1,4) 点C (0,3) ∴直线MC 的解析式为:y =x +3如图 设直线MC 与x 轴交于点E 过点N 作NQ ⊥MC 于Q∴点E (−3,0)∴DE =4=MD ∴∠NMQ =45°∵NQ⊥MC∴∠NMQ=∠MNQ=45°∴MQ=NQ∴MQ=NQ=√22MN设点N(1,n)∵点N到直线MC的距离等于点N到点A的距离∴NQ=AN∴NQ2=AN2∴(√22MN)2=AN2即(√22|4−n|)2=4+n2∴n2+8n−8=0∴n=−4±2√6∴存在点N满足要求点N坐标为(1,−4+2√6)或(1,−4−2√6).9.(1)y=−13x2+x+6(2)d=−2t(3)P(−4,−103)【分析】(1)先令x=0求出点C坐标再根据已知可得点B的坐标运用待定系数法即可求出抛物线解析式;(2)由(1)可得点B的坐标设P(t,−13t2+t+6)运用待定系数法求得直线PB的解析式为y=−13(t+3)x+2(t+3)进而求出D(0,2t+6)即可求得答案;(3)找点F关于原点的对称点F′连接CF′过点F′作F′K⊥GE于K根据已知先证△COF≌△BOD得OF= OD再证∠F′CK=2∠PBA进而证得△CF′K≌△EBG得F′K=BG再证△F′FK≌△BFG可得F′F=BF OB=3OF进而求出点D的坐标运用待定系数法求出直线BD的解析式再求出直线BD与抛物线的交点P的坐标.【详解】(1)解:∵抛物线y=ax2+x+6交y轴于点C∴C(0,6)∴OC=6∵OB=OC∴B(6,0)∵ B (6,0)在抛物线y =ax 2+x +6上∴ 0=36a +6+6∴ a =−13∴ y =−13x 2+x +6.(2)∵点P 是第三象限抛物线上一点∴ P (t,−13t 2+t +6)设直线PB 的解析式为y =kx +b (k ≠0)∴ {6k +b =0kt +b =−13t 2+t +6∴ {k =−13(t +3)b =2(t +3)∴直线PB 的解析式为y =−13(t +3)x +2(t +3).令x =0 得y =2(t +3)=2t +6∴ D (0,2t +6)∴ CD =6−(2t +6)=−2t∵线段 CD 长为 d∴ d =−2t ;(3)解:找点F 关于原点的对称点F ′ 连接CF ′ 过点F ′作F ′K ⊥GE 于K∵ CG ⊥BP OB ⊥OC∴ ∠COF =∠BOD =90°∵ OC =OB∴ △COF ≌△BOD∴ CF =BD∵点F 关于原点的对称点F ′∴∠FCO=∠F′CO OF=OF′∴∠F′CK=2∠PBA∵∠BEG=2∠PBA∴∠F′CK=∠BEG∵F′K⊥CG∴△CF′K≌△EBG∴F′K=BG∵F′K⊥CG∴∠FKF′=∠FGB=90°∵∠F′FK=∠BFG∴△F′FK≌△BFG∴F′F=BF∴OB=3OF∴OD=OF=13OB=2∴D(0,−2)设直线BD的解析式是y=mx+n∴{−2=0×m+n0=8m+n∴{m=1 3n=−2∴直线BD的解析式是y=13x−2∵点P在直线BD上也在抛物线y=−13x2+x+6上∴{y=13x−2y=−13x2+x+6∴{x=−4y=−103∴P(−4,−103);【点睛】本题考查了二次函数的综合题熟练掌握二次函数图像上点的坐标特征二次函数的性质中心对称的性质全等三角形的判定和性质等知识添加正确的辅助线是解题的关键.10.(1)y=−14x2+x+3(2)1(3)5√174【分析】(1)先确定点A的坐标为(2,4)再结合等腰直角三角形的性质可得C(6,0)然后运用待定系数法即可解答;(2)先用待定系数法可得AC的函数解析式为y=−x+6设E(t,−14t2+t+3)N(t,−t+6)则EN=−14t2+2t−3然后化成顶点式求最值即可;(3)先确定点M(5,74)过点E作AD的对称点E′(0,3)连接E′M交AD于点P此时PE+PM最短时M(5,74)最后运用勾股定理即可解答.【详解】(1)解:∵AD为等腰直角△ABC底边BC上的高y=a(x−2)2+4的顶点为点A ∵A的坐标为(2,4)∵AD=4∵AD为等腰直角△ABC底边BC上的高∵CD=AD=4∵C(6,0).把C(6,0)代入y=a(x−2)2+4解得:a=−14∵抛物线的解析式为y=−14(x−2)2+4即y=−14x2+x+3.(2)解:设直线AC的函数解析式为y=kx+b ∵A(2,4),C(6,0)∵AC的函数解析式为y=−x+6.设E(t,−14t2+t+3)EN=−14t2+t+3−(−t+6)=−14t2+2t−3=−14(t−4)2+1∵当t=4时EN最大为1∵E(4,3).(3)解:∵M(5,b)在抛物线y =−14(x −2)2+4上∵M (5,74).∵AD 是此抛物线的对称轴∵过点E 作AD 的对称点E ′(0,3) 连接E ′M 交AD 于点P 此时PE +PM 最短 M (5,74);∵PE +PM 最短=E ′M =√(0−5)2+(3−74)2=5√174. 【点睛】本题主要考查了二次函数与几何的综合 求函数解析 求函数最值等知识点 灵活运用相关知识成为解题的关键.11.(1)x =1; (2)(3,0) (−1,0);(3)点P 的坐标为(3−√2,−√2)或(3+√2,√2).【分析】(1)本题根据抛物线y =ax 2+bx +c(a ≠0)的对称轴公式为x =−b2a 即可解题.(2)本题根据抛物线公式可整理为y =a (x 2−2x −3)=a (x −3)(x +1) 即可解题.(3)本题由(2)得到点B 的坐标 利用OB =OC 求得点C 的坐标 推出a 值 得到抛物线解析式 设直线BC 的解析式为y =kx −3 利用待定系数法求出直线BC 的解析式 设点P (m,m −3) 则M (m,m 2−2m −3) 根据过点P 作x 轴的垂线交抛物线于M 点 分以下两种情况讨论 当P 在M 的上方时 当P 在M 的下方时 根据这两种情况分析得到PM = CP 并对应的建立等式求解 即可解题.【详解】(1)解:∵抛物线解析式为y =ax 2−2ax −3a (a >0)∴抛物线的对称轴为x =−−2a2a =1;(2)解:∵抛物线解析式为y =ax 2−2ax −3a (a >0)整理可得y =a (x 2−2x −3)=a (x −3)(x +1)∴不论a 取何值 函数图象必过(3,0) (−1,0);(3)解:由(2)可知 点B 的坐标为(3,0)∴OB =3∵ OB =OC∴OC =3∴点C 的坐标为(0,−3) 且−3a =−3 即a =1∴抛物线解析式为y=x2−2x−3设直线BC的解析式为y=kx−3将(3,0)代入解析式有3k−3=0解得k=1∴直线BC的解析式为y=x−3设点P(m,m−3)则M(m,m2−2m−3)当P在M的上方时则PM=−m2+3m∵△PCM沿CM对折如果点P的对应点N恰好落在y轴上∴∠PCM=∠NCM∵PM∥y轴∴∠NCM=∠PMC∴∠PCM=∠PMC∴PC=PM∴√2m=−m2+3m整理得:m2+(√2−3)m=0解得:m1=0(不合题意舍去)则点P的坐标为(3−√2,−√2);当P在M的下方时则PM=m2−3m同理可得:√2m=m2−3m整理得:m2−(√2+3)m=0解得:m1=0(不合题意舍去)则点P的坐标为(3+√2,√2);综上所述点P的坐标为(3−√2,−√2)或(3+√2,√2).【点睛】本题考查了二次函数与一次函数综合折叠的性质二次函数的图象和性质待定系数法求函数解析式 勾股定理表示两点间的距离 等腰三角形性质 熟练掌握折叠的性质 结合分类讨论的数学思想 即可解题.12.(1)a =−16(2)(−2,−2)或(−2,4)或(−2,2√2)或(−2,−2√2)(3)−13−√2412或−13+√2412.【分析】本题主要考查了二次函数的应用 等腰三角形 全等三角形等几何图形等知识点 熟练运用数形结合利用几何关系寻找等量关系是解题的关键.(1)将点C 坐标代入抛物线解析式即可解答;(2)分三种情况:当ME =MC 、CE =CM 、EM =CE 时 然后利用等腰三角形的性质即可解答;(3)先判断出△PQE≌△P ′Q ′E (AAS )得出PQ =P ′Q ′、EQ =EQ ′ 进而得出P ′Q ′=n ,EQ ′=QE =m +2 确定出点P ′(n −2,2+m) 将点P ′的坐标代入直线AD 的解析式中和点P 代入抛物线解析式中 联立方程组求解即可.【详解】(1)解:∵抛物线y =a (x +6)(x −2)过点(0,2)∵2=a (0+6)(0−2) a =−16.(2)解:∵a =−16 ∵抛物线的解析式为y =−16(x +6)(x −2)=−16(x +2)2+83 ∵抛物线的对称轴为直线x =−2;∵E(−2,0)∵C(0,2)∵OC =OE =2∵CE =√2OC =2√2∵△CME 是等腰三角形∵①当ME =MC 时∵∠ECM =∠CED =45°∵∠CME =90°∵M(−2,2);②当CE =CM 时。
二次函数压轴题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二次函数压轴题(含答案)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二次函数压轴题(含答案)(word版可编辑修改)的全部内容。
面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.考点:二次函数综合题.专题:压轴题;数形结合.分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN 的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值.解答:解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.考点:二次函数综合题.。
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。
二次函数解答压轴题(62题)一、解答题1(2023·浙江绍兴·统考中考真题)已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.3(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.4(2023·浙江杭州·统考中考真题)设二次函数y=ax2+bx+1,(a≠0,b是实数).已知函数值y和自变量x的部分对应取值如下表所示:x⋯-10123⋯y⋯m1n1p⋯(1)若m=4,求二次函数的表达式;(2)写出一个符合条件的x的取值范围,使得y随x的增大而减小.(3)若在m、n、p这三个实数中,只有一个是正数,求a的取值范围.5(2023·湖南常德·统考中考真题)如图,二次函数的图象与x轴交于A-1,0,B5,0两点,与y轴交于点C,顶点为D.O为坐标原点,tan∠ACO=1 5.(1)求二次函数的表达式;(2)求四边形ACDB的面积;(3)P是抛物线上的一点,且在第一象限内,若∠ACO=∠PBC,求P点的坐标.6(2023·山东烟台·统考中考真题)如图,抛物线y=ax2+bx+5与x轴交于A,B两点,与y轴交于点C,AB=4.抛物线的对称轴x=3与经过点A的直线y=kx-1交于点D,与x轴交于点E.(1)求直线AD及抛物线的表达式;(2)在抛物线上是否存在点M,使得△ADM是以AD为直角边的直角三角形?若存在,求出所有点M的坐标;若不存在,请说明理由;(3)以点B为圆心,画半径为2的圆,点P为⊙B上一个动点,请求出PC+1PA的最小值.27(2023·江苏苏州·统考中考真题)如图,二次函数y=x2-6x+8的图像与x轴分别交于点A,B(点A 在点B的左侧),直线l是对称轴.点P在函数图像上,其横坐标大于4,连接PA,PB,过点P作PM⊥l,垂足为M,以点M为圆心,作半径为r的圆,PT与⊙M相切,切点为T.(1)求点A,B的坐标;(2)若以⊙M的切线长PT为边长的正方形的面积与△PAB的面积相等,且⊙M不经过点3,2,求PM长的取值范围.8(2023·山东东营·统考中考真题)如图,抛物线过点O0,0,矩形ABCD的边AB在线段,E10,0OE上(点B在点A的左侧),点C,D在抛物线上,设B t,0,当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.9(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,已知抛物线y=ax2+83x+c a≠0与x轴交于点A1,0和点B,与y轴交于点C0,-4.(1)求这条抛物线的函数解析式;(2)P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.①如图,若点P在第三象限,且tan∠CPD=2,求点P的坐标;②直线PD交直线BC于点E,当点E关于直线PC的对称点E 落在y轴上时,请直接写出四边形PECE 的周长.10(2023·四川自贡·统考中考真题)如图,抛物线y=-43x2+bx+4与x轴交于A(-3,0),B两点,与y轴交于点C.(1)求抛物线解析式及B,C两点坐标;(2)以A,B,C,D为顶点的四边形是平行四边形,求点D坐标;(3)该抛物线对称轴上是否存在点E,使得∠ACE=45°,若存在,求出点E的坐标;若不存在,请说明理由.11(2023·四川达州·统考中考真题)如图,抛物线y =ax 2+bx +c 过点A -1,0 ,B 3,0 ,C 0,3 .(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出△PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B 、C 、M 、N 为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.12(2023·四川泸州·统考中考真题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与坐标轴分别相交于点A,B,C0,6三点,其对称轴为x=2.(1)求该抛物线的解析式;(2)点F是该抛物线上位于第一象限的一个动点,直线AF分别与y轴,直线BC交于点D,E.①当CD=CE时,求CD的长;②若△CAD,△CDE,△CEF的面积分别为S1,S2,S3,且满足S1+S3=2S2,求点F的坐标.13(2023·全国·统考中考真题)如图,在平面直角坐标系中,抛物线y=-x2+2x+c经过点A(0,1).点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠PAQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2.当h2-h1=m时,直接写出m的值.14(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.15(2023·四川凉山·统考中考真题)如图,已知抛物线与x轴交于A1,0两点,与y轴交于和B-5,0点C.直线y=-3x+3过抛物线的顶点P.(1)求抛物线的函数解析式;(2)若直线x=m-5<m<0与抛物线交于点E,与直线BC交于点F.①当EF取得最大值时,求m的值和EF的最大值;②当△EFC是等腰三角形时,求点E的坐标.16(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P (4,-3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.17(2023·安徽·统考中考真题)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx a≠0经过点A3,3,对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(ⅰ)当0<t<2时,求△OBD与△ACE的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为32若存在,请求出点B的横坐标t的值;若不存在,请说明理由.18(2023·浙江金华·统考中考真题)如图,直线y =52x +5与x 轴,y 轴分别交于点A ,B ,抛物线的顶点P 在直线AB 上,与x 轴的交点为C ,D ,其中点C 的坐标为2,0 .直线BC 与直线PD 相交于点E .(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BEEC的值.(2)连接PC ,∠CPE 与∠BAO 能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.19(2023·湖南·统考中考真题)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于C点,其中B1,0.,C0,3(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P,使得S△PAC=S△ABC若存在,请求出P点坐标;若不存在,请说明理由;(3)点Q是对称轴l上一点,且点Q的纵坐标为a,当△QAC是锐角三角形时,求a的取值范围.20(2023·四川遂宁·统考中考真题)在平面直角坐标系中,O 为坐标原点,抛物线y =14x 2+bx +c 经过点O (0,0),对称轴过点B (2,0),直线l 过点C 2,-2 ,且垂直于y 轴.过点B 的直线l 1交抛物线于点M 、N ,交直线l 于点Q ,其中点M 、Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线l 1下方的抛物线上一动点,连接PQ 、PO ,其中PO 交l 1于点E ,设△OQE 的面积为S 1,△PQE 的面积为S 2.