中考数学专题二:一次函数探究
- 格式:doc
- 大小:717.02 KB
- 文档页数:12
2020年中考数学二轮专题——一次函数的图象与性质一、基础过关1. (2019益阳)下列函数中,y 总随x 的增大而减小的是( ) A. y =4x B. y =-4x C. y =x -4 D. y =x 22. (2019扬州)若点P 在一次函数y =-x +4的图象上,则点P 一定不在..( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. 一次函数y =-2x +4图象与y 轴的交点坐标是( ) A .(0,4) B .(4,0) C .(2,0) D .(0,2)4. (2019荆门)如果函数y =kx +b (k ,b 是常数)的图象不经过第二象限,那么k ,b 应满足的条件是( ) A. k ≥0且b ≤0 B. k >0且b ≤0 C. k ≥0且b <0 D. k >0且b <05. (2019陕西)在平面直角坐标系中,将函数y =3x 的图象向上平移6个单位长度,则平移后的图象与x 轴交点的坐标为( )A. (2,0)B. (-2,0)C. (6,0)D. (-6,0)6. (2019辽阳)若ab <0且a >b ,则函数y =ax +b 的图象可能是( )7. (2019绍兴)若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于( ) A. -1B. 0C. 3D. 48. 如图,一次函数y =ax +b 和y =-13x 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧-ax +y =b x +3y =0的解是( ) A. ⎩⎪⎨⎪⎧x =3y =-1B. ⎩⎪⎨⎪⎧x =-3y =-1C. ⎩⎪⎨⎪⎧x =-3y =1D. ⎩⎪⎨⎪⎧x =-1y =3第8题图9. 如图,一次函数y 1=mx -3与y 2=-x -1图象的交点A 的纵坐标为2,则m 的值是( ) A. 53B. -53C. 1D. -1第9题图10. 已知点(-2,y 1),(1,0),(3,y 2)都在一次函数y =kx -2的图象上,则y 1,y 2,0的大小关系为( ) A. 0<y 1<y 2 B. y 1<0<y 2 C. y 1<y 2<0D. y 2<0<y 111. (2019临沂)下列关于一次函数y =kx +b (k <0,b >0)的说法,错误的是( ) A. 图象经过第一、二、四象限 B. y 随x 的增大而减小 C. 图象与y 轴交于点(0,b ) D. 当x >-bk时,y >012. 一次函数y =(k -2)x +2k +4的图象如图所示,则点(3-k ,6+k )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限第12题图13. (2019邵阳)一次函数y 1=k 1x +b 1的图象l 1如图所示,将直线l 1向下平移若干个单位后得直线l 2,l 2的函数表达式为y 2=k 2x +b 2.下列说法中错误的是( )A. k 1=k 2B. b 1<b 2C. b 1>b 2D. 当x =5时,y 1>y 2第13题图14. (2019潍坊)当直线y=(2-2k)x+k-3经过第二、三、四象限时,则k的取值范围是________.15. 已知一次函数y=kx+2k+3(k≠0),不论k为何值,该函数的图象都经过点A,则点A的坐标为______.16. (2019烟台)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解为________.第16题图17. (2019 乐山)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).(1)求直线l1的解析式;(2)求四边形P AOC的面积.第17题图二、能力提升1. (2019锦江区一诊)若关于x的一元二次方程mx2-2x-1=0无实数根,则一次函数y=mx+m的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. (2019杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()3. (2019桂林)如图,四边形ABCD 的顶点坐标分别为A (-4,0),B (-2,-1),C (3,0),D (0,3),当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )第3题图A. y =1110x +65B. y =23x +13C. y =x +1D. y =54x +324. 如图,将直线y =-x 沿y 轴向下平移后的直线恰好经过点A (2,-4),且与y 轴交于点B ,在x 轴上存在一点P ,使得P A +PB 的值最小,则点P 的坐标为__________.第4题图三、满分冲关1. (2019攀枝花)在平面直角坐标系xOy 中,已知A (0,2),动点P 在y =33x 的图象上运动(不与O 重合),连接AP .过点P 作PQ ⊥AP ,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,∠QAP 是否为定值?如果是,求出该值;如果不是,请说明理由; (3)当△OPQ 为等腰三角形时,求点Q 的坐标.第1题图2. (2019遂宁模拟)为落实“绿水青山就是金山银山”的发展理念,某县政府部门决定,招标一工程队负责完成一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知1台A型和2台B型挖掘机同时施工1小时共挖土70立方米,2台A型和3台B型挖掘机同时施工1小时共挖土120立方米.每台A型挖掘机一个小时的施工费用是350元,每台B型挖掘机一个小时的施工费用是200元.(1)分别求每台A型,B型挖掘机一小时各挖土多少立方米?(2)若A型和B型挖掘机共10台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过13400元.问施工时有哪几种调配方案?且指出哪种调配方案的施工费用最低,最低费用为多少元?3. (2019雅安模拟)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需花费39000元;4台A型空调比5台B型空调的费用多6000元.(1)求采购A型空调和B型空调每台各花费多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、基础过关1. B【解析】对于函数y=4x和y=x-4,y总随x的增大而增大,不符合题意,A、C均错误;对于函数y=-4x,∵k=-4<0,∴y总随x的增大而减小,B正确;对于函数y=x2,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,D错误.2. C【解析】∵-1<0,4>0,∴一次函数不经过第三象限,∴点P一定不在第三象限.3. A【解析】令x=0,得y=-2×0+4=4,则函数与y轴的交点坐标是(0,4).4. A【解析】∵y=kx+b(k,b是常数)的图象不经过第二象限,当k=0,b≤0时成立;当k>0,b≤0时成立.