求S2S 1的最大值.21(2023·四川眉山·统考中考真题)在平面直角坐标系中,已知抛物线y =ax 2+bx +c 与x 轴交于点A -3,0 ,B 1,0 两点,与y 轴交于点C 0,3 ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P 在直线AC 上方的抛物线上时,连接BP 交AC 于点D .如图1.当PDDB的值最大时,求点P 的坐标及PDDB的最大值;(3)过点P 作x 轴的垂线交直线AC 于点M ,连接PC ,将△PCM 沿直线PC 翻折,当点M 的对应点M '恰好落在y 轴上时,请直接写出此时点M 的坐标.22(2023·江西·统考中考真题)综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=2,动点P 以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF设点P的运动时间为ts,正方形DPEF的而积为S,探究S与t的关系(1)初步感知:如图1,当点P由点C运动到点B时,①当t=1时,S=.②S关于t的函数解析式为.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段AB的长.(3)延伸探究:若存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等.①t1+t2=;②当t3=4t1时,求正方形DPEF的面积.23(2023·新疆·统考中考真题)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC ⊥BC ,AB ⊥BE ,ED ⊥BD ,垂足分别为C ,B ,D ,AB =BE .求证:△ACB ≌△BDE ;【类比迁移】(2)如图2,一次函数y =3x +3的图象与y 轴交于点A 、与x 轴交于点B ,将线段AB 绕点B 逆时针旋转90°得到BC 、直线AC 交x 轴于点D .①求点C 的坐标;②求直线AC 的解析式;【拓展延伸】(3)如图3,抛物线y =x 2-3x -4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C点,已知点Q (0,-1),连接BQ .抛物线上是否存在点M ,使得tan ∠MBQ =13,若存在,求出点M 的横坐标.24(2023·甘肃武威·统考中考真题)如图1,抛物线y=-x2+bx与x轴交于点A,与直线y=-x交于点B4,-4在y轴上.点P从点B出发,沿线段BO方向匀速运动,运动到点O时停止.,点C0,-4(1)求抛物线y=-x2+bx的表达式;(2)当BP=22时,请在图1中过点P作PD⊥OA交抛物线于点D,连接PC,OD,判断四边形OCPD 的形状,并说明理由.(3)如图2,点P从点B开始运动时,点Q从点O同时出发,以与点P相同的速度沿x轴正方向匀速运动,点P停止运动时点Q也停止运动.连接BQ,PC,求CP+BQ的最小值.25(2023·四川乐山·统考中考真题)已知x 1,y 1 ,x 2,y 2 是抛物C 1:y =-14x 2+bx (b 为常数)上的两点,当x 1+x 2=0时,总有y 1=y 2(1)求b 的值;(2)将抛物线C 1平移后得到抛物线C 2:y =-14(x -m )2+1(m >0).探究下列问题:①若抛物线C 1与抛物线C 2有一个交点,求m 的取值范围;②设抛物线C 2与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线C 2的顶点为点E ,△ABC 外接圆的圆心为点F ,如果对抛物线C 1上的任意一点P ,在抛物线C 2上总存在一点Q ,使得点P 、Q 的纵坐标相等.求EF 长的取值范围.26(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.27(2023·上海·统考中考真题)在平面直角坐标系xOy中,已知直线y=34x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.28(2023·江苏扬州·统考中考真题)在平面直角坐标系xOy中,已知点A在y轴正半轴上.(1)如果四个点0,0中恰有三个点在二次函数y=ax2(a为常数,且a≠0)的图象、-1,1、1,1、0,2上.①a=;②如图1,已知菱形ABCD的顶点B、C、D在该二次函数的图象上,且AD⊥y轴,求菱形的边长;③如图2,已知正方形ABCD的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究n-m是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD的顶点B、D在二次函数y=ax2(a为常数,且a>0)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.29(2023·湖南岳阳·统考中考真题)已知抛物线Q1:y=-x2+bx+c与x轴交于A-3,0,B两点,交y 轴于点C0,3.(1)请求出抛物线Q1的表达式.(2)如图1,在y轴上有一点D0,-1,点E在抛物线Q1上,点F为坐标平面内一点,是否存在点E,F使得四边形DAEF为正方形?若存在,请求出点E,F的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q1向右平移2个单位,得到抛物线Q2,抛物线Q2的顶点为K,与x轴正半轴交于点H,抛物线Q1上是否存在点P,使得∠CPK=∠CHK?若存在,请求出点P的坐标;若不存在,请说明理由.30(2023·湖南永州·统考中考真题)如图1,抛物线y =ax 2+bx +c (a ,b ,c 为常数)经过点F 0,5 ,顶点坐标为2,9 ,点P x 1,y 1 为抛物线上的动点,PH ⊥x 轴于H ,且x 1≥52.(1)求抛物线的表达式;(2)如图1,直线OP :y =y 1x 1x 交BF 于点G ,求S △BPG S △BOG的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于C ,且BC ⊥BE ,PH =FC ,求点P 的横坐标.31(2023·山东枣庄·统考中考真题)如图,抛物线y=-x2+bx+c经过A(-1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.32(2023·湖北随州·统考中考真题)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(-1,0),B(2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC 于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.33(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于B 4,0 ,C -2,0 两点.与y 轴交于点A 0,-2 .(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P 作y 轴的平行线交x 轴于点D ,求与12PK +PD 的最大值及此时点P 的坐标;(3)在抛物线的对称轴上是否存在一点M ,使得△MAB 是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.34(2023·湖南·统考中考真题)已知二次函数y =ax 2+bx +c a >0 .(1)若a =1,c =-1,且该二次函数的图像过点2,0 ,求b 的值;(2)如图所示,在平面直角坐标系Oxy 中,该二次函数的图像与x 轴交于点A x 1,0 ,B x 2,0 ,且x 1<0<x 2,点D 在⊙O 上且在第二象限内,点E 在x 轴正半轴上,连接DE ,且线段DE 交y 轴正半轴于点F ,∠DOF =∠DEO ,OF =32DF .①求证:DO EO=23.②当点E 在线段OB 上,且BE =1.⊙O 的半径长为线段OA 的长度的2倍,若4ac =-a 2-b 2,求2a +b 的值.35(2023·山西·统考中考真题)如图,二次函数y =-x 2+4x 的图象与x 轴的正半轴交于点A ,经过点A 的直线与该函数图象交于点B 1,3 ,与y 轴交于点C .(1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是第一象限内二次函数图象上的一个动点,过点P 作直线PE ⊥x 轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①当PD =12OC 时,求m 的值;②当点P 在直线AB 上方时,连接OP ,过点B 作BQ ⊥x 轴于点Q ,BQ 与OP 交于点F ,连接DF .设四边形FQED 的面积为S ,求S 关于m 的函数表达式,并求出S 的最大值.36(2023·湖北武汉·统考中考真题)抛物线C1:y=x2-2x-8交x轴于A,B两点(A在B的左边),交y 轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t0<t<4,分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF.若△BDE 与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线C2交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.37(2023·湖北宜昌·统考中考真题)如图,已知A(0,2),B(2,0).点E位于第二象限且在直线y=-2x 上,∠EOD=90°,OD=OE,连接AB,DE,AE,DB.(1)直接判断△AOB的形状:△AOB是三角形;(2)求证:△AOE≌△BOD;(3)直线EA交x轴于点C(t,0),t>2.将经过B,C两点的抛物线y1=ax2+bx-4向左平移2个单位,得到抛物线y2.①若直线EA与抛物线y1有唯一交点,求t的值;②若抛物线y2的顶点P在直线EA上,求t的值;③将抛物线y2再向下平移,2(t-1)2个单位,得到抛物线y3.若点D在抛物线y3上,求点D的坐标.38(2023·湖南郴州·统考中考真题)已知抛物线y=ax2+bx+4与x轴相交于点A1,0,与y,B4,0轴相交于点C.(1)求抛物线的表达式;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求PAPC的值;(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=12若存在,求出点Q的坐标;若不存在,请说明理由.39(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.40(2023·湖南·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A-2,0和点B4,0,且与直线l:y=-x-1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M 的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与拋物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.41(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+4的图象与x 轴交于点A-2,0,B4,0,与y轴交于点C.(1)求抛物线的解析式;(2)已知E为抛物线上一点,F为抛物线对称轴l上一点,以B,E,F为顶点的三角形是等腰直角三角形,且∠BFE=90°,求出点F的坐标;(3)如图2,P为第一象限内抛物线上一点,连接AP交y轴于点M,连接BP并延长交y轴于点N,在点P运动过程中,OM+12ON是否为定值?若是,求出这个定值;若不是,请说明理由.42(2023·山东聊城·统考中考真题)如图①,抛物线y=ax2+bx-9与x轴交于点A-3,0,,B6,0与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P m,0从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.43(2023·湖北荆州·统考中考真题)已知:y关于x的函数y=a-2x+b.x2+a+1(1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是;(2)如图,若函数的图象为抛物线,与x轴有两个公共点A-2,0,B4,0,并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE 的面积为S2.①当点P为抛物线顶点时,求△PBC的面积;②探究直线l在运动过程中,S1-S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.44(2023·福建·统考中考真题)已知抛物线y=ax2+bx+3交x轴于A1,0,B3,0两点,M为抛物线的顶点,C,D为抛物线上不与A,B重合的相异两点,记AB中点为E,直线AD,BC的交点为P.(1)求抛物线的函数表达式;(2)若C4,3,D m,-3 4,且m<2,求证:C,D,E三点共线;(3)小明研究发现:无论C,D在抛物线上如何运动,只要C,D,E三点共线,△AMP,△MEP,△ABP中必存在面积为定值的三角形.请直接写出其中面积为定值的三角形及其面积,不必说明理由.45(2023·山东·统考中考真题)如图,直线y=-x+4交x轴于点B,交y轴于点C,对称轴为x=32的抛物线经过B,C两点,交x轴负半轴于点A.P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y轴于点D.(1)求抛物线的解析式;(2)若0<m<32,当m为何值时,四边形CDNP是平行四边形?(3)若m<32,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m 的值;若不存在,请说明理由.46(2023·山东·统考中考真题)已知抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C 0,4 ,其对称轴为x =-32.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD ,BD ,将△ABD 沿直线AD 翻折,得到△AB D ,当点B 恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG ⊥x 轴,垂足为G ,求FG +2FP 的最大值.47(2023·辽宁大连·统考中考真题)如图,在平面直角坐标系中,抛物线C 1:y =x 2上有两点A 、B ,其中点A 的横坐标为-2,点B 的横坐标为1,抛物线C 2:y =-x 2+bx +c 过点A 、B .过A 作AC ∥x 轴交抛物线C 1另一点为点C .以AC 、12AC 长为边向上构造矩形ACDE .(1)求抛物线C 2的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E ,点C 的对应点C 落在抛物线C 1上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E 交抛物线C 1于点P ,交抛物线C 2于点Q .当点E 为线段PQ 的中点时,求m 的值;③抛物线C 2与边E D 、A C 分别相交于点M 、N ,点M 、N 在抛物线C 2的对称轴同侧,当MN =2103时,求点C 的坐标.48(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中,已知二次函数y=ax2+bx+c的图象与x轴交于点A-2,0.点D为线段BC上的一动点. 和点B6,0两点,与y轴交于点C0,6(1)求二次函数的表达式;(2)如图1,求△AOD周长的最小值;(3)如图2,过动点D作DP∥AC交抛物线第一象限部分于点P,连接PA,PB,记△PAD与△PBD的面积和为S,当S取得最大值时,求点P的坐标,并求出此时S的最大值.49(2023·黑龙江绥化·统考中考真题)如图,抛物线y1=ax2+bx+c的图象经过A(-6,0),B(-2,0),C (0,6)三点,且一次函数y=kx+6的图象经过点B.(1)求抛物线和一次函数的解析式.(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标:如果不存在,请说明理由.(3)将抛物线y1=ax2+bx+c的图象向右平移8个单位长度得到抛物线y2,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线y2上的一个动点且在直线NC下方.已知点P的横坐标为PD有最大值,最大值是多少?m.过点P作PD⊥NC于点D.求m为何值时,CD+1250(2023·四川南充·统考中考真题)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A-1,0,B3,0两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P在抛物线上,点Q在x轴上,以B,C,P,Q为顶点的四边形为平行四边形,求点P的坐标;(3)如图2,抛物线顶点为D,对称轴与x轴交于点E,过点K1,3的直线(直线KD除外)与抛物线交于G,H两点,直线DG,DH分别交x轴于点M,N.试探究EM⋅EN是否为定值,若是,求出该定值;若不是,说明理由.51(2023·四川宜宾·统考中考真题)如图,抛物线y=ax2+bx+c与x轴交于点A-4,0,且经、B2,0过点C-2,6.(1)求抛物线的表达式;(2)在x轴上方的抛物线上任取一点N,射线AN、BN分别与抛物线的对称轴交于点P、Q,点Q关于x轴的对称点为Q ,求△APQ 的面积;(3)点M是y轴上一动点,当∠AMC最大时,求M的坐标.52(2023·四川广安·统考中考真题)如图,二次函数y=x2+bx+c的图象交x轴于点A,B,交y轴于点C,点B的坐标为1,0,对称轴是直线x=-1,点P是x轴上一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的解析式.(2)若点P在线段AO上运动(点P与点A、点O不重合),求四边形ABCN面积的最大值,并求出此时点P 的坐标.(3)若点P在x轴上运动,则在y轴上是否存在点Q,使以M、N、C、Q为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.。