综上所述,k ≥0,b ≤0.5. B 【解析】∵函数y =3x 向上平移6个单位后可得函数y =3x +6,∴将y =0代入y =3x +6,可得3x +6=0,解得x =-2,∴平移后的图象与x 轴交点的坐标为(-2,0).6. D 【解析】∵ab <0,∴a ,b 异号,∵a >b ,∴a >0>b ,∴函数y =ax +b 的图象经过第一、三、四象限.7. C 【解析】∵点(1,4),(2,7),(a ,10)在同一直线上,∴设这条直线的解析式为y =kx +b ,将点(1,4),(2,7)代入解析式得⎩⎪⎨⎪⎧k +b =42k +b =7,解得⎩⎪⎨⎪⎧k =3b =1.∴这条直线的解析式为y =3x +1,将(a ,10)代入得3a+1=10,解得a =3.8. C 【解析】当y =1时,-13x =1,解得x =-3,则点P 的坐标为(-3,1),∴关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧-ax +y =b x +3y =0的解为⎩⎪⎨⎪⎧x =-3y =1.9. B 【解析】∵当y 2=2时,-x -1=2,解得x =-3,∴A (-3,2).将A (-3,2)代入y 1=mx -3中,得2=-3m -3,解得m =-53.10. B 【解析】∵点(1,0)在一次函数y =kx -2的图象上,∴k -2=0,∴k =2>0,∴y 随x 的增大而增大,∵-2<1<3,∴y 1<0<y 2.11. D 【解析】∵k <0,b >0,根据一次函数图象性质可得y 随x 的增大而减小,图象过第一、二、四象限,当x =0时,y =b ,∴函数与y 轴交于点(0,b ),则A 、B 、C 选项正确;当y =0时,x =-bk ,与x轴交于点(-b k ,0),根据函数图象可得,当x >-bk时,y <0,D 项错误.12. A 【解析】由题意得,⎩⎪⎨⎪⎧k -2<02k +4>0,解得-2<k <2,∴3-k >0,6+k >0,∴点(3-k ,6+k )所在的象限为第一象限.13. B 【解析】∵一次函数y 1=k 1x +b 1的图象l 1向下平移若干个单位得到l 2的表达式y 2=k 2x +b 2,∴k 1=k 2,b 1>b 2,当x =5时可以看出y 1>y 2,∴B 选项错误.14. 1<k <3 【解析】∵直线y =(2-2k )x +k -3经过第二、三、四象限,∴⎩⎪⎨⎪⎧2-2k <0k -3<0,解得1<k <3.15. (-2,3) 【解析】∵y =kx +2k +3=k (x +2)+3,当x =-2时,y =3,∴不论k 为何值,该函数的图象都经过点A (-2,3).16. x ≤1 【解析】将点P (m ,3)代入y =x +2,得3=m +2,∴m =1.∴点P 坐标为(1,3).由题图可知,x +2≤ax +c 的解即为直线y =ax +c 的图象在直线y =x +2的上方时x 的取值范围,且包含交点的横坐标,∴x +2≤ax +c 的解为x ≤1.17. 解:(1)∵点P (-1,a )在直线l 2:y =2x +4上, ∴2×(-1)+4=a ,即a =2, 则点P 的坐标为(-1,2).设直线l 1的解析式为y =kx +b (k ≠0), ∴将点B (1,0),P (-1,2)代入得,⎩⎪⎨⎪⎧k +b =0-k +b =2, 解得⎩⎪⎨⎪⎧k =-1b =1.∴直线l 1的解析式为y =-x +1; (2)∵直线l 1与y 轴相交于点C , ∴C 点的坐标为(0,1), 又∵直线l 2与x 轴相交于点A , ∴A 点的坐标为(-2,0),则AB =3,∴S 四边形P AOC =S △P AB -S △BOC =12×3×2-12×1×1=52.二、能力提升1. A 【解析】∵关于x 的一元二次方程mx 2-2x -1=0无实数根,∴m ≠0且(-2)2-4m ×(-1)<0,∴m <-1,∴一次函数y =mx +m 的图象经过第二、三、四象限,不经过第一象限.2. A 【解析】令ax +b =bx +a ,即(a -b )x =a -b ,∵a ≠b ,∴解得x =1,即这两个一次函数图象交点的横坐标为1,4个选项都满足. A 选项中,两函数图象都经过第一、二、三象限,若当x <1时,位于上方的图象是y 1,由y 1的图象可知a >0,b >0,由y 2的图象可知a >0,b >0,两结论不矛盾,故A 正确;B 选项中,如果经过第一、二、三象限的图象是y 1,由y 1的图象可知a >0,b >0,由y 2的图象可知a >0,b <0,两结论相矛盾,故B 错误;C 选项中,两函数图象都经过第一、二、四象限,若当x <1时,位于上方的图象是y 1,由y 1的图象可知,a <0,b >0,由y 2的图象可知,a >0,b <0,两结论相矛盾,故C 错误;D 选项中,如果经过第二、三、四象限的图象是y 1,由y 1的图象可知a <0,b <0,由y 2的图象可知a <0,b >0,两结论相矛盾,故D 错误.3. D 【解析】S 四边形ABCD =S △ACD +S △ACB =12×7×3+12×7×1=14,12S 四边形ABCD =7.当直线l 过点D 时,设BD 所在直线的解析式为y =mx +n ,将点B (-2,-1),D (0,3)代入易得y =2x +3,∴BD 所在直线与x 轴交于点(-32,0),∴S △ABD =12(-32+4)×(3+1)=5,∴直线l 与直线CD 相交.如解图所示,过点B 作直线交CD 于点E ,交AC 于点F .设直线l 所表示的函数表达式为y =kx +b ,将点B (-2,-1)代入y =kx +b ,得-2k +b =-1,b =2k -1,∴y =kx +2k -1.由题意易得直线CD 的解析式为y =-x +3,联立⎩⎪⎨⎪⎧y =kx +2k -1y =-x +3,解得⎩⎪⎨⎪⎧x=4-2kk +1y =5k -1k +1,∴E (4-2k k +1,5k -1k +1).令y =kx +2k -1=0,得x =1-2k k ,∴直线l 与x 轴的交点坐标为F (1-2kk ,0).S △BCE =S △BCF +S △CEF =12×1×(2k -1k +3)+12×(2k -1k +3)×5k -1k +1=7,解得k =54,∴直线l 的表达式为y=54x +32.第3题解图4. (23,0) 【解析】如解图,作点B 关于x 轴的对称点B ′,连接AB ′,交x 轴于点P ,则点P 即为所求,设直线y =-x 沿y 轴向下平移后的直线的解析式为y =-x +a ,把A (2,-4)代入可得a =-2,∴平移后的直线的解析式为y =-x -2,令x =0,则y =-2,即B (0,-2),∴B ′(0,2),设直线AB ′的解析式为y =kx+b ,把A (2,-4),B ′(0,2)代入可得⎩⎪⎨⎪⎧-4=2k +b 2=b ,解得⎩⎪⎨⎪⎧k =-3b =2,∴直线AB ′的解析式为y =-3x +2,令y=0,则x =23,∴P (23,0).