备战中考数学压轴题专题二次函数的经典综合题及答案解析一、二次函数1.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210.(3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).【解析】【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可.【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0),∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-.∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+.(2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值.∴当PB+PC 最小时,△PBC 的周长最小.∵点A 、点B 关于对称轴I 对称,∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴AC=32,BC=10.∴△PBC 的周长最小是:3210+.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+)∴()22EF m 2m 32m 6m 4m 3=--+-+=---. ∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---.②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).2.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润.【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解;(2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润.【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k b k b =+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩, 即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =﹣2b a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x 元时,既能销售完又能获得最大利润w ,由题意得:50(500﹣20x )≥12000,解得:x ≤13,w =﹣20(x ﹣25)(x ﹣6),当x =13时,w =1680,此时,既能销售完又能获得最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).3.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛物线y =ax 2+bx +c 过点C .动点P 从点A 出发,以每秒12个单位的速度沿线段AD 向点D 运动,运动时间为t 秒.过点P 作PE ⊥x 轴交抛物线于点M ,交AC 于点N .(1)直接写出点A的坐标,并求出抛物线的解析式;(2)当t为何值时,△ACM的面积最大?最大值为多少?(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?【答案】(1)A(1,4);y=-x2+2x+3;(2)当t=2时,△AMC面积的最大值为1;(3)2085-或20 13.【解析】(1)由矩形的性质得到点A的坐标,由抛物线的顶点为A,设抛物线的解析式为y=a(x -1)2+4,把点C的坐标代入即可求得a的值;(2)由点P的坐标以及抛物线解析式得到点M的坐标,由A、C的坐标得到直线AC的解析式,进而得到点N的坐标,即可用关于t的式子表示MN,然后根据△ACM的面积是△AMN和△CMN的面积和列出用t表示的△ACM的面积,利用二次函数的性质即可得到当t=2时,△AMC面积的最大值为1;(3)①当点H在N点上方时,由PN=CQ,PN∥CQ,得到四边形PNCQ为平行四边形,所以当PQ=CQ时,四边形FECQ为菱形,据此得到,解得t值;②当点H在N点下方时,NH=CQ=,NQ=CQ时,四边形NHCQ为菱形,NQ2=CQ2,得:,解得t值.解:(1)由矩形的性质可得点A(1,4),∵抛物线的顶点为A,设抛物线的解析式为y=a(x-1)2+4,代入点C(3, 0),可得a=-1.∴y=-(x-1)2+4=-x2+2x+3.(2)∵P(112t+,4),将112x t=+代入抛物线的解析式,y=-(x-1)2+4=2144t-,∴M (112t +,2144t -), 设直线AC 的解析式为,将A (1,4),C (3,0)代入,得:, 将112x t =+代入得, ∴N (112t +,), ∴MN, ∴, ∴当t =2时,△A MC 面积的最大值为1.(3)①如图1,当点H在N点上方时,∵N(112t +,),P (112t +,4), ∴P N=4—()==CQ ,又∵PN ∥CQ , ∴四边形PNCQ 为平行四边形,∴当PQ =CQ 时,四边形FECQ 为菱形,PQ 2=PD 2+DQ 2 =,∴, 整理,得240800t t -+=.解得12085t =-,22085t =+(舍去);②如图2当点H在N点下方时,NH=CQ=,NQ =CQ 时,四边形NHCQ 为菱形,NQ 2=CQ 2,得:.整理,得213728000t t -+=.()()1320400t t --=.所以12013t =,(舍去).“点睛”此题主要考查二次函数的综合问题,会用顶点式求抛物线,会用两点法求直线解析式,会设点并表示三角形的面积,熟悉矩形和菱形的性质是解题的关键.4.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),∴1640 4206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:3 4 3 26abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF×AG+12×DF×EH=12×4×DF=2×(2384m m--+)=23250233m-++(),∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA =29n +,PE =212n ++(),AE =16425+=,分三种情况讨论: 当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.5.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【解析】【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题;(3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ PO AC OC =时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3,∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0), 易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b , 把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩, ∴直线AB 的解析式为y =2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n ,把M (t ,0)代入得2t+n =0,解得n =﹣2t ,∴直线MN 的解析式为y =2x ﹣2t , 解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+ 21(t 3)33=--+, 当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO ,∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=, 解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.6.已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2=0有两个实数根.(1)求k 的取值范围;(2)设x 1,x 2是方程两根,且121111x x k +=-,求k 的值. 【答案】(1)k ≥﹣14;(2)k【解析】【分析】(1)根据方程有两个实数根可以得到△≥0,从而求得k 的取值范围;(2)利用根与系数的关系将两根之和和两根之积代入代数式求k 的值即可. 【详解】解:(1)△=(2k +1)2﹣4k 2=4k 2+4k +1﹣4k 2=4k +1 ∵△≥0 ∴4k +1≥0 ∴k ≥﹣14; (2)∵x 1,x 2是方程两根, ∴x 1+x 2=2k +1 x 1x 2=k 2,又∵121111x x k +=-, ∴121211x x x x k +=⋅-, 即22111k k k +=+ ,解得:12k k ==又∵k ≥﹣14, 即:k【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于b a -,两根之积等于ca”是解题的关键.7.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=,()22AM [11](m 0)=--+-,分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.Q 抛物线的解析式为2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+. Q 当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=,()22[11](0)AM m =--+-.分三种情况考虑:①当90AMC ∠=o 时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=o 时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=o 时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC V 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,列出关于m 的方程.8.在平面直角坐标系xOy 中,抛物线y =x 2﹣2x +a ﹣3,当a =0时,抛物线与y 轴交于点A ,将点A 向右平移4个单位长度,得到点B . (1)求点B 的坐标;(2)将抛物线在直线y =a 上方的部分沿直线y =a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M ,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.【答案】(1)A (0,﹣3),B (4,﹣3);(2)﹣3<a ≤0; 【解析】 【分析】(1)由题意直接可求A ,根据平移点的特点求B ;(2)图形M 与线段AB 恰有两个公共点,y =a 要在AB 线段的上方,当函数经过点A 时,AB 与函数两个交点的临界点; 【详解】解:(1)A (0,﹣3),B (4,﹣3); (2)当函数经过点A 时,a =0, ∵图形M 与线段AB 恰有两个公共点, ∴y =a 要在AB 线段的上方, ∴a >﹣3 ∴﹣3<a ≤0; 【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.9.抛物线L :y=﹣x 2+bx+c 经过点A (0,1),与它的对称轴直线x=1交于点B . (1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y=kx ﹣k+4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m的值及相应点P的坐标.【答案】(1)y=﹣x2+2x+1;(2)-3;(3)当m=22﹣1时,点P的坐标为(0,2)和(0,22);当m=2时,点P的坐标为(0,1)和(0,2).【解析】【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=12BG•x N﹣12BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=228k k-±-,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【详解】(1)由题意知()1211bc⎧-=⎪⨯-⎨⎪=⎩,解得:21bc=⎧⎨=⎩,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,设M点的横坐标为x M,N点的横坐标为x N,∵y=kx ﹣k+4=k (x ﹣1)+4,∴当x=1时,y=4,即该直线所过定点G 坐标为(1,4), ∵y=﹣x 2+2x+1=﹣(x ﹣1)2+2, ∴点B (1,2), 则BG=2,∵S △BMN =1,即S △BNG ﹣S △BMG =12BG•(x N ﹣1)-12BG•(x M -1)=1, ∴x N ﹣x M =1,由2421y kx k y x x =-+⎧⎨=--+⎩得:x 2+(k ﹣2)x ﹣k+3=0, 解得:x=()()22243k k k -±---=2282k k -±-,则x N =228k k -+-、x M =228k k ---,由x N ﹣x M =1得28k -=1, ∴k=±3, ∵k <0, ∴k=﹣3; (3)如图2,设抛物线L 1的解析式为y=﹣x 2+2x+1+m , ∴C (0,1+m )、D (2,1+m )、F (1,0), 设P (0,t ),(a )当△PCD ∽△FOP 时,PC FOCD OP=, ∴112m t t+-=, ∴t 2﹣(1+m )t+2=0①; (b)当△PCD ∽△POF 时,PC POCD OF=,∴121m t t+-=, ∴t=13(m+1)②; (Ⅰ)当方程①有两个相等实数根时, △=(1+m )2﹣8=0,解得:m=22﹣1(负值舍去), 此时方程①有两个相等实数根t 1=t 2=2, 方程②有一个实数根t=223, ∴m=22﹣1,此时点P 的坐标为(0,2)和(0,223); (Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:19(m+1)2﹣13(m+1)+2=0, 解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t 1=1、t 2=2, 方程②有一个实数根t=1,∴m=2,此时点P 的坐标为(0,1)和(0,2);综上,当m=22﹣1时,点P 的坐标为(0,2)和(0,22); 当m=2时,点P 的坐标为(0,1)和(0,2).【点睛】本题主要考查二次函数的应用,涉及到待定系数法求函数解析式、割补法求三角形的面积、相似三角形的判定与性质等,(2)小题中根据三角形BMN 的面积求得点N 与点M 的横坐标之差是解题的关键;(3)小题中运用分类讨论思想进行求解是关键.10.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,(0,3﹣)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【解析】 【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3; (2)令y=0,则x 2﹣4x+3=0, 解得:x=1或x=3, ∴B (3,0), ∴点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,,∴或OP=PC ﹣﹣3 ∴P1(0,P 2(0,3﹣ ②当PB=PC 时,OP=OB=3, ∴P 3(0,-3); ③当BP=BC 时, ∵OC=OB=3 ∴此时P 与O 重合, ∴P 4(0,0);综上所述,点P 的坐标为:(0,0,3﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=12×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.11.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=16x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3. 【解析】 【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得12623,623x x =+=-1243x x -=答:两排灯的水平距离最小是3考点:二次函数的实际应用.12.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.13.如图,已知抛物线经过点A (﹣1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 做x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形?(3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=﹣12x 2+32x+2;(2)m=﹣1或m=3时,四边形DMQF 是平行四边形;(3)点Q 的坐标为(3,2)或(﹣1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似.【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M (m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ =,即214 132222m m m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4), 将点C (0,2)代入,得:-4a=2,解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2; (2)由题意知点D 坐标为(0,-2),设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得: 402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0), ∴Q (m ,--12m 2+32m+2)、M (m ,12m-2), 则QM=-12m 2+32m+2-(12m-2)=-12m 2+m+4, ∵F (0,12)、D (0,-2), ∴DF=52, ∵QM ∥DF ,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.14.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x2+32x﹣2;(2)9;(3)点Q的坐标为(﹣2,4)或(﹣2,﹣1).【解析】(1)如答图1所示,利用已知条件求出点B的坐标,然后用待定系数法求出抛物线的解析式.(2)如答图1所示,首先求出四边形BMCA面积的表达式,然后利用二次函数的性质求出其最大值.(3)如答图2所示,首先求出直线AC与直线x=2的交点F的坐标,从而确定了Rt△AGF 的各个边长;然后证明Rt△AGF∽Rt△QEF,利用相似线段比例关系列出方程,求出点Q的坐标.考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.15.如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值.【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN 为直角三角形时,t 的值为1或4.【解析】【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论.【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得: 309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x Q =-+=--,∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=, ∴点C 的坐标为()0,3.Q 点B 的坐标为()3,0, ()()22300332BC ∴=-+-=, ()()2223102BD =-+--=,CD ==22220BC BD CD +==Q ,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠,将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x t y x x =-++⎧⎨=-+⎩,解得:11322x t y ⎧=⎪⎪⎨+-⎪=⎪⎩,22322x t y ⎧=⎪⎪⎨+⎪=⎪⎩,∴点M 的坐标为,点N 的坐标为,. Q 点A 的坐标为()1,0,(222210571AM t t t ⎫⎫∴=+-=++-+⎪⎪⎪⎪⎝⎭⎝⎭(222210571AN t t t ⎫⎫=-+-=++++⎪⎪⎪⎪⎝⎭⎝⎭,222188MN t =+=+⎝⎭⎝⎭.AMN ∆Q 为直角三角形,∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN+=,即((22571571188t t t t t t t ++-+++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去);②当90AMN ∠=︒时,有222AM MN AN +=,即((22571188571t t t t t t t ++-++=++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去);③当90ANM ∠=︒时,有222AN MN AN +=,即((22571188571t t t t t t t +++++=++-+,10t ++=. 0t >Q ,∴该方程无解(或解均为增解).综上所述:当AMN ∆为直角三角形时,t 的值为1或4.【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC 2+BD 2=CD 2;(3)分∠MAN =90°、∠AMN =90°及∠ANM =90°三种情况考虑.。
中考数学—二次函数的综合压轴题专题复习及答案解析一、二次函数1.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】【分析】 (1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可.【详解】(1)将C (0,﹣3)代入y =x +m ,可得:m =﹣3;(2)将y =0代入y =x ﹣3得:x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3;(3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°,∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.2.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
《二次函数综合》压轴题专题训练1.定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y=(x﹣1)2﹣2的“同轴对称抛物线”为y=﹣(x﹣1)2+2.(1)满足什么条件的抛物线与其“同轴对称抛物线”的顶点重合:.(2)求抛物线y=﹣x2+x+1的“同轴对称抛物线”.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点B′、C′,连接BC、CC′、B′C′、BB′,设四边形BB′C′C的面积为S(S>0).①当四边形BB′C′C为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.2.已知抛物线C:y=ax2+bx+c向左平移1个单位长度,再向上平移4个单位长度得到抛1物线C:y=x2.2(1)直接写出抛物线C的解析式;1与x轴交于A,B两点,点A在点B的左侧,点P(,t)(2)如图1,已知抛物线C1在抛物线C上,QB⊥PB交抛物线于点Q.求点Q的坐标;1上,EM∥x轴,点E在点M的左侧,过点M的直线MD与抛(3)已知点E,M在抛物线C2物线C只有一个公共点(MD与y轴不平行),直线DE与抛物线交于另一点N.若线段2NE=DE,设点M,N的横坐标分别为m,n,直接写出m和n的数量关系(用含m的式子表示n)为.3.如图1,抛物线y=x2+bx+c过点A(4,﹣1),B(0,﹣),点C为直线AB下方抛物线上一动点,M为抛物线顶点,抛物线对称轴与直线AB交于点N.(1)求抛物线的表达式与顶点M的坐标;(2)在直线AB上是否存在点D,使得以C,D,M,N为顶点的四边形是平行四边形,若存在,请求出D点坐标;(3)在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.4.如图,已知抛物线y=ax2+bx+c与x轴的交点为A(﹣1,0),B(2,0)且与y轴交于点C,OA=OC.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由;(3)已知点P时直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q 为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;=3,请求出点P的坐标.(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.7.已知抛物线交x轴于A,B两点(A在B右边),A(3,0),B(1,0)交y轴于C点,C(0,3),连接AC;(1)求抛物线的解析式;(2)P为抛物线上的一点,作PE⊥CA于E点,且CE=3PE,求P点坐标;(3)将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,过H作直线MH,NH,当MH⊥NH时,求MN恒过的定点坐标.:y=(x﹣1)2+k(k>0)经过y轴上的点A,顶点为B.抛物线8.如图,已知抛物线l1l:y=(x﹣h)2+2﹣h(h≥2)的顶点为D,直线y=﹣x+b经过A,B,D三点,两抛物2线交于点C.(1)求b的值和点B的坐标;(2)设点C的横坐标为m,探究m与h之间的数量关系;(3)当△ABC是直角三角形时,求h的值.9.综合与探究.如图1,抛物线y=x2﹣x﹣2与x轴交于A,B两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求A,B,C三点的坐标及直线BE的解析式.(2)如图2,过点A作BE的平行线交抛物线于点D,点P是抛物线上位于线段AD下方的一个动点,连接PA,PD,求OAPD面积的最大值.(3)若(2)中的点P为抛物线上一动点,在x轴上是否存在点Q,使得以A,D,P,Q 为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.10.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.11.如图1,抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,与y轴交于点C,且OA=OC.(1)求抛物线的解析式;(2)点D是抛物线顶点,求△ACD的面积;(3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,S=,求△APE面积的最大值和此动点P的坐标.△ABE12.图①,抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)如图2,将抛物线在BC上方的图象沿BC折叠后与y轴交与点E,求点E的坐标.13.已知,抛物线y=ax2,其中a>0.(1)如图1,若点A、B是此抛物线上两点,且分属于y轴两侧,连接AB与y轴相交于点C,且∠AOB=90°.求证:CO=;(2)如图2,若点A是此抛物线上一点,过点A的直线恰好与此抛物线仅有一个交点,且与y轴交于点B,与x轴相交于点C.求证:AC=BC.14.如图,抛物线y=ax2﹣x+c与x轴交于A,B两点,与y轴交于C点,连结AC,已知B(1﹣,0),且抛物线经过点D(2,﹣2).(1)求抛物线的解析式;(2)若点E是抛物线上位于x轴下方的一点,且S△ACE =S△ABC,求E的坐标;(3)若点P是y轴上一点,以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标.15.如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.解:(1)∵“同轴对称抛物线”的顶点重合,∴顶点关于x轴对称且重合,∴顶点在x轴上,故答案为:顶点在x轴上;(2)∵y=﹣x2+x+1=﹣(x﹣1)2+,∴“同轴对称抛物线”的顶点坐标为(1,﹣),∴y=(x﹣1)2﹣;(3)①由题可知,B(1,1﹣3a),∴C(1,3a﹣1),∵抛物线y=ax2﹣4ax+1的对称轴为x=2,∴B'(3,1﹣3a),C'(3,3a﹣1),∴BB'=CC'=2,∴BC=2﹣6a或BC=6a﹣2,∴2﹣6a=2或6a﹣2=2,∴a=0(舍去)或a=;②函数的对称轴为x=2,函数L的顶点坐标为(2,1﹣4a),∵L与“同轴对称抛物线”是关于x轴对称的,所以整数点也是对称的出现,∵抛物线L与其“同轴对称抛物线”围成的封闭区域内,在x轴上的整数点可以是3个或5个,∴L与x轴围城的区域的整数点为4个或3个;当a>0时,当x=1时,﹣2≤1﹣3a<﹣1,∴<a≤1,当x=2时,1﹣4a<﹣2,∴a>,∴<a≤1;当a<0时,当x=2时,1﹣4a≤2,∴a≥﹣,当x=﹣1时,5a+1<0,∴a<﹣,∴﹣≤a<﹣;综上所述:<a≤1或﹣≤a<﹣.2.解:(1)由已知可知,抛物线C:y=x2向右平移1个单位长度,再向下平移4个单位2:y=ax2+bx+c,长度得到抛物线C1:y=(x﹣1)2﹣4,∴抛物线C1故答案为y=(x﹣1)2﹣4;(2)∵y=(x﹣1)2﹣4,令y=0,(x﹣1)2﹣4=0,解得x=3或x=﹣1,∴A(﹣1,0),B(3,0),上,∵点P(,t)在抛物线C1∴t=(﹣1)2﹣4,解得t=﹣,∴P(,﹣),设Q(t,t2﹣2t﹣3),过点P作PM⊥x轴交于点M,过点Q作QN⊥x轴交于点N,∵BQ⊥BP,∴∠QBN+∠MBP=∠QBN+∠MQN=90°,∴∠BQN=∠PBM,∴△BNQ∽△QMP,∴=,∴=,∴t=﹣或t=3,∵Q点在第二象限,∴t=﹣,∴Q(﹣,);(3)∵点M与N在y=x2上,∴M(m,m2),N(n,n2)∵EM∥x轴,∴E(﹣m,m2),设MD的解析式为y=kx+b,∴m2=km+b,∴b=m2﹣km,∴y=kx+m2﹣km,∵直线MD与抛物线y=x2只有一个交点,∴kx+m2﹣km=x2,∴△=k2﹣4(m2+km)=0,∴k=2m,∴直线MD的解析式为y=2mx﹣m2,∵NE=DE,∴D(﹣2m﹣n,2m2﹣n2),∴2m2﹣n2=2m(﹣2m﹣n)﹣m2,整理得,n2﹣2mn﹣7m2=0,∴n=(1±2)m,故答案为n=(1±2)m.3.解:(1)将点A(4,﹣1),B(0,﹣)代入抛物线y=x2+bx+c,得,解得,∴y=x2﹣x﹣,∴M点的坐标为(1,﹣4);(2)设直线AB的表达式为y=mx+n,∴,解得,∴y=x﹣;当x=1时,y=﹣3,∴N(1,﹣3),∴MN=1;①若MN为平行四边形的一边时,则有CD∥MN,且CD=MN,设C(t,t2﹣t﹣),则D(t,t﹣),∴CD=t﹣﹣(t2﹣t﹣)=1,∴t=3或t=1(舍去),∴D(3,﹣);②若MN为平行四边形的对角线,设D(t,t﹣),则C(2﹣t,﹣t﹣),将点C代入抛物线解析式得,(2﹣t)2﹣(2﹣t)﹣=﹣t﹣,∴t=﹣1或t=1(舍去),∴D(﹣1,﹣);综上所述:符合条件的D点坐标为(3,﹣)或(﹣1,﹣);(3)在对称轴上取点P(1,﹣1),∴PA=PM=3,∠APM=90°,以P为圆心,PA为半径作圆交y轴于点Q,∴∠AQM=∠APM=45°,作PE⊥y轴交于点E,∴PE=1,∵PQ=3,∴EQ==2,∴Q点坐标为(0,﹣1+2)或(0,﹣1﹣2).4.