第4题解图三、满分冲关1. 解:(1)如解图①,过点A 作AH ⊥OP 于点H ,则AP ≥AH , ∵点P 在y =33x 的图象上, ∴∠HOQ =30°,∠HOA =60°. ∵A (0,2),∴AH =AO ·sin60°=3, ∴AP ≥3;第1题解图①(2)是.理由如下:①如解图②,当点P在第三象限时,由∠QP A=∠QOA=90°,可得Q、P、O、A四点共圆,∴∠QAP=∠POQ=30°;第1题解图②②如解图③,当点P在第一象限的线段OH上时,由∠QP A=∠QOA=90°,可得Q、P、O、A四点共圆,∴∠P AQ+∠POQ=180°,又∵∠POQ=150°,∴∠QAP=180°-∠POQ=30°;第1题解图③③如解图④,当点P在第一象限的线段OH的延长线上时,由∠QP A=∠QOA=90°,可得∠APQ+∠AOQ=180°,∴Q、P、O、A四点共圆,∴∠P AQ=∠POQ=30°;第1题解图④(3)设P (m ,33m ), ∵A (0,2),∴OP 2=4m 23,AP 2=4m 23-43m 3+4.在Rt △APQ 中,∵∠QAP =30°, ∴PQ 2=(AP ·tan30°)2=4m 29-43m 9+43,AQ 2=(AP cos30°)2=16m 29-163m 9+163, ∵在Rt △AOQ中,OQ 2=AQ 2-OA 2=16m 29-1639m +43=169(m -32)2, ∴Q (4m -233,0).①当OP =OQ 时,则43m 2=169m 2-163m 9+43,解得m =23±3,∴Q 1(23+4,0),Q 2(23-4,0); ②当OP =PQ 时,则43m 2=49m 2-43m 9+43,解得m =32或m =-3, 当m =32时,点Q 与点O 重合,舍去, ∴m =-3, ∴Q 3(-23,0);③如解图④,当QO =QP 时, 则169m 2-163m 9+43=49m 2-43m 9+43, 解得m =3或m =0,当m =0时,点P 与点O 重合,舍去, ∴m = 3. ∴Q 4(233,0).综上所述,当△OPQ 为等腰三角形时,点Q 的坐标为(23+4,0)或(23-4,0)或(-23,0)或(233,0).2. 解:(1)设每台A 型挖掘机一小时挖土x 立方米,每台B 型挖掘机一小时挖土y 立方米,根据题意,得⎩⎪⎨⎪⎧x +2y =702x +3y =120, 解得⎩⎪⎨⎪⎧x =30y =20. 答:每台A 型挖掘机一小时挖土30立方米,每台B 型挖掘机一小时挖土20立方米;(2)设m 台A 型挖掘机参与施工,施工总费用为W 元,则有(10-m )台B 型挖掘机参与施工,根据题意得⎩⎪⎨⎪⎧30×4m +20×4(10-m )≥1080350×4m +200×4(10-m )≤13400,解得7≤m ≤9,∴共有三种调配方案:①调配7台A 型、3台B 型挖掘机施工;②调配8台A 型挖掘机、2台B 型挖掘机施工;③调配9台A 型挖掘机、1台B 型挖掘机施工;依题意,得:W =350×4m +200×4(10-m )=600m +8000,∵600>0,∴W 随m 的增大而增大,∴当m =7时,即选择方案①时,W 取得最小值,最小值为12200元.即调配7台A 型挖掘机,3台B 型挖掘机的施工费用最低,最低费用为12200元.3. 解:(1)设A 型空调和B 型空调每台各需x 元、y 元,由题意得,⎩⎪⎨⎪⎧3x +2y =390004x -5y =6000, 解得⎩⎪⎨⎪⎧x =9000y =6000, 答:采购A 型空调每台需花费9000元,采购B 型空调每台需花费6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,由题意得,⎩⎪⎨⎪⎧a ≥12(30-a )9000a +6000(30-a )≤217000, 解得10≤a ≤1213, ∵a 为整数,∴a =10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为W 元,W=9000a+6000(30-a)=3000a+180000,∴当a=10时,W取得最小值,此时W=210000,答:采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
一次函数一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为元.型号A B单个盒子容量(升)23单价(元)566.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:甲种原料(千克)乙种原料(千克)原料型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?一次函数参考答案与试题解析一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面【考点】一次函数的应用.【分析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【解答】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,再利用函数图象横坐标,得出甲先到达终点.【解答】解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.【点评】本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【考点】一次函数的应用.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解答】解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.【点评】本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【考点】一次函数的应用.【专题】压轴题.【分析】根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选:C【点评】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为29元.型号A B单个盒子容量(升)23单价(元)56【考点】一次函数的应用.【分析】设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,分两种情况讨论:①当0≤x<3时;②当3≤x时,利用一次函数的性质即可解答.【解答】解:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,①当0≤x<3时,y=5x+=x+30,∵k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+﹣4=26+x,∵k=1>0,∴y随x的增大而增大,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.故答案为:29.【点评】本题考查了一次函数的应用,解决本题的关键是根据题意列出函数解析式,利用一次函数的性质解决最小值的问题,注意分类讨论思想的应用.6.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.【考点】一次函数的应用.【分析】一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.【解答】解:设一次函数的首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.【点评】此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【考点】一次函数的应用.【分析】根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.【解答】解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【点评】本题考查了一次函数的应用,解决本题的关键是分别求出线段OA和射线AB 的函数解析式.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.【考点】一次函数的应用;一元一次方程的应用;一元一次不等式的应用.【分析】(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(2)设A文具为x只,则B文具为(100﹣x)只,根据题意列出函数解答即可.【解答】解:(1)设A文具为x只,则B文具为(100﹣x)只,可得:10x+15(100﹣x)=1300,解得:x=40.答:A文具为40只,则B文具为100﹣40=60只;(2)设A文具为x只,则B文具为(100﹣x)只,可得(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.【点评】此题考查一次函数的应用,关键是根据题意列出方程和不等式,根据函数是减函数进行解答.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?【考点】一次函数的应用.【分析】(1)根据题意,不超过3公里计费为m元,由图示可知光明中学和市图书馆相距2公里,可由此得出m,由出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.当x>3时,由收费与路程之间的关系就可以求出结论;(2)分别计算小张所剩钱数和返程所需钱数,即可得出结论.【解答】解:(1)∵由图示可知光明中学和市图书馆相距2公里,付费9元,∴m=9,∵从市图书馆乘出租车去光明电影院,路程5公里,付费12.6元,∴(5﹣3)n+9=12.6,解得:n=1.8.∴车费y(元)与路程x(公里)(x>3)之间的函数关系式为:y=1.8(x﹣3)+9=1.8x+3.6(x>3).(2)小张剩下坐车的钱数为:75﹣15﹣25﹣9﹣12.6=13.4(元),乘出租车从光明电影院返回光明中学的费用:1.8×7+3.6=16.2(元)∵13.4<16.2,故小张剩下的现金不够乘出租车从光明电影院返回光明中学.【点评】本题考查了分段函数,一次函数的解析式,由一次函数的解析式求自变量和函数值,解答时求出函数的解析式是关键10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?【考点】一次函数的应用.【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A套餐解答.【解答】解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)由0.1x+15<0.15x,得到x>300,当月通话时间多于300分钟时,A套餐更省钱.【点评】本题考查了一次函数的应用,是典型的电话收费问题,求出两种收费相同的时间是确定选择不同的缴费方式的关键.12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.【解答】解:(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品由题意得:,解得:30≤x≤32的整数.∴有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方法一:方案(一)A,30件,B,20件时,20×120+30×80=4800(元).方案(二)A,31件,B,19件时,19×120+31×80=4760(元).方案(三)A,32件,B,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大.【点评】本题考查理解题意的能力,关键是根据有甲种原料360千克,乙种原料290千克,做为限制列出不等式组求解,然后判断B生产的越多,A少的时候获得利润最大,从而求得解.。
2020年中考数学冲刺难点突破一次函数问题专题二一次函数与二元一次方程组问题【知识点总结】一、二元一次方程与一次函数的关系若k,b表示常数且k≠0,则y-kx=b为二元一次方程,有无数个解;将其变形可得y=kx+b,将x,y看作自变量、因变量,则y=kx+b是一次函数.事实上,以方程y-kx=b的解为坐标的点组成的图象与一次函数y=kx+b的图象相同.二、用图象法求二元一次方程组的近似解用图象法求二元一次方程组的近似解的一般步骤:1、先把方程组中两个二元一次方程转化为一次函数的形式:y1=k1x+b1和y2=k2x+b2;2、建立平面直角坐标系,画出两个一次函数的图象;3、写出这两条直线的交点的横纵坐标,这两个数的值就是二元一次方程组的解中的两个数值,横坐标是x,纵坐标是y.三、利用二元一次方程组确定一次函数的表达式每个二元一次方程组都对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.因此一次函数与二元一次方程组有密切联系.利用二元一次方程组确定一次函数的表达式的一般步骤如下:1、写出函数表达式:一次函数y=kx+b;2、把已知条件代入,得到关于k,b的方程组;3、解方程组,求出k,b的值,写出其表达式.【针对训练】1、在平面直角坐标系中,已知点A(x,y),点B(x﹣my,mx﹣y)(其中m为常数,且m≠0),则称B是点A的“m族衍生点”.例如:点A(1,2)的“3族衍生点”B的坐标为(1﹣3×2,3×1﹣2),即B(﹣5,1).(1)点(2,0)的“2族衍生点”的坐标为;(2)若点A的“3族衍生点”B的坐标是(﹣1,5),则点A的坐标为;(3)若点A(x,0)(其中x≠0),点A的“m族衍生点“为点B,且AB=OA,求m的值;(4)若点A(x,y)的“m族衍生点”与“﹣m族衍生点”都关于y轴对称,则点A的位置在.