解:(1)∵点A (﹣1,0) ∴OA =1,∵OA =OC =1,且点C 在y 轴负半轴, ∴点C (0,﹣1)∵抛物线y =ax 2+bx +c 与x 轴的交点为A (﹣1,0),B (2,0)且与y 轴交于点C , ∴解得:∴抛物线的表达式为:y =x 2﹣x ﹣1; (2)∵点C 关于x 轴的对称点为C 1, ∴C 1(0,1),∵点B (2,0),点C 1(0,1), ∴直线BC 1的解析式为:y =﹣x +1, ∴设点M 坐标为(m ,﹣m +1) ∴MF =m ,ME =﹣m +1,∴矩形MFOE 的面积=MF ×ME =m ×(﹣m +1)=﹣m 2+m =﹣(m ﹣1)2+, ∴当m =1时,矩形MFOE 的最大面积为,此时点M 的坐标为(1,),即点M 为线段C 1B 中点时,S 矩形MFOE 最大;(3)由题意,C (0,﹣1),C 1(0,1),以C 、C 1、P 、Q 为顶点的四边形为平行四边形,分以下两种情况:①C 1C 为边,则C 1C ∥PQ ,C 1C =PQ , 设P (m ,m +1),Q (m ,m 2﹣m ﹣1), ∴|(m 2﹣m ﹣1)﹣(m +1)|=2, 解得:m 1=4,m 2=﹣2,m 3=2,m 4=0(舍),P 1(4,3),Q 1(4,5);P 2(﹣2,0),Q 2(﹣2,2);P 3(2,2),Q 3(2,0)②C 1C 为对角线,∵C 1C 与PQ 互相平分,C 1C 的中点为(0,0), ∴PQ 的中点为(0,0),设P (m ,m 2﹣m +1),则Q (﹣m ,m 2+m ﹣1) ∴(m +1)+(m 2+m ﹣1)=0, 解得:m 1=0(舍去),m 2=﹣2, ∴P 4(﹣2,0),Q 4(2,0);综上所述,点P 和点Q 的坐标为:P 1(4,3),Q 1(4,5)或P 2(﹣2,0),Q 2(﹣2,2)或P 3(2,2),Q 3(2,0)或P 4(﹣2,0),Q 4(2,0).5.解:(1)∵直线x =1是抛物线的对称轴,且点C 的坐标为(0,3), ∴c =3,﹣=1,∴b =2,∴抛物线的解析式为:y =﹣x 2+2x +3; (2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴点M (1,4),∵抛物线的解析式为:y =﹣x 2+2x +3与x 轴相交于A ,B 两点(点A 位于点B 的左侧), ∴0=﹣x 2+2x +3 ∴x 1=3,x 2=﹣1,∴点A (﹣1,0),点B (3,0), ∵点M (1,4),点B (3,0) ∴直线BM 解析式为y =﹣2x +6,∵点P 在直线BM 上,且PD ⊥x 轴于点D ,PD =m , ∴点P (3﹣,m ),∴S △PCD =×PD ×OD =m ×(3﹣)=﹣m 2+m , ∵点P 在线段BM 上,且点M (1,4),点B (3,0), ∴0<m ≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+b,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD =S△PQD+S△PQB,∴S△PBD=(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△AMD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).7.解:(1)∵抛物线过A(3,0),B(1,0),∴可设抛物线的解析式为y=a(x﹣3)(x﹣1)(a≠0),把c(0,3)代入,得3a=3,∴a=1,∴抛物线的解析式是y=(x﹣3)(x﹣1)=x2﹣4x+3,即y=x2﹣4x+3;(2)过点P作PD⊥x轴于点D,过E作EF⊥y轴于F,延长FE与PD交于点G,如图1,∵A(3,0),C(0,3),∴OA=OC=3,∴∠OAC=45°,∵FG∥OA,∴∠CEF=45°,∴CF=EF=CE,∵PE⊥CA,∴∠PEG=45°,∴PG=EG=PE,∵CE=3PE,∴EF=3FG,设EF=3m,则PG=EG=m,FG=4m,∴DG=OF=OC﹣CF=3﹣3m,PD=PG+DG=3﹣2m,∴P(4m,3﹣2m),把P(4m,3﹣2m)代入y=x2﹣4x+3中得,3﹣2m=16m2﹣16m+3,∴m=,或m=0(舍去),∴P(,);(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线y=x2﹣4x+3的顶点为(2,﹣1),∵将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,∴H(2,0),由题意知,点H是新抛物线的顶点,∴新抛物线的解析式为y=(x﹣2)2,设M(m,(m﹣2)2),N(n,(n﹣2)2),过M作MK⊥x轴于点K,过点N作NL⊥x轴于点L,则MK=(m﹣2)2,KH=2﹣m,HL=n﹣2,NL=(n﹣2)2,∵MH⊥NH,∴∠MHK+∠HMK=∠MHK+∠NHL=90°,∴∠HMK=∠NHL,∵∠MKH=∠HLN=90°,∴△KHM∽△LNH,∴,,∴,∴,设直线MN的解析式为:y=kx+b(k≠0),则,∴,∴直线MN的解析式为:,当x=2时,y=﹣(m2﹣4m+3)=m2﹣4m+4﹣m2+4m﹣3=1,∴MN恒过的定点(2,1).8.解:(1)∵y=(x﹣1)2+k(k>0)经过y轴上的点A,顶点为B,∴A(0,1+k),B(1,k),∵y=(x﹣h)2+2﹣h(h≥2)的顶点为D,∴D(h,2﹣h),∵直线y=﹣x+b经过A,D,∴,∴,∴b的值为2,点B的坐标为(1,1);:y=(x﹣1)2+1,(2)由(1)知,抛物线l1∵点C的横坐标为m,两抛物线交于点C.∴(m﹣1)2+1=(m﹣h)2﹣h+2,整理得2mh﹣2m=h2﹣h∵h≥2∴m==;(3)当AC⊥AB时,则直线AC解析式为:y=x+2,∴∴(舍去),,∴点C坐标为(3,5),∴3=∴h=6;当BC⊥AB时,则直线BC解析式为:y=x,∴∴(舍去),∴点C坐标为(2,2),∴2=∴h=4;9.解:(1)令y=0,则x2﹣x﹣2=0,解得x=4或x=﹣1,∴A(﹣1,0),B(4,0),令x=0,则y=﹣2,∴C(0,﹣2),设直线BE的解析式为y=kx+b,将B(4,0)、E(0,2)代入得,,解得:,∴y=﹣x+2;(2)由题意可设AD的解析式为y=﹣x+m,将A(﹣1,0)代入,得到m=﹣,∴y=﹣x﹣,联立,解得:,,∴D(3,﹣2),过点P作PF⊥x轴于点F,交AD于点N,过点D作DG⊥x轴于点G.∴S△APD =S△APN+S△DPN=PN•AF+PN•FG=PN(AF+FG)=PN•AG=×4PN=2PN,设P(a,﹣a2﹣a﹣2),则N(a,﹣a﹣),∴PN=﹣a2+a+,∴S△APD=﹣a2+2a+3=﹣(a﹣1)2+4,∵﹣1<0,﹣1<a<3,∴当a=1时,△APD的面积最大,最大值为4;(3)存在;①当PD与AQ为平行四边形的对边时,∵AQ∥PD,AQ在x轴上,∴P(0,﹣2),∴PD=3,∴AQ=3,∵A(﹣1,0),∴Q(2,0)或Q(﹣4,0);②当PD与AQ为平行四边形的对角线时,PD与AQ的中点在x轴上,∴P点的纵坐标为2,∴P(,2)或P(,2),∴PD的中点为(,0)或(,0),∵Q点与A点关于PD的中点对称,∴Q(,0)或Q(,0);综上所述:点Q的坐标为(2,0)或(﹣4,0)或(,0)或(,0).10.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,又∵抛物线对称轴为直线x =﹣=2,∴x =2时,y =﹣3×2+3=﹣3, 故,点M 的坐标为(2,﹣3); (3))∵OB =OC =3,OB ⊥OC , ∴△BOC 是等腰直角三角形,∵EF ∥y 轴,直线BC 的解析式为y =﹣x +3, ∴△DEF 只要是直角三角形即可与△BOC 相似, ∵D (2,1),A (1,0),B (3,0), ∴点D 垂直平分AB 且到点AB 的距离等于AB , ∴△ABD 是等腰直角三角形, ∴∠ADB =90°, 如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1, ∴x 2﹣4x +3=1, 整理得x 2﹣4x +2=0, 解得x =2±,当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣),②点D 是直角顶点时,联立,解得,,当x =1时,y =﹣1+3=2, 当x =4时,y =﹣4+3=﹣1, ∴点E 3(1,2),E 4(4,﹣1), 综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.11.解:(1)∵抛物线y =ax 2+2ax +c (a ≠0)与x 轴交于点A ,B (1,0)两点,与y 轴交于点C ,且OA =OC ,∴a +2a +c =0,点C 的坐标为(0,c ), ∴点A 的坐标为(c ,0), ∴ac 2+2ac +c =0, ∴,解得,或,∵函数图象开口向上, ∴a >0, ∴a =1,c =﹣3,∴抛物线的解析式为y =x 2+2x ﹣3;(2)∵y =x 2+2x ﹣3=(x +1)2﹣4,抛物线与与y 轴交于点C ,顶点为D ,OA =OC ,抛物线y =ax 2+2ax +c (a ≠0)与x 轴交于点A ,B (1,0)两点,∴点D 的坐标为(﹣1,﹣4),点C 的坐标为(0,﹣3),点A 的坐标为(﹣3,0), 连接OD ,如右图1所示, 由图可知:S △ACD =S △OAD +S △OCD ﹣S △OAC==3;(3)∵A(﹣3,0),点B(1,0),∴AB=4,设点E的纵坐标为t,t<0,∵S△ABE=,∴=,得t=,把y=﹣代入y=x2+2x﹣3,得﹣=x2+2x﹣3,解得,x1=,x2=,∵点E在y轴的右侧,∴点E(,﹣),设直线AE的解析式为y=mx+n(m≠0),∴,得,∴直线AE的解析式为y=﹣x﹣1,过点P作y轴的平行线交AC于点G,如图2所示,设点P的横坐标为x,则P(x,x2+2x﹣3),点G(x,﹣x﹣1),∴PG=(﹣x﹣1)﹣(x2+2x﹣3)=﹣x2﹣x+2,又∵A(﹣3,0),E(,﹣),∴S△APE =S△APG+S△PEG=(﹣x2﹣x+2)(x+3)+(﹣x2﹣x+2)(﹣x)=(﹣x2﹣x+2)(3+)=(x+)2+,∴当x=﹣时,S取得最大值,最大值是,△APE把x=﹣代入y=x2+2x﹣3,得y=(﹣)2+2×(﹣)﹣3=﹣,∴此时点P的坐标为(﹣,﹣).12.解:(1)∵抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,∴,得,∴y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴抛物线的对称轴是直线x=1,即该抛物线的解析式为y=﹣2x2+4x+6,对称轴是直线x=1;(2)分两种情况:设点D的坐标为(1,y)第一种情况是:∠BCD=90°时,则CD2+BC2=BD2,∵点B的坐标为(3,0),抛物线y=﹣2x2+4x+6交y轴于点C,∴点C的坐标为(0,6),∴[12+(y﹣6)2]+(32+62)=(3﹣1)2+y2,解得,y=6.5,∴点D的坐标为(1,6.5);第二种情况:当∠DBC=90°时,BD2+BC2=CD2,即[(3﹣1)2+y2]+(32+62)=12+(6﹣y)2,解得,y=﹣1,∴点D的坐标为(1,﹣1),综上所述,符合条件的点D的坐标为(1,6.5),(1,﹣1);(3)因为点C的坐标为(0,6),点B的坐标为(3,0),设直线BC的解析式为y=kx+6,则3k+6=0,得k=﹣2,即直线BC的解析式为y=﹣2x+6,如右图所示,作点E关于直线BC的对称点E′交BC于点F,过点F作FN⊥y轴于点N,设E(0,m),E′(x,y),则EE′⊥BC,∴∠CFE=∠COB=90°,∴BC==3,∵∠ECF=∠BCO,∴△ECF∽△BCO,∴,即,解得,CF=,又∵∠CNF=∠COB,∠NCF=∠OCB,∴△NCF∽△OCB,∴,即,解得,FN=,∴点F的横坐标为,把x=代入直线BC的解析式,得y=,∴点F的坐标为(,),∵EE′关于直线BC对称,∴点F为EE′的中点,∴,解得,∴E′(,),∵点E′在抛物线y=﹣2x2+4x+6上,∴=﹣2×[]2+4×+6,解得,m1=6,m2=,∴点E的坐标为(0,6)或(0,).13.证明:(1)设A(b,ab2),B(c,ac2),∵∠AOB=90°,∴AB2=AO2+BO2,∴(b﹣c)2+(ab2﹣ac2)2=b2+a2b4+c2+a2c4,﹣2bc﹣2a2b2c2=0,1+a2bc=0,∴bc=﹣,设直线AB的解析式为:y=mx+n,则,解得,∴直线AB的解析式为:y=a(b+c)x﹣abc,当x=0时,y=OC=﹣abc=﹣a•(﹣)=;(2)如图2,过A作AD⊥y轴于D,设直线AB的解析式为:y=kx+b,当y=0时,kx+b=0,∴x=﹣,∴OC=﹣,∵过点A的直线AB恰好与此抛物线仅有一个交点,∴ax2=kx+b,∴ax2﹣kx﹣b=0,△=k2+4ab=0,∴b =﹣,OC =﹣=,∴x =,∵a >0,k >0,∴AD =,∵AD ∥OC ,∴==,∴AB =2BC ,∴AC =BC .14.解:(1)把B (﹣1,0),D (2,﹣2)代入y =ax 2﹣x +c 得, 解得:.故抛物线的解析式为y =x 2﹣x ﹣2;(2)当y =0时,x 2﹣x ﹣2=0,解得x 1=﹣1,x 2=3,∴A (3,0),∴AB =4,当x =0时,y =﹣2,∴C (0,﹣2),∴OC =2,∴S △ABC =×4×2=4,设AC 的解析式为y =kx +b ,把A (3,0),C (0,﹣2)代入y =kx +b 得, 解得.∴y =x ﹣2,如图1,过点E 作x 轴的垂线交直线AC 于点F ,设点F (a ,a ﹣2),点E (a ,a 2﹣a ﹣2),其中﹣1<a <3,∴S △ACE =EF |x A ﹣x C |=|a 2﹣a |=,∵S △ACE =S △ABC ,∴a 2﹣3a =2或﹣a 2+3a =2,解得a 1=(舍去),a 2=,a 3=1,a 4=2, ∴E 1(,),E 2(1,﹣),E 3(2,﹣2);(3)在y =ax 2+bx ﹣2中,当x =0时,y =﹣2,∴C (0,﹣2),∴OC =2,如图2,设P (0,m ),则PC =m +2,OA =3,AC ==,①当PA =CA 时,则OP 1=OC =2,∴P 1(0,2);②当PC =CA =时,即m +2=,∴m =﹣2, ∴P 2(0,﹣2); ③当PC =PA 时,点P 在AC 的垂直平分线上,则△AOC ∽△P 3EC ,∴=,∴P 3C =,∴m =, ∴P 3(0,),④当PC =CA =时,m =﹣2﹣,∴P 4(0,﹣2﹣).综上所述,P点的坐标(0,2)或(0,﹣2)或(0,)或(0,﹣2﹣).15.解:(1)由已知可求B(6,0),C(0,4),将点B(6,0),C(0,4)代入y=﹣+bx+c,则有,解得,∴y=﹣x2+x+4,令y=0,则﹣x2+x+4=0,解得x=﹣1或x=6,∴A(﹣1,0);(2)∵点D在抛物线上,且横坐标为3,∴D(3,8),过点D作y轴的垂线交于点E,过点B作BF⊥DE交ED的延长线于点F;∴E(0,8),F(6,8),∴S△BCD =S梯形ECBF﹣S△CDE﹣S△BFD=(EC+BF)×OB﹣×EC×ED﹣×DF×BF=×(4+8)×6﹣×4×3﹣×3×8=36﹣6﹣12=18;(3)设P(m,﹣m2+m+4),∵PQ垂直于x轴,∴Q(m,0),且∠PQO=90°,∵∠COB=90°,∴点A、P、Q为顶点的三角形与△BOC相似有两种情况:①△PAQ∽△CBO时,==,∴=,解得m=5或m=﹣1,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=5,∴P(5,4);②△PAQ∽△BCO时,==,∴=,解得m=﹣1或m=,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=,∴P(,);综上所述:P(5,4)或P(,)时,点A、P、Q为顶点的三角形与△BOC相似.。
二次函数与几何综合二次函数与三角形综合【例1】. (2012 武汉中考)如图1,点A 为抛物线C1:y= x2﹣2 的顶点,点B 的坐标为(1,0)直线AB 交抛物线C1于另一点C(1)求点C 的坐标;(2)如图1,平行于y 轴的直线x=3 交直线AB 于点D,交抛物线C1于点E,平行于y 轴的直线x=a 交直线AB 于F,交抛物线C1于G,若FG:DE=4:3,求a 的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x 轴于点M,交射线BC 于点N.NQ⊥x 轴于点Q,当NP 平分∠MNQ 时,求m 的值.考点:二次函数综合题。