解:(1)点(2,0)的“2族衍生点”的坐标为(2﹣2×0,2×2﹣0),即(2,4),故答案为(2,4);(2)设点A坐标为(x,y),由题意可得:,∴,∴点A坐标为(2,1);(3)∴点A(x,0),∴点A的“m族衍生点“为点B(x,mx),∴AB=|mx|,∴AB=OA,∴|x|=|mx|,∴m=±1;(4)∴点A(x,y),∴点A(x,y)的“m族衍生点”为(x﹣my,mx﹣y),点A(x,y)的“﹣m族衍生点”为(x+my,﹣mx﹣y),∴点A(x,y)的“m族衍生点”与“﹣m族衍生点”都关于y轴对称,∴,∴x=0,∴点A在y轴上,故答案为:y轴上.2、阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图∴:在∴ABC中,∴ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:∴ADC∴∴CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图∴,可得到结论;∴ADC∴∴CEB.请你说明理由.(2)学以致用:如图∴,在平面直角坐标系中,直线y=x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=,请你求出直线CD的解析式.(3)拓展应用:如图∴,在矩形ABCD中,AB=3,BC=5,点E为BC边上一个动点,连接BE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若∴DPC 为直角三角形时,请你探究并直接写出BE的长.解:(1)理由:∴∴ACB=90°,∴∴ACD=∴BCE=90°,又∴∴ADC=90°,∴∴ACD+∴DAC=90°,∴∴BCE=∴DAC,且∴ADC=∴BEC=90°,∴∴ADC∴∴CEB;(2)如图,过点O作ON∴OM交直线CD于点N,分别过M、N作ME∴x轴NF∴x轴,由(1)可得:∴NFO∴∴OEM,∴,∴点M(2,1),∴OE=2,ME=1,∴tanα==,∴,∴NF=3,OF=,∴点N(﹣,3),∴设直线CD表达式:y=kx+b,∴∴∴直线CD的解析式为:y=﹣x+;(3)当∴CDP=90°时,如图,过点P作PH∴BC,交BC延长线于点H,∴∴ADC+∴CDP=180°,∴点A,点D,点P三点共线,∴∴BAP=∴B=∴H=90°,∴四边形ABHP是矩形,∴AB=PH=3,∴将线段AE绕点E顺时针旋转90°,∴AE=EP,∴AEP=90°,∴∴AEB=∴PEH=90°,且∴BAE+∴AEB=90°,∴∴BAE=∴PEH,且∴B=∴H=90°,AE=EP,∴∴ABE∴∴EHP(AAS),∴BE=PH=3,当∴CPD=90°时,如图,过点P作PH∴BC,交BC延长线于点H,延长HP交AD的延长线于N,则四边形CDNH是矩形,∴CD=NH=3,DN=CH,设BE=x,则EC=5﹣x,∴将线段AE绕点E顺时针旋转90°,∴AE=EP,∴AEP=90°,∴∴AEB=∴PEH=90°,且∴BAE+∴AEB=90°,∴∴BAE=∴PEH,且∴B=∴EHP=90°,AE=EP,∴∴ABE∴∴EHP(AAS),∴PH=BE=x,AB=EH=3,∴PN=3﹣x,CH=3﹣(5﹣x)=x﹣2=DN,∴∴DPC=90°,∴∴DPN+∴CPH=90°,且∴CPH+∴PCH=90°,∴∴PCH=∴DPN,且∴N=∴CHP=90°,∴∴CPH∴∴PDH,∴,∴∴x=∴点P在矩形ABCD外部,∴x=,∴BE=,综上所述:当BE的长为3或时,∴DPC为直角三角形.3、如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A(5,0),与y轴交于点B;直线y═x+6过点B和点C,且AC∴x轴.点M从点B出发以每秒2个单位长度的速度沿y轴向点O运动,同时点N从点A出发以每秒3个单位长度的速度沿射线AC向点C运动,当点M到达点O时,点M、N同时停止运动,设点M运动的时间为t(秒),连接MN.(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∴x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.解:(1)∴AC∴x轴,点A(5,0),∴点C的横坐标为5,对于y═x+6,当x=5时,y=×5+6=10,对于x=0,y=6,∴点C的坐标为(5,10),点B的坐标为(0,6),直线y=kx+b与x轴交于点A(5,0),与y轴交于点B(0,6),则,解得,,∴直线y=kx+b的函数表达式为y=﹣x+6,综上所述,直线y=kx+b的函数表达式为y=﹣x+6,点C的坐标为(5,10);(2)由题意得,BM=2t,AN=3t,∴OM=6﹣2t,∴OM∴AN,MN∴x轴,∴四边形MOAN为平行四边形,∴OM=AN,∴6﹣2t=3t,解得,t=,∴当MN∴x轴时,t=;(3)线段CD的长度不变化,理由如下:过点D作EF∴x轴,交OB于E,交AC于F,∴EF∴x轴,BM∴AN,∴AOE=90°,∴四边形EOAF为矩形,∴EF=OA=5,EO=F A,∴BM∴AN,∴∴BDM∴∴ADN,∴==,∴EF=5,∴DE=2,DF=3,∴BM∴AN,∴∴BDE∴∴ADF,∴==,∴=,∴OB=6,∴EO=F A=,∴CF=AC﹣F A=,∴CD==.4、如图,直线y=﹣2x+8分别交x轴,y轴于点A,B,直线y=x+3交y轴于点C,两直线相交于点D.(1)求点D的坐标;(2)如图2,过点A作AE∴y轴交直线y=x+3于点E,连接AC,BE.求证:四边形ACBE是菱形;(3)如图3,在(2)的条件下,点F在线段BC上,点G在线段AB上,连接CG,FG,当CG=FG,且∴CGF=∴ABC时,求点G的坐标.解:(1)根据题意可得:,解得:∴点D坐标(2,4)(2)∴直线y=﹣2x+8分别交x轴,y轴于点A,B,∴点B(0,8),点A(4,0),∴直线y=x+3交y轴于点C,∴点C(0,3),∴AE∴y轴交直线y=x+3于点E,∴点E(4,5)∴点B(0,8),点A(4,0),点C(0,3),点E(4,5),∴BC=5,AE=5,AC==5,BE==5,∴BC=AE=AC=BE,∴四边形ACBE是菱形;(3)∴BC=AC,∴∴ABC=∴CAB,∴∴CGF=∴ABC,∴AGF=∴ABC+∴BFG=∴AGC+∴CGF∴∴AGC=∴BFG,且FG=CG,∴ABC=∴CAB,∴∴ACG∴∴BGF(AAS)∴BG=AC=5,设点G(a,﹣2a+8),∴(﹣2a+8﹣8)2+(a﹣0)2=52,∴a=±,∴点G在线段AB上∴a=,∴点G(,8﹣2)5、如图,在平面直角坐标系xOy中,直线l1:y=x+2与x轴交于点A,直线l2:y=3x﹣6与x轴交于点D,与l1相交于点C.