解答:解:(1)当x=0时,y=﹣2;∴A(0,﹣2).设直线AB 的解析式为y=kx+b,则:,解得∴直线AB 解析式为y=2x﹣2.∵点C 为直线y=2x﹣2 与抛物线x2﹣2 的交点,则点C 的横、纵坐标满足:,解得、(舍)∴点C的坐标为(4,6).(2)直线x=3 分别交直线AB 和抛物线C1于D.E 两点.∴y D=4,y E=,∴DE=.∵FG=DE=4:3,∴FG=2.∵直线x=a 分别交直线AB 和抛物线C1于F、G 两点.∴y F=2a﹣2,y G=a2﹣2∴FG=|2a﹣a2|=2,解得,a3=2﹣2.(3)设直线MN 交y 轴于T,过点N 做NH⊥y 轴于点H;设点M的坐标为(t,0),抛物线C2的解析式为y=x2﹣2﹣m;∴0=﹣t2﹣2﹣m,∴﹣2﹣m=﹣t2.∴y=x2﹣t2,∴点P坐标为(0,﹣t2).∵点N 是直线AB 与抛物线x2﹣t2 的交点,则点N 的横、纵坐标满足:,解得、(舍)∴N(2﹣t,2﹣2t).NQ=2﹣2t,MQ=2﹣2t,∴MQ=NQ,∴∠MNQ=45°.∴△MOT、△NHT 均为等腰直角三角形,∴MO=OT,HT=HN∴OT=4,NT=﹣,NH= t2.∵PN 平分∠MNQ,∴PT=NT,∴﹣t+t2=(2﹣t),∴t1=﹣2 ,t2=2(舍)﹣2﹣m=﹣t2=﹣(﹣2 )2,∴m=2.【例2】.(2011武汉中考)如图1,抛物线y=a x2+b x+3经过A(-3,0),B (-1 ,0 )两点.(1 )求抛物线的解析式;(2 )设抛物线的顶点为M ,直线y= - 2 x + 9 与y 轴交于点C ,与直线O M 交于点D. 现将抛物线平移,保持顶点在直线OD 上. 若平移的抛物线与射线CD(含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3 )如图2 ,将抛物线平移,当顶点至原点时,过Q (0 ,3 )作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PE F 的内心在y 轴上. 若存在,求出点P 的坐标;若不存在,请说明理由.2 1112 22 2 2【例 3】. (2010 武汉中考)如图,拋物线 y =ax 2-2ax +b 经过 A(-与 x 轴交于另一点 B ; (1) 求此拋物线的解析式;1,0),C(2, 3 2)两点, (2) 若拋物线的顶点为 M ,点 P 为线段 OB 上一动点(不与点 B 重合),点 Q 在线段 MB 上移动,且∠MPQ=45︒,设线段 OP=x ,MQ= y ,求 y 与 x 的函数关系式,并直接写 2出自变量 x 的取值范围;(3) 在同一平面直角坐标系中,两条直线 x=m ,x=n 分别与拋物线交于点 E ,G ,与(2)中的函数图像交于点 F ,H 。
1、抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,若OB=OC=2OA,则下列结论一定成立的是:A. b < 0B. a+b+c = 0C. 2b2 - 9ac = 0D. a-b+c = 0(答案:C)2、已知二次函数y=ax2+bx+c的图像经过点A(-1,0),B(3,0),C(0,-3),则当y随x的增大而减小时,x的取值范围是:A. x < -1B. x > 3C. -1 < x < 3D. x < -1 或x > 3(答案:D)3、二次函数y=ax2+bx+c的图像开口向上,顶点在x轴上,且图像不经过第三象限,则a,b,c满足:A. a > 0,b2 - 4ac = 0,c < 0B. a < 0,b2 - 4ac = 0,c > 0C. a > 0,b2 - 4ac = 0,c > 0D. a < 0,b2 - 4ac > 0,c < 0(答案:A)4、抛物线y=ax2+bx+c与直线y=x+1交于A、B两点,且A点的横坐标为-2,若抛物线的对称轴是直线x=2,则线段AB的长为:A. 3B. 4C. 5D. 6(答案:D)5、已知二次函数y=ax2+bx+c的图像与x轴交于点A、B,与y轴交于点C,若AC=BC,则下列结论一定成立的是:A. b=2aB. b=-2aC. c=2aD. c=-2a(答案:B)6、二次函数y=ax2+bx+c的图像经过点A(1,0),B(0,3),且对称轴是直线x=2,则当y=0时,x的另一个值是:A. 3B. 4C. 5D. 6(答案:A)7、已知二次函数y=ax2+bx+c的图像与x轴交于A、B两点,且AB=4,若点A的坐标为(-1,0),则点B的坐标为:A. (3,0)B. (-5,0)C. (3,0)或(-5,0)D. 无法确定(答案:C)8、抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,若△ABC是等腰直角三角形,且OB=OC,则b的值为:A. 1B. 2C. -1D. ±2(答案:D)。
一、二次函数真题与模拟题分类汇编〔难题易错题〕1 .童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售, 经市场调查发现:每降价1元,每星期可多卖10件,该款童装每件本钱30元,设降价后该款童装每件售价工元,每星期的销售量为〕'件.⑴降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?⑵当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】〔1〕这一星期中每件童装降价20元;〔2〕每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】〔1〕根据售量与售价x 〔元/件〕之间的关系列方程即可得到结论.〔2〕设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:〔1〕根据题意得,〔60-x〕 xl0+100=3xl00,解得:x=40,60 - 40 = 20 元,答:这一星期中每件童装降价20元:〔2〕设利润为w,根据题意得,w= 〔x- 30〕 [ 〔60-X〕xl0+100]= - 10x2+1000x - 21000=-10 〔x- 50〕 2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】此题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题, 利用图象法解一元二次不等式,属于中考常考题型.2 .阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线〞.例如,点M 〔1, 3〕的特征线有:x=l, y=3,备用图问题与探究:如图,在平面直角坐标系中有正方形0A8C,点8在第一象限,A、C分别在x轴和y轴上,抛物线> =;*一〃?〕2+〃经过8、C两点,顶点.在正方形内部.〔1〕直接写出点.〔m, n〕所有的特征线:〔2〕假设点.有一条特征线是y=x+l,求此抛物线的解析式:〔3〕点P是48边上除点八外的任意一点,连接0P,将AOAP沿着0P折登,点4落在点々的位置,当点4在平行于坐标轴的.点的特征线上时,满足〔2〕中条件的抛物线向下平移多少距离,其顶点落在0P上?【答案】〔1〕 x=m, y=n, y=x+n - m, y= - x+m+n;〔2〕 y = - 〔x-2〕2 + 3 ;〔3〕抛物4线向下平移上二正或W距离,其顶点落在OP上. 3 12【解析】试题分析:〔1〕根据特征线直接求出点.的特征线:〔2〕由点.的一条特征线和正方形的性质求出点.的坐标,从而求出抛物线解析式;〔2〕分平行于x轴和y轴两种情况,由折卷的性质计算即可.试题解析:解:〔1〕・二点D 〔m,.〕,,••点.〔m, n〕的特征线是x=m, y=n, y=x+n - m,y= - x+m+n;〔2〕点.有一条特征线是y=x+l, .•.〃=m+l. •.•抛物线解析式为了 = !〔工一"?了+〃,.•.y = =〔x—〃?〕2+〃? + 1, ,四边形OA8C是正方形,且.点为正方4 4形的对称轴,.〔m, /?〕,「. 8 〔2m, 2m〕 ,y = —〔2m — m〕2 + n = 2m 9将c=m+l 带4入得到m=2, n=3;・・・.〔2, 3〕,・•・抛物线解析式为y = !〔x-2〕2+3.〔3〕①如图,当点A在平行于y轴的.点的特征线时:根据题意可得,D (2, 3),・ .0A=0A=4, 0M=2,N AOM=60°,「・N AOP=N AOP=30°,:MN笺空,抛物线需要向下平移的距离=3—李亨•②如图,当点4在平行于X轴的.点的特征线时,设A〔P,3 〕,那么OA=OA=4, OE=3,EA 二“2.32 =a,,AF=4-a,设P(4, c) (c>0),,在RS AFP 中,(4-V7)2+ (3-c) 2=c2, .•“」6T立,「.p (4, .16 —4" ) ,直线OP解析式为3 3y=匕Lx, :.N (2, l") •.抛物线需要向下平移的距离=3-3 38-2>/7 _1 + 2>/7-3-- -3综上所述:抛物线向下平移) - 2琳或1 + 2"距离,其顶点落在0P上. 3 3点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答此题的关键是用正方形的性质求出点.的坐标.3.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为〃中国结〃.〔1〕求函数y=/x+2的图像上所有“中国结〞的坐标:〔2〕求函数y=±〔HO, k为常数〕的图像上有且只有两个“中国结〃,试求出常数k的值X与相应“中国结〞的坐标;〔3〕假设二次函数丫=〔公一3攵+2〕/+〔2攵2-4%+ 1〕%+公一% 〔k为常数〕的图像与x轴相交得到两个不同的"中国结",试问该函数的图像与x轴所围成的平而图形中〔含边界〕,一共包含有多少个“中国结〞?【答案】〔1〕〔0,2〕 : 〔2〕当k=l时,对应"中国结〞为〔1,1〕〔一1, -D ;当k=-l 时,对应"中国结"为〔1, 一1〕, 〔一1,1〕 ; 〔3〕 6个.【解析】试题分析:〔1〕由于X是整数,XHO时,JJx是一个无理数,所以XHO时,JJx+2不是整数,所以x=o, y=2,据此求出函数y=J^x+2的图象上所有“中国结〃的坐标即可.k〔2〕首先判断出当k=l时,函数/一〔k/0, k为常数〕的图象上有且只有两个〃中国xk结〃:〔1, 1〕、〔-1、-1〕:然后判断出当代1时,函数度一〔kHO, k为常数〕的图X象上最少有4个〃中国结〃,据此求出常数k的值与相应〃中国结〃的坐标即可.(3)首先令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k-1)]=0,求出X】、X2的值是多少;然后根据X】、X2的值是整数,求出k的值是多少:最后根据横坐标,纵坐标均为整数的点称之为"中国结",判断出该函数的图象与x轴所用成的平面图形中(含边界),一共包含有多少个“中国结〞即可.试题解析:(l);x是整数,XHO时,、^x是一个无理数,xHO时,JJx+2不是整数,x=0> y=2,即函数y=Cx+2的图象上"中国结〞的坐标是(0, 2).(2)①当k=l时,函数度勺(k#0, k为常数)的图象上有且只有两个“中国结〃:x (1, 1)、(-1、-1):②当匕-1时,函数丫=&(HO, k为常数)的图象上有且只有两个“中国结〃:X(1, -1)、( -1, 1).③当修±1时,函数尸& (HO, k为常数)的图象上最少有4个〃中国结JX(I, k)、( - 1, - k)、(k, 1)、( - k, - 1),这与函数度土(kxo, k 为常数)的x图象上有且只有两个“中国结"矛盾,k综上可得,k=l时,函数y=— (k/0, k为常数)的图象上有且只有两个“中国结J (1, x 1)、( - 1、- 1);k=-l时,函数y=七(k/0, k为常数)的图象上有且只有两个“中国结J (1, -1)、x (-1、1).(3)令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k- 1) ]=0, kx.= ---------.•・{ ik-\f x 2x) +1• k =——=-=——. x1 +1 x2 +1 整理,可得XlX2+2X2+l=0t/. xz (xi+2) = T,•••X】、X2都是整数,X)= 1 x, =—1{- 或{-玉+2 = _「^+2 = 1匹=T ②当{X、= —1k ,,/ ------- = -1 ,l — kk=k-l,无解;练上,可得.3K=—, XF-3, x2=l t2y= (k2- 3k+2) x2+ (2k2-4k+l) x+k2 - k3 3 3 3 3 3=[(-)2-3X-+21X2+[2X ( - ) 2-4x-+l]x+ (- ) 2--2 2 2 2 2 2①当x=-2时,1 13 1 1 3y= - - x2- — x+ — = " - x ( - 2) 2 - -x ( - 2) + —4 2 4 4 2 4_3~4②当X=-1时,=13③当x=0时,y=-,另外,该函数的图象与X轴所闱成的平面图形中x轴上的“中国结〞有3个: 〔-2, 0〕、〔 -1、0〕、〔0, 0〕.综上,可得假设二次函数y= 〔k2-3k+2〕 x2+ 〔2k2-4k+l〕 x+l?-k 〔k为常数〕的图象与x轴相交得到两个不同的"中国结〞,该函数的图象与x轴所围成的平面图形中〔含边界〕,一共包含有6个“中国结〞:〔-3, 0〕、〔-2, 0〕、〔 - 1, 0〕〔-1, 1〕、〔0, 0〕、〔1, 0〕.考点:反比例函数综合题4.如图,抛物线〕,= 公+ C的顶点为A〔4,3〕,与轴相交于点3〔0,—5〕,对称轴为直线/,点"是线段A8的中点.〔1〕求抛物线的表达式:〔2〕写出点M的坐标并求直线A3的表达式;〔3〕设动点尸,.分别在抛物线和对称轴I上,当以A,P,Q,例为顶点的四边形是平行四边形时,求.,.两点的坐标.【答案】〔1〕y = --x2+4x-5t〔2〕 A/〔2,-1〕, y = 2x-5:〔3〕点夕、.的坐 2标分别为〔6,1〕或〔2,1〕、〔4,—3〕或〔4』〕.【解析】【分析】〔1〕函数表达式为:〕,= a〔x = 4『+3,将点3坐标代入上式,即可求解:〔2〕 A〔4,3〕、B〔0-5〕,那么点加〔2,-1〕,设直线A8的表达式为:y = ^-5,将点4坐标代入上式,即可求解;〔3〕分当AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可. 【详解】解:〔1〕函数表达式为:y = a〔x = 4〕2+3,将点4坐标代入上式并解得:.=2故抛物线的表达式为:y = -l x2+4x-5:乙(2) 4(4,3)、B(0,-5),那么点M(2,-1),设直线A8的表达式为:y = /oc-5,将点A坐标代入上式得:3 =必一5,解得:k = 2,故直线A8的表达式为:y = 2x-5:( i \(3)设点.(4,s)、点P m,——nr +4/H —5 ,①当AM是平行四边形的一条边时,点A向左平移2个单位、向下平移4个单位得到M,同样点P;"?,-:〃,+4机一5)向左平移2个单位、向下平移4个单位得到0(4,s),即:团一2 = 4, —nr +4m-5-4 = s , 2解得:m = 6 ♦ s = —3,故点P、.的坐标分别为(6,1)、(4,-3):②当AM是平行四边形的对角线时,由中点定理得:4+2 = 〃z+4, 3-1 = --//r +4w-5 + 5,2解得:〞1 = 2, 5 = 1 >故点尸、.的坐标分别为(2/)、(4,1);故点尸、.的坐标分别为(6,1), (4,一3)或(2,1)、(分-3), (2,1)或(4,1).【点睛】此题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,防止遗漏.5.如图,某足球运发动站在点0处练习射门,将足球从离地面0.5m的A处正对球门踢出 (点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y= at2 + 5t+c,足球飞行0.8s时,离地面的高度为3.5m.⑴足球飞行的时间是多少时,足球离地而最高?最大高度是多少?⑵假设足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x = 10t,己知球门的高度为2.44m,如果该运发动正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?8【答案】(1)足球飞行的时间是一s时,足球离地而最高,最大高度是4.5m: (2)能.5【解析】(2)把 x=28 代入 x=10t 得 t=2.8,251・•・当 t=2.8 时,y=-a2・8?+5乂2・8令2・25 V2/4, •L . 乙^ 他能将球直接射入球门. 考点:二次函数的应用.6.如图,在平面直角坐标系中,抛物线y=ax?+2x+c 与x 轴交于A ( - 1, 0) B (3, 0)两 点,与y 轴交于点C,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在抛物线上是否存在点P,使以点A, P, C 为顶点,AC 为直角边的三角形 是直角三角形?假设存在,请求出符合条件的点P 的坐标:假设不存在,请说明理由.试题分析:(1)由题意得:函数y=atz+5t+c 的图象经过(0, 0.5) (0.8, 35),于是得0. 5二.到 n,求得抛物线的解析式为:3. 5=0.8 4+5X0. 8+c 、 y=-衰2+514,当t=|时,y 破大=4.5;1(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=- 竿2.82+5、2.8哈2・25V2.44,于是得 16 2到他能将球直接射入球门.解:(1)由题意得:函数y=a&5t+c 的图象经过(0, 0.5) (0.8, 3.5),"0. 5二c• «, 、3. 5=0. 8 &2+5 X 0. g+c '3=解得:_ 251612・•・抛物线的解析式为:y=・•,y【答案】(1)抛物线解析式为y=-x2+2x+3;直线AC 的解析式为丫=3x+3; (2)点M 的 坐标为(0, 3):7 20 1013〔3〕符合条件的点P 的坐标为〔或,2〕或〔“,-"〕, 3 93 9【解析】分析:〔1〕设交点式y=a 〔x+1〕 〔x-3〕,展开得到-2a=2,然后求出a 即可得到抛物线解 析式:再确定C 〔0, 3 〕,然后利用待定系数法求直线AC 的解析式:〔2〕利用二次函数的性质确定D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点W,连接DB 咬y 轴于M,如图1,那么B ,〔-3, 0〕,利用两点之间线段最短可判断此时MB+MD 的值最小,那么此时△ BDM 的周长最小,然后求出直线DB ,的解析式即可得到点M 的坐标:〔3〕过点C 作AC 的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-lx +b,把C 点坐标代入求出b 得到直线PC 的解析式为再解方程组, 1得此时P 点坐标;当过点A 作AC 的垂线交抛物y=--x + 3 I 3线于另一点P 时,利用同样的方法可求出此时P 点坐标. 详解:〔1〕设抛物线解析式为y=a 〔x+1〕〔x-3〕, KP y=ax 2 - 2ax - 3a,,2a=2,解得 a=- 1,・•・抛物线解析式为y= - X 2+2X +3: 当 x=0 时,y= - x 2+2x+3=3,那么 C (0, 3), 设直线AC 的解析式为y=px+q.q = 0把 A ( - 1, 0) , C (0, 3)代入得〈q = 3直线AC 的解析式为y=3x+3;〔2〕 •/ y= - X 2+2X +3= - 〔x- 1〕 2+4, •1•顶点D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点B",连接DB ,交y 轴于M,如图1,那么夕〔-3, 0〕,MB=MB',/. MB+MD=MB /+MD=DB /,此时 MB+MD 的值最小, 而BD 的值不变,・•,此时△ BDM 的周长最小,y=-x 2 +2x + 31 y=- -x+3, 3易得直线DB ,的解析式为y=x+3, 当 x=0 时,y=x+3=3> ・ ・•点M 的坐标为〔0, 3〕;〔3〕存在.过点C 作AC 的垂线交抛物线于另一点P,如图2,把C 〔0, 3 〕代入得b=3,・ ,・直线PC 的解析式为y=- -x+3,过点A 作AC 的垂线交抛物线于另一点P,直线PC 的解析式可设为y=-点+b, 把A ( -1, 0)代入得1+b=0,解得b=- L 3 3・ •・直线PC 的解析式为y=- :x- 1点睛:此题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数 的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解 方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短 路径问题:会运用分类讨论的思想解决数学问题.直线PC 的解析式可设为y=- —x+b,3解方程组?y=-x 2+2x + 31 ,解得?y=——x + 33x = 0)=3或,7x =一3 7 20 ,那么此时P 点坐标为〔一,—〕:2.39y =解方程组?y=-x 2+2x + 31 1 y=——x ——33x = -ly = 010x =—3 13那么此时P 点坐标为〔—, 3综上所述,符合条件的点p 的坐标为〔N, 310 T-?>•直线AC 的解析式为y=3x+3.7.如图,直线A8与抛物线C :),=⑪2+21+.相交于人(—1,0)和点8(2,3)两点.⑴求抛物线.的函数表达式;⑵假设点M 是位于直线A3上方抛物线上的一动点,以M4、/W8为相邻两边作平行四边形 M4N8,当平行四边形M4N8的而积最大时,求此时四边形M4N8的而积S 及点M 的 坐标: ⑶在抛物线C 的对称轴上是否存在定点尸,使抛物线.上任意一点夕到点尸的距离等于到 直线y ="的距离,假设存在,求出定点厂的坐标:假设不存在,请说明理由.41 27 【答案】〔1〕 y =—厂 + 2x + 3 :〔2〕当 〃 =—,S ZMANB = 2S △ ABM =—,此时2 415 \ :⑶存在.当/A — 时,无论%取任何实数,均有= 理由见解析. \ 4 )【解析】【分析】 (1)利用待定系数法,将A, B 的坐标代入y=ax2+2x+c 即可求得二次函数的解析式; (2)过点M 作MH_Lx 轴于H,交直线AB 于K,求出直线AB 的解析式,设点M (a,- a?+2a+3),那么K (a, a+1),利用函数思想求出MK 的最大值,再求出△ AMB 面积的最大 值,可推出此时平行四边形MANB 的面积S 及点M 的坐标:17(3)如图2,分别过点B, C 作直线y=—的垂线,垂足为N. H,设抛物线对称轴上存在 4点F,使抛物线C 上任意一点P 到点F 的距离等于到直线y=—的距离,其中F (1, a), 4 连接BF, CF,那么可根据BF=BN, CF=CN 两组等量关系列出关于a 的方程组,解方程组即 可.【详解】(1)由题意把点(-1, 0)、(2, 3)代入 y=ax2+2x+c, .- 2 + c = 0得, ,4a + 4 + c = 3 解得 a=-l, c=3,,此抛物线c 函数表达式为:y=*2+2x+3:〔2〕如图1,过点M 作MHLx 轴于H,交直线AB 于K,MH4 〕>>将点〔・1, 0〕、〔2, 3〕代入y=kx+b中, 一k+b=0得,2y 解得,k=l, b=l,/.Y AB=X+1,设点M (a, -a2+2a+3),那么K (a, a+1), 贝lj MK=-a2+2a+3- (a+1)=-(a- - ) 2+—, 2 41 9根据二次函数的性质可知,当合二彳时,MK有最大长度丁, 2 4S A AMB以大=S A AMK+S A BMK=—MK*AH+ —MK> (x B-x H)2 2=—MK e (XB-XA)21 9=x — x32 4_27-—,8以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,27 27 1 15s 餐大=2S A AMB 4U=2X —=—,M (-, —).(3)存在点F,•/ y=-x2+2x+3=-(x-1) 2+4,「・对称轴为直线x=l.当y=0 时,xi=-l, X2=3,,抛物线与点x轴正半轴交于点C (3, 0),17如图2,分别过点B, C作直线y:一的垂线,垂足为N, H, 4抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=—的距4离,设 F (1, a ),连接BF, CF,IT1 17 5 17那么BF=BN二一-3二一,CF=CH=—, 4 4 4(5、(2-1)2+3—3)2 =由题意可列:(3 — 1)2+/=阴【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,aABM的面积最大,且此时线段MK的长度也最大.8.如图,己知二次函数%=a' + "过(-2, 4) , ( - 4. 4)两点.〔1〕求二次函数力的解析式:〔2〕将为沿x轴翻折,再向右平移2个单位,得到抛物线及,直线y=m 〔m>0〕交及于M、N 两点,求线段MN的长度〔用含m的代数式表示〕:〔3〕在〔2〕的条件下,力、及交于A、B两点,如果直线y=m与力、刃的图象形成的封闭曲线交于C、D两点〔C在左侧〕,直线y=-m与力、刃的图象形成的封闭曲线交于E、F两点〔E在左侧〕,求证:四边形CEFD是平行四边形.1yi =_/2_3%【答案】〔1〕2【解析】〔2〕 5 +范〔3〕证实见解析.试题分析:〔1〕根据待定系数法即可解决问题.〔2〕先求出抛物线yz的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.〔3〕用类似〔2〕的方法,分别求出CD、EF即可解决问题.试题解析:⑴・•・二次函数月=°/ + "过〔-2, 4〕 , 〔-4, 4〕两点,4a - 2b = 416a -4b = 4解得:1a=~2=_1 2_ -「.二次函数力的解析式为一寸3X2-3% -# + 3)2 +9,二顶点坐标〔-3, >〕 , ,「将力沿x釉翻折,再向右平移2个单位,得到抛物线〞,9.・・抛物线y2的顶点坐标〔-1, -、〕,•,・抛物线均为1 9y=#+i)2_] 消去y整理得到/ + 2x_8_2m = 0,设打,也是它的两个根,那么"21A〔q+ x2〕-似/2=、阳而千J5:〔3〕由y = my =一/2-3欠,消去y整理得到x +6%+2m = 0,设两个根为打,0那么y =-m1 9______ y =—〔x --CD」"I一亚15〔修+ OF - 4町2«36 -所,由2 2,消去丫得到x2 + 2x-8 + 2m = 0,设两个根为勺,%2,那么EF」X1 - "zlK,dl + 工2〕2 - 4XI%2=«36 - 8m, ... EF=CD, EFII CD,四边形CEFD 是平行四考点:二次函数综合题.9 .抛物避= a/ + M + c,假设a, b, c满足b=a+c,那么称抛物线,=.壮+必+ c为“恒定〞抛物线. 〔1〕求证:"恒定"抛物线'=°/ +丘+,必过*轴上的一个定点人;〔2〕"恒定〃抛物线y = -于的顶点为P,与X轴另一个交点为B,是否存在以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形?假设存在,求出抛物线解析式:假设不存在,请说明理由.【答案】〔1〕证实见试题解析:〔2〕 y = \/^2 + 4v-^x + 3-V3 那么=- v取2 + y3.【解析】试题分析:〔1〕由"恒定〞抛物线的定义,即可得出抛物线恒过定点〔-1, 0〕:〔2〕求出抛物线F = W"一小的顶点坐标和B的坐标,由题意得出PAII CQ, PA=CQ:存在两种情况:①作QMXAC于M,那么QM=0P=\3,证实RtA QM〔^ RtA POA. MC=OA=1,得出点Q的坐标,设抛物线的解析式为,=矶" + 2〕2-\/3,把点A坐标代入求出a的值即可:②顶点Q在y轴上,此时点C与点B重合:证实△0QS4 0PA,得出OQ=OP=\B,得出点Q坐标,设抛物线的解析式为' =以2+«3,把点C坐标代入求出a的值即可.试题解析:〔1〕由“恒定〃抛物线,二仙2 +%+ 4得:b=a+c,即a-b+c=0,二•抛物线y = ax2 + bx + c t当x=-l时,y=0, 恒定〞抛物线,=必+八+〔;必过乂轴上的一个定点 A 〔 - 1, 0〕:〔2〕存在:理由如下::“恒定"抛物线卜"*丫一道,当尸0时,\8/-、6=0,解得:x=±l, V A ( - 1, 0) , /. B (1, 0):.・x=O 时,y=一\'3,顶点P 的坐标为(0, 一\3),以PA, CQ为边的平行四边形,PA、CQ是对边,「.PAII CQ, PA=CQ, .,.存在两种情况:①如图1所示:作QM_LAC 于M,那么QM=0P=y3, Z QMC=90°=Z POA,在RtA QMC 和RtA POA 中,: CQ=PA, QM=OP,J RtA QMC合RtA POA (HL) , /. MC=OA=1, OM=2, 丁点 A 和点C 是抛物线上的对称点,AM=MC=1, .,.点Q的坐标为(-2, 一\3),设以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线的解析式为y = a(% + 2)2-«3,把点A(-l, 0)代入得:aS% .•.抛物线的解析式为:丫 = \乃(% + 2)273,即,=\访2 + 4、%+3日②如图2所示:顶点Q在y轴上,此时点C与点B重合,.•.点C坐标为(1, 0),CQII PA, /. Z OQC=Z OPA,在^ OQC 和4 OPA 中,: Z OQC=Z OPA, Z COQ=Z AOP,CQ=PA,OQC2△ OPA (AAS) ,「・0Q=0P=、3,「•点Q 坐标为(0, \§),设以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线的解析式为y = a%2 + g3,把点C(l, 0)代入得:a=-W, .•.抛物线的解析式为:?=一臼2 + 口;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形,抛物线的解析式为:«3/ + 4\,做+3\3,或y =-%即 + 0考点:1.二次函数综合题:2.压轴题:3.新定义:4.存在型:5.分类讨论.3 910 .二次函数y=—-x2+bx+c的图象经过A (0, 3) , B ( - 4,--)两点.(1)求b, c的值.3(2)二次函数y= -「xZ+bx+c的图象与x轴是否有公共点,求公共点的坐标:假设没有,请16说明情况.【答案】⑴j 8 : 〔2〕公共点的坐标是〔-2, 0〕或〔8, 0〕. c = 3【解析】【分析】〔1〕把点A、B的坐标分别代入函数解析式求得b、c的值;〔2〕利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程-3 o—X2+-X+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.16 89 3【详解】(1)把 A (0, 3) , B ( - 4,--)分别代入y=- - x2+bx+c,2 16c = 3得4 39------ x l6-4〃 + c =——16 26 = ?解得彳8 ;[c = 33 9〔2〕由〔1〕可得,该抛物线解析式为:y=- -x2+-x+3, 1 o 83 225-4x ( - -- ) x3= >0»16 6483所以二次函数y=- - x2+bx+c的图象与x轴有公共点, 163 9.「- -x2+-x+3=0 的解为:x产・2, X2=8,16 8公共点的坐标是〔-2, 0〕或〔8, 0〕.【点睛】此题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.。
中考数学—二次函数的综合压轴题专题复习及详细答案一、二次函数1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式;(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).【解析】试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC V V 的周长的周长,代入得:L=﹣95(m ﹣2)2+365,求L 的最大值即可;(3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94n+3),则D (n ,﹣34n+3),G (0,﹣34n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:(1)由OC=3OA ,有C (0,3),将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,故抛物线的解析式为:y=﹣234x +94x+3; (2)如图2,设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,∵直线BC 经过B (4,0),C (0,3), 设直线BC 的解析式为:y=kx+b ,则403k b b +=⎧⎨=⎩解得:343k b ⎧=-⎪⎨⎪=⎩∴直线BC 的解析式为:y=﹣34x+3, 则D (m ,﹣334m +),PD=﹣2334m m +,∵PE ⊥x 轴,PE ∥OC , ∴∠BDE=∠BCO , ∵∠BDE=∠PDF , ∴∠PDF=∠BCO , ∵∠PFD=∠BOC=90°, ∴△PFD ∽△BOC ,∴=PED PDBOC BCV V 的周长的周长,由(1)得:OC=3,OB=4,BC=5, 故△BOC 的周长=12,∴2334125m mL -+=,即L=﹣95(m ﹣2)2+365,∴当m=2时,L 最大=365; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3, 当点Q 落在y 轴上时,四边形CDPQ 是菱形,理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD , 当点Q 落在y 轴上时,CQ ∥PD , ∴∠PCQ=∠CPD , ∴∠PCD=∠CPD , ∴CD=PD , ∴CD=DP=PQ=QC , ∴四边形CDPQ 是菱形, 过D 作DG ⊥y 轴于点G , 设P (n ,﹣234n +94n+3),则D (n ,﹣34n+3),G (0,﹣334n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣34n+3)﹣3]2+n 2=22516n , 而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34n+3)|=|﹣234n +3n|,∵PD=CD , ∴﹣235344n n n +=①, ﹣235344n n n +=-②, 解方程①得:n=73或0(不符合条件,舍去), 解方程②得:n=173或0(不符合条件,舍去), 当n=73时,P (73,256),如图3,当n=173时,P (173,﹣253),如图4,综上所述,存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253).点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.2.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.()1求y 与x 的函数关系式;()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元. 【解析】 【分析】()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值. 【详解】解:()1设y 与x 的函数关系式为()0y kx b k =+≠,Q 函数图象经过点()40,200和点()60,160,{4020060160k b k b +=∴+=,解得:{2280k b =-=,y ∴与x 的函数关系式为2280y x =-+.