(1)求点D的坐标;(2)在y轴上一点E,若S∴ACE=S∴ACD,求点E的坐标;(3)直线l1上一点P(1,3),平面内一点F,若以A、P、F为顶点的三角形与∴APD全等,求点F的坐标.解:(1)∴直线l2:y=3x﹣6与x轴交于点D,∴令y=0,则3x﹣6=0,∴x=2,∴D(2,0);(2)如图1,∴直线l1:y=x+2与x轴交于点A,∴令y=0.∴x+2=0,∴x=﹣2,∴A(﹣2,0),由(1)知,D(2,0),∴AD=4,联立直线l1,l2的解析式得,,解得,,∴C(4,6),∴S∴ACD=AD•|y C|=×4×6=12,∴S∴ACE=S∴ACD,∴S∴ACE=12,直线l1与y轴的交点记作点B,∴B(0,2),设点E(0,m),∴BE=|m﹣2|,∴S∴ACE=BE•|x C﹣x A|=|m﹣2|×|4+2|=4|m﹣2|=12,∴m=﹣2或m=6,∴点E(0,﹣2)或(0,6);(3)如图2,∴当点F在直线l1上方时,∴以A、P、F为顶点的三角形与∴APD全等,∴∴、当∴APF'∴∴APD时,连接DF',BD,由(2)知,B(0,2),由(1)知,A(﹣2,0),D(2,0),∴OB=OA=OD,∴∴ABO=∴DBO=45°,∴∴ABD=90°,∴DB∴l1,∴∴APF'∴∴APD,∴PF'=PD,AF'=AD,∴直线l1是线段DF'的垂直平分线,∴点D,F'关于直线l1对称,∴DF'∴l1,∴DF'过点B,且点B是DF'的中点,∴F'(﹣2,4),∴、当∴P AF∴∴APD时,∴PF=AD,∴APF=∴P AD,∴PF∴AD,∴点D(2,0),A(﹣2,6),∴点D向左平移4个单位,∴点P向左平移4个单位得,F(1﹣4,6),∴F(﹣3,3),∴当点F在直线l1下方时,∴∴P AF''∴∴APD,由∴∴知,∴P AF∴∴APD,∴∴P AF∴∴P AF'',∴AF=AF'',PF=PF'',∴点F与点F'关于直线l1对称,∴FF''∴l1,∴DF'∴l1,∴FF'∴DF',而点F'(﹣2,4)先向左平移一个单位,再向下平移一个单位,∴D(2,0),向左平移1个单位,再向下平移一个单位得F''(2﹣1,0﹣1),∴F''(1,﹣1),即:点F的坐标为(﹣3,3)或(﹣2,4)或(1,﹣1).6、如图1,在平面直角坐标系xOy中,点A(2,0),点B(﹣4,3).(1)求直线AB的函数表达式;(2)点P是线段AB上的一点,当S∴AOP:S∴AOB=2:3时,求点P的坐标;(3)如图2,在(2)的条件下,将线段AB绕点A顺时针旋转120°,点B落在点C处,连结CP,求∴APC的面积,并直接写出点C的坐标.解:(1)设直线AB的函数表达式为y=kx+b,∴点A(2,0),点B(﹣4,3),∴,解得:,∴直线AB的函数表达式为y=﹣x+1;(2)过B作BE∴x轴于E,过P作PD∴x轴于D,∴PD∴BE,∴S∴AOP:S∴AOB=2:3,∴=,∴点B(﹣4,3),∴BE=3,∴PD∴BE,∴∴APD∴∴ABE,∴==,∴PD=2,当y=2时,x=﹣2,∴P(﹣2,2);(3)点A(2,0)、点B(﹣4,3),点P(﹣2,2),则AP=2,AB=CA=3,过点P作HP∴AC交AC的延长线于点H,则AH=AP=,PH=AP sin60°=,∴APC的面积=AC×PH=×3×=;设点C(x,y),则PC2=PH2+HC2=15+(+3)2=95=(x+2)2+(y﹣2)2…∴,CA2=45=(x﹣2)2+y2…∴,联立∴∴并解得:x=,y=,故点C(,).7、如图,正方形AOBC的边长为2,点O为坐标原点,边OB,OA分别在x轴,y轴上,点D是BC的中点,点P是线段AC上的一个点,如果将OA沿直线OP对折,使点A的对应点A′恰好落在PD所在直线上.(1)若点P是端点,即当点P在A点时,A′点的位置关系是,OP所在的直线是,当点P在C点时,A′点的位置关系是,OP所在的直线表达式是.(2)若点P不是端点,用你所学的数学知识求出OP所在直线的表达式.(3)在(2)的情况下,x轴上是否存在点Q,使∴DPQ的周长为最小值?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)由轴对称的性质可得,若点P是端点,即当点P在A点时,A′点的位置关系是点A,OP所在的直线是y轴;当点P在C点时,∴∴AOC=∴BOC=45°,∴A′点的位置关系是点B,OP所在的直线表达式是y=x.故答案为:A,y轴;B,y=x.(2)连接OD,∴正方形AOBC的边长为2,点D是BC的中点,∴==.由折叠的性质可知,OA′=OA=2,∴OA′D=90°.∴A′D=1.设点P(x,2),P A′=x,PC=2﹣x,CD=1.∴(x+1)2=(2﹣x)2+12.解得x=.所以P(,2),∴OP所在直线的表达式是y=3x.(3)存在.若∴DPQ的周长为最小,即是要PQ+DQ为最小.∴点D关于x轴的对称点是D′(2,﹣1),∴设直线PD'的解析式为y=kx+b,,解得,∴直线PD′的函数表达式为y=﹣x+.当y=0时,x=.∴点Q(,0).8、如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1(1)求直线BC的解析式;(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE =S△BDF?若存在,求出a的值;若不存在,请说明理由;(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.解:(1)∵直线y=﹣x+b分别与x轴交于A(6,0),∴b=6,∴直线AB的解析式是:y=﹣x+6,∴B(0,6),∴OB=6,∵OB:OC=3:1,∴OC=2,∴C(﹣2,0)设BC的解析式是y=kx+b,∴解得,直线BC的解析式是:y=3x+6;(2)存在.理由如下:如图1中,∵S△BDF=S△BDE,∴只需DF=DE,即D为EF中点,∵点E为直线AB与EF的交点,∴∴点E(,)∵点F为直线BC与EF的交点,∴∴点F(,)∵D为EF中点,∴+,∴a=0舍去,a=(3)K点的位置不发生变化.理由如下:如图2中,过点Q作CQ⊥x轴,设PA=m,∵∠POB=∠PCQ=∠BPQ=90°,∴∠OPB+∠QPC=90°,∠QPC+∠PQC=90°,∴∠OPB=∠PQC,∵PB=PQ,∴△BOP≌△PCQ(AAS),∴BO=PC=6,OP=CQ=6+m,∴AC=QC=6+m,∴∠QAC=∠OAK=45°,∴OA=OK=6,∴K(0,﹣6).9、如图,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于N,设点Q横坐标为m,△PBQ的面积为S,求S与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(﹣4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:解得:∴直线BC解析式为:y=﹣2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,﹣2m+8)∴HQ=2m﹣8,CH=m﹣4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m﹣4,PG=HQ=2m﹣8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC﹣S△PAE=×8×8﹣×(2m﹣8)×(2m﹣8)=16m﹣2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m﹣8=4,∴m=6,∴Q(6,﹣4),P(﹣2,4)设直线PQ的解析式为:y=ax+c,∴解得:∴直线PQ的解析式为:y=﹣x+2.10、已知:在平面直角坐标系中,直线y=x+4与x轴交于点A,与y轴交于点B,点C是x轴正半轴上一点,AB=AC,连接BC.(1)如图1,求直线BC解析式;(2)如图2,点P、Q分别是线段AB、BC上的点,且AP=BQ,连接PQ.若点Q的横坐标为t,△BPQ 的面积为S,求S关于t的函数关系式,并写出自变量取值范围;(3)如图3,在(2)的条件下,点E是线段OA上一点,连接BE,将△ABE沿BE翻折,使翻折后的点A落在y轴上的点H处,点F在y轴上点H上方EH=FH,连接EF并延长交BC于点G,若BG=AP,连接PE,连接PG交BE于点T,求BT长.解:(1)由已知可得A(﹣3,0),B(0,4),∴OA=3,OB=4,∴AB===5,∵AB=AC,∴AC=5,∴C(2,0),设BC的直线解析式为y=kx+b,将点B与点C代入,得,∴,∴BC的直线解析式为y=﹣2x+4;(2)过点Q作MQ⊥y轴,与y轴交于点M,过点Q作QE⊥AB,过点C作CF⊥AB,∵Q点横坐标是t,∴MQ=t,∵MQ∥OC,∴,∴,∴BQ=t,∵AP=BQ,∴AP=t,∵AB=5,∴PB=5﹣t,在等腰三角形ABC中,AC=AB=5,BC=2,∵AB×CF=AC×OB,∴CF=OB=4,∵EQ∥CF∴∴EQ=2t,∴S=×(5﹣t)=(0≤t≤2);(3)如图3,∵将△ABE沿BE翻折,使翻折后的点A落在y轴上的点H处,∴AH=AB=5,AE=EH,∴OH=BH﹣OB=1,∵EH2=EO2+OH2,∴AE2=(4﹣AE)2+1,∴AE==EH,∴OE=,∴点E(﹣,0)∵EH=FH=,∴OF=∴点F(0,)∴直线EF解析式为y=x+,直线BE的解析式为:y=3x+4,∴﹣2x+4=x+,∴x=,∴点G(,)∴BG==,∵BG=AP,∴AP=1,设点P(a,a+4)∴1=∴a=﹣,∴点P(﹣,),∴直线PG的解析式为:y=x+,∴3x+4=x+,∴x=﹣1,∴点T(﹣1,1)∴BT==11、如图,已知一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.(1)求△AOB的面积:(2)在y轴上找一点C,使AC+BC最小,求最小值及C点坐标.(3)点P从O出发向B点以1个单位每秒的速度运动,点Q从B点出发向A点以同样的速度运动,两个点同时停止,当△BPQ为等腰三角形时,求Q点坐标.解:(1)∵一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.∴点B(7,0),﹣x+7=x∴x=3,∴点A(3,4)∴S△AOB=×7×4=14;(2)如图1,作点B关于y轴的对称点H(﹣7,0),连接AH,交y轴于点C,∴此时AC+BC最小值为AH,∵点A(3,4),点H(﹣7,0),∴AH==2,∴AC+BC最小值为2,设直线AH解析式为:y=kx+b,且过点A(3,4),点H(﹣7,0),∴,解得:∴直线AH解析式为:y=x+;(3)如图2,过点Q作QE⊥OB,∵以同样的速度运动,∴BQ=OP,∵一次函数y=﹣x+7与y轴交于点D,∴点D(0,7),∴OD=OB=7,且∠DOB=90°,∴∠DBO=45°,且QE⊥OB,∴∠QBE=∠EQB=45°,∴QE=BE,∴QB=QE=EB,若PB=QB,且OP=BQ,∴OP=PB==BQ,∴BE=EQ=,∴OE=7﹣,∴点Q(7﹣,),若QP=QB,且QE⊥OB,∴PE=BE,∵OB=7=OP+PE+BE,∴7=BE+2BE,∴BE==QE,∴OE=∴点Q(,),如图3,若BP=PQ,过点P作PF⊥BQ,∴BF=FQ=BQ,∵∠ABO=45°,PF⊥AB,∴∠FPB=∠ABO=45°,∴PF=BF,∴PB=BF,∴7﹣BQ=∴BQ=,∴BE=QE=,∴点Q坐标为(7﹣,).。
中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。
定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。
水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。
两坐标轴的交点为平面直角坐标系的原点。
建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。
2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。
定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。
这种式子叫做函数的解析式。
表示函数的方法:解析式法、列表法和图象法。
解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。
画函数图象的方法——描点法:第1步,列表。
表中给出一些自变量的值及其对应的函数值;第2步,描点。
在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。
按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。
1、结合实例进一步体会用有序数对可以表示物体的位置。
2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