()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+.Q 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,∴自变量x 的取值范围是4080x ≤≤.20-<Q ,∴当90x <时,w 随x 的增大而增大, 80x ∴=时,w 有最大值, 当80x =时,4800w =,答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元. 【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.3.如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m . (1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s 时,足球离地面最高,最大高度是4.5m ;(2)能. 【解析】试题分析:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=16x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是. 【解析】 【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得1266x x =+=-12x x -=答:两排灯的水平距离最小是考点:二次函数的实际应用.5.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.(1)点()4,1的“友好点”的坐标是_______.(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”. ①当B 点与A 点重合时,求点A 的坐标.②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围.【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或322a ≤<时,AB 的长度随着a 的增大而减小; 【解析】 【分析】(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭,所以当a ≤32时,AB 的长度随着a 的增大而减小,即取1a <.2°当12a <<时,()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭,当32a ≥时,AB 的长度随着a 的增大而减小,即取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【详解】(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-, (2)Q 点(),A a b 是直线2y x =-上的一点,∴2b a =-.Q 2a a >-,根据友好点的定义,点B 的坐标为()2,B a b -,①当点A 和点B 重合,∴2b b =-. 解得0b =或1b =-. 当0b =时,2a =;当1b =-时,1a =,∴点A 的坐标是()2,0或()1,1-.②当点A 和点B 不重合,1a ≠且2a ≠.当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭. ∴当a ≤32时,AB 的长度随着a 的增大而减小, ∴取1a <.当12a <<时, ()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭ .∴当32a ≥时,AB 的长度随着a 的增大而减小, ∴取322a ≤<.综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【点睛】本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论6.已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2=0有两个实数根. (1)求k 的取值范围; (2)设x 1,x 2是方程两根,且121111x x k +=-,求k 的值. 【答案】(1)k ≥﹣14;(2)k【解析】 【分析】(1)根据方程有两个实数根可以得到△≥0,从而求得k 的取值范围;(2)利用根与系数的关系将两根之和和两根之积代入代数式求k 的值即可. 【详解】解:(1)△=(2k +1)2﹣4k 2=4k 2+4k +1﹣4k 2=4k +1 ∵△≥0 ∴4k +1≥0 ∴k ≥﹣14; (2)∵x 1,x 2是方程两根, ∴x 1+x 2=2k +1 x 1x 2=k 2,又∵121111x x k +=-, ∴121211x x x x k +=⋅-, 即22111k k k +=+ ,解得:12k k ==又∵k ≥﹣14, 即:k【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于b a -,两根之积等于ca”是解题的关键.7.已知抛物线2(5)6y x m x m =-+-+-. (1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或 【解析】 【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论. 【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥ ∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:x =即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+ ∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0), 它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -), 由题意,可得:6166m m m 或-+=-+=- 56m m ∴==或 【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.8.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B.抛物线过A、B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)如图1,设抛物线顶点为M,且M的坐标是(12,92),对称轴交AB于点N.①求抛物线的解析式;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.【答案】(1)①y=﹣2x2+2x+4;;②不存在点P,使四边形MNPD为菱形;;(2)存在,点D的坐标是(1,4).【解析】【分析】(1)①由一次函数图象上点的坐标特征求得点B的坐标,设抛物线解析式为y=a21922x⎛⎫-+⎪⎝⎭,把点B的坐标代入求得a的值即可;②不存在点P,使四边形MNPD为菱形.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),根据题意知PD∥MN,所以当PD=MN时,四边形MNPD为平行四边形,根据该等量关系列出方程﹣2m2+4m=32,通过解方程求得m的值,易得点N、P的坐标,然后推知PN=MN是否成立即可;(2)设点D的坐标是(n,﹣2n2+2n+4),P(n,﹣2n+4).根据S四边形BOAD=S△BOA+S△ABD =4+S△ABD,则当S△ABD取最大值时,S四边形BOAD最大.根据三角形的面积公式得到函数S△ABD=﹣2(n﹣1)2+2.由二次函数的性质求得最值.【详解】解:①如图1,∵顶点M的坐标是19,22⎛⎫ ⎪⎝⎭,∴设抛物线解析式为y=21922a x⎛⎫-+⎪⎝⎭(a≠0).∵直线y=﹣2x+4交y轴于点B,∴点B的坐标是(0,4).又∵点B在该抛物线上,∴21922a⎛⎫-+⎪⎝⎭=4,解得a=﹣2.故该抛物线的解析式为:y=219222x⎛⎫--+⎪⎝⎭=﹣2x2+2x+4;②不存在.理由如下:∵抛物线y=219222x⎛⎫--+⎪⎝⎭的对称轴是直线x=12,且该直线与直线AB交于点N,∴点N的坐标是1,32⎛⎫ ⎪⎝⎭.∴93322MN=-=.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.∵PD∥MN.当PD=MN时,四边形MNPD是平行四边形,即﹣2m2+4m=32.解得 m1=12(舍去),m2=32.此时P(32,1).∵PN∴PN≠MN,∴平行四边形MNPD不是菱形.∴不存在点P,使四边形MNPD为菱形;(2)存在,理由如下:设点D的坐标是(n,﹣2n2+2n+4),∵点P在线段AB上且直线PD⊥x轴,∴P(n,﹣2n+4).由图可知S四边形BOAD=S△BOA+S△ABD.其中S△BOA=12OB•OA=12×4×2=4.则当S△ABD取最大值时,S四边形BOAD最大.S△ABD=12(y D﹣y P)(x A﹣x B)=y D﹣y P=﹣2n2+2n+4﹣(﹣2n+4)=﹣2n2+4n=﹣2(n﹣1)2+2.当n=1时,S△ABD取得最大值2,S四边形BOAD有最大值.此时点D的坐标是(1,4).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.9.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。
二次函数专题训练
1. 如图1,抛物线2x y =的顶点为P ,A 、B 是抛物线上的两点,x AB //轴,四边形ABCD 为矩形,CD 边经过点P ,AD AB 2=.
⑴求矩形ABCD 的面积;
⑵如图2,若将“抛物线2x y =”改为“抛物线c bx x y ++=2”,其他条件不变,求矩形ABCD 的面积; ⑶若将“抛物线c bx x y ++=2” 改为“抛物线c bx ax y ++=2” ,其他条件不变,请猜想矩形ABCD 的面积(用
a 、
b 、
c 表示,并直接写出答案)
2.⑴如图1,A 、B 是抛物线2x y =上的两点,且x AB //轴,以AB 为边作矩形ABCD ,使其图象的顶点P 在AB 的对边CD 上,且满足BC AB 3=,求AB 的长;
⑵如图2,若将“抛物线2x y =”改为“抛物线c bx x y ++=2”,将“BC AB 3=” 改为“kBC AB =”,其他条件不变,求AB 的长(用含k 的式子表示);
⑶在⑵的基础上,若将“抛物线c bx x y ++=2” 改为“抛物线c bx ax y ++=2”, 其他条件不变,求
AB 的长(用含k 、a 的式子表示)
;
--1--
3.如图1,抛物线22x y =的顶点为P ,A 、B 、C 、D 是抛物线上的四点,PAB ∆为等腰直角三角形,x AB DC ////轴,AB DC 2=.
⑴求四边形ABCD 的面积;
⑵若将“抛物线22x y =”改为“抛物线1422+-=x x y ”,其他条件不变,求四边形ABCD 的面积; ⑶如图2,若将“抛物线22x y =”改为 “抛物线c bx ax y ++=2” ,其他条件不变,求四边形ABCD 的面积(用a 、b 、c 表示)
4.如图1,抛物线322+-=x y 的顶点为P ,A 、B 是抛物线上的两点,ABP ∆为等边三角形. ⑴求ABP ∆的周长;
⑵如图2,若将“抛物线322+-=x y ”改为“抛物线c bx x y ++-=22”,其他条件不变,求ABP ∆的周长;
⑶若将“抛物线c bx x y ++-=22”改为“抛物线c bx ax y ++=2”,其他条件不变,猜想ABP ∆的周长(用a 、b 、c 表示,并直接写出答案)
--2--
5.如图1,点C 、B 分别是抛物线1C :121+=x y 、抛物线2C :22222c x b x a y ++=的顶点,分别过点B 、C 作x 轴的平行线,交抛物线1C 、2C 于点A 、D ,且BD AB =. ⑴求点A 的坐标;
⑵如图2,若将“抛物线1C :121+=x y ”改为“抛物线11212c x b x y ++=”,其他条件不变,求CD 的长和2a 的值;
⑶如图2,若将“抛物线1C :121+=x y ”改为“抛物线11211c x b x a y ++=”,其他条件不变,求21b b +的值.
6.如图1,抛物线1F :2x y =的顶点为P ,将抛物线1F 向右平移2个单位得到抛物线2F ,抛物线2F 的顶点为P ',两抛物线交于点A .
⑴判断P AP '∆的形状,说明理由并求出其面积;
⑵如图2,若将“抛物线1F :2x y =”改为“抛物线1F :112c x b x y ++=”,其他条件不变,探究⑴中的问题;
⑶,若将“抛物线1F :2x y =”改为“抛物线1F :112c x b ax y ++=(0>a )”,将“将抛物线1F 向右平移2个单位得到抛物线2F ”改为“将抛物线1F 向右平移m (0>m )个单位得到抛物线2F ”,其他条件不变,当⑴的结论还成立时,探究a 与m 的关系.
--3--
7.如图1,抛物线1F :2x y =的顶点为P ,抛物线2F :2
3212+=
x y 的顶点为P ',两抛物线有共同的对称轴,且两图象相交于A 、B 两点,对称轴交AB 于点E .
⑴猜想APB ∆的形状,并说明理由;
⑵在⑴中的APB ∆的形状的情况下,将“抛物线1F :2x y =”改为“抛物线1F :1121c x b x a y ++=”,将“抛物线2F :2
3212+=
x y ”改为“抛物线2F :2222c x b x a y ++=(120a a <<)”,且2:1:='PE P P ,其他条件不变,猜想2a 与1a 的关系,并说明理由; ⑶在⑵的基础上,将“2:1:='PE P P ”改为“m PE P P :1:='”, 猜想2a 与1a 的关系(直接写出答案)
8.在平面直角坐标系中,抛物线1F :2x y =的顶点为P ,将抛物线1F 平移得到抛物线2F ,使其图象经过抛物线1F 的顶点,与x 轴的交点A 的坐标为(2,0),抛物线2F 的顶点为点C ,其对称轴交抛物线1F 于点B .
⑴猜想四边形PCAB 的形状及面积(直接写出答案)
⑵若将“抛物线1F :2x y =”改为“抛物线1F :2ax y =”,“ A 的坐标为(2,0)”改为“ A 的坐标为(m ,0)”,其他条件不变,探究四边形PCAB 的形状及面积
⑶若将“抛物线1F :2x y =”改为“抛物线1F :c ax y +=2”, “ A 的坐标为(2,0)”改为“ A 的坐标为(m ,c )”,其他条件不变,请你直接写出直线AB 与y 轴的交点坐标.
--4--
9.如图1,抛物线1F :2x y =的顶点为P ,将抛物线1F 平移得到抛物线2F ,使抛物线2F 的顶点Q 始终在抛物线1F 图象上(点Q 不与点P 重合),过点Q 直线x QB //轴,与抛物线1F 的另一个交点为B ,抛物线1F 的对称轴交抛物线2F 于点A .
⑴四边形ABOQ 能否成为正方形?若能需增加怎样的条件,说明理由,并求出此时点Q 的坐标; ⑵若将“抛物线1F :2x y =”改为“抛物线1F :2ax y =”,其他条件不变,请你探究⑴中的问题; ⑶若将“抛物线1F :2x y =”改为“抛物线1F :()n m x a y +-=2”,当四边形ABOQ 为正方形时,请你直接写出点Q 的坐标.
10.如图1,抛物线1F :2x y =的顶点为P ,将抛物线1F 平移得到抛物线2F ,使抛物线2F 的顶点Q 始终在抛物线1F 图象上(点Q 不与点P 重合),过点Q 直线x QB //轴,与抛物线1F 的另一个交点为B ,抛物线1F 的对称轴交抛物线2F 于点A .
⑴四边形ABOQ 能否成为有一个内角为︒60的菱形?若能需增加怎样的条件,说明理由,并求出此时点Q 的坐标;
⑵若将“抛物线1F :2x y =”改为“抛物线1F :2ax y =”,其他条件不变,请你探究⑴中的问题; ⑶若将“抛物线1F :2x y =”改为“抛物线1F :()n m x a y +-=2”,当四边形ABOQ 为有一个内角为︒60的菱形时,请你直接写出点Q 的坐标.
--5--
11.如图,抛物线1F :121+--=x x y 与抛物线2F :122--=x x y 相交于A 、B 两点,抛物线1F 与抛物线2F 分别交y 轴于点C 、点D .
⑴判断四边形ACBD 的形状为 ,其面积为 ; ⑵若将“抛物线1F :121+--=x x y 与抛物线2F :122--=x x y ”分别改为“抛物线1F :121+--=bx ax y 与抛物线2F :122--=bx ax y ,且(0>a )”,则四边形ACBD 的形状是否发生变化?说明理由. ⑶在⑵的前提下,当b 满足怎样的条件时,四边形ACBD 是菱形.(直接写出答案)
12.如图,抛物线F :c bx ax y ++=2的顶点为P ,抛物线F 与y 轴交于点A ,与直线OP 交于点B ,过点P 作x PD ⊥轴于点D ,平移抛物线F 使其经过点A 、 D 得到抛物线F ':'+'+'=c x b x a y 2,抛物线F '与x 轴的另一个交点为C .
⑴当1=a ,2-=b ,3=c 时,求点C 的坐标(直接写出答案);
⑵若a 、b 、c 满足了ac b 22=
①求b b ':的值;
②探究四边形OABC 的形状,并说明理由.
--6--。