中考数学频考点突破--二次函数与一次函数1.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y (千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?2.已知抛物线C:y1=a(x﹣h)2﹣1,直线L:y2=kx﹣kh﹣1(1)试说明:抛物线C的顶点D总在直线y2=kx﹣kh﹣1上;(2)当a=﹣1,m≤x≤2时,y1≥x﹣3恒成立,求m的最小值;(3)当0<a≤2,k>0时,若在直线L下方的抛物线C上至少存在两个横坐标为正整数的点,求k的取值范围.3.某商场以每千克40元的价格购进某种海鱼,计划以每千克60元的价格销售.为了让顾客得到更大的实惠,现决定降价销售,已知这种海鱼销售量y(kg)与每千克降价x (元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)求y关于x的函数表达式;(2)商场在销售这种海鱼中要想获利2090元,则这种海鱼每千克应降价多少元?共销售了多少千克这种海鱼?4.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴交于点A,B,直线BC的解析式是y=x+b.(1)求二次函数图象的顶点坐标.(2)求不等式ax2+2x+c⩽x+b的解.5.在平面直角坐标系中,设二次函数y=ax2+bx+2(a,b是常数,a≠0).(1)若a=1,当x=−1时,y=4.求y的函数表达式.(2)写出一题a,b的值,使函数y=ax2+bx+2的图象与x轴只有一个公共点,并求此函数的顶点坐标.(3)已知,二次函数y=ax2+bx+2的图象和直线y=ax+4b都经过点(2,m),求证a2+b2≥12.6.已知,如图:直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B,C两点,点B的坐标为(1,1).(1)求直线AB和抛物线的函数解析式;(2)如果抛物线上有一点D,使得S△AOD=S△BCO,求点D的坐标.7.(1)化简:4aa2−1+a−1 a+1;(2)已知二次函数y=ax2+43(a≠0)与正比例函数y=4x的图象只有一个交点,求a的值.8.已知,如图,抛物线与x轴交点坐标为A(1,0),C(-3,0),(1)若已知顶点坐标D为(-1,4)或B点(0,3),选择适当方式求抛物线的解析式.(2)若直线DH为抛物线的对称轴,在(1)的基础上,求线段DK的长度,并求△DBC的面积.(3)将图(2)中的对称轴向左移动,交x轴于点p(m,0)(-3<m<-1),与线段BC、抛物线的交点分别为点K、Q,用含m的代数式表示QK的长度,并求出当m 为何值时,△BCQ的面积最大?9.定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x 轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.10.如图,直线l:y=−3x+3与x轴、y轴分别相交于A、B两点,抛物线y= ax2−2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式:(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值.11.抛物线y=x2与直线y=x+2交于A,B两点,点A在第二象限,求(1)A、B两点的坐标;(2)△AOB的面积12.某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=100.在销售过程中,每天还要支付其他费用350元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大?最大利润是多少元?13.如图,抛物线y=x2+mx与直线y=−x+b交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>−x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.14.如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C (0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标;(2)求一次函数和二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.15.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.采购数量(件)12…A产品单价(元/件)14801460…B产品单价(元/件)12901280…1y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的119,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.16.如图,已知二次函数y1=ax2+bx+c的图象过点A(1,0),B(﹣3,0),C(0,﹣3)(1)求此二次函数的解析式和顶点坐标;(2)直线y2=kx+b过B、C两点,请直接写出当y1>y2时,自变量x的取值范围.答案解析部分1.【答案】(1)解:设y=kx+b ,由图象可知,{20k +b =2030k +b =0, 解之,得: {k =−2b =60 ,∴y=﹣2x+60(2)解:p=(x ﹣10)y =(x ﹣10)(﹣2x+60) =﹣2x 2+80x ﹣600, ∵a=﹣2<0, ∴p 有最大值,当x=﹣ 80−2×2=20时,p 最大值=200.即当销售单价为20元/千克时,每天可获得最大利润200元【知识点】二次函数与一次函数的综合应用【解析】【分析】(1)由待定系数法求一次函数解析式。
初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!考纲要求:1.理解一次函数的概念,会利用待定系数法确定一次函数的表达式.2.会画一次函数的图象,掌握一次函数的基本性质,平移的方法.3.体会一次函数与一元一次方程不等式的关系。
4.一次函数的与三角形面积的问题.命题趋势:一次函数是中考的重点,主要考查一次函数的定义、图像、性质及其实际应用,有时与方程、不等式相结合.题型有选择题、填空题、解答题.中考数学一次函数知识梳理:一、一次函数和正比例函数的定义一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.二、一次函数的图像与性质1.一次函数的图像(1)一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b/k,0)的一条直线.(2)正比例函数y=kx(k≠0)的图像是经过点(0,0)和(1,k)的一条直线.(3)因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可.2.一次函数图象的性质一次函数y=kx+b的图象可由正比例函数y=kx的图象平移得到,b>0,上移b个单位;b<0,下移|b|个单位.三、利用待定系数法求一次函数的解析式四、一次函数与方程、方程组及不等式的关系1.y=kx+b与kx +b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.2.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.3.一次函数的平移y=kx+b遵循左加右减原则如果向左平移a个单位,可得y=k(x+a)+b如果向上平移a个单位,可得y=kx+b+a 通过以上对一次函数的整体了解和综合的学习,快速掌握一次函数,就从下面的六大考点出发,每个考点的精髓和解题的技巧唐老师都在例题的下方给大家进行了总结,记得一定要牢记。
2020重庆中考复习数学一次函数专题训练二1.某天,某同学早上8点坐车从余姚图书馆出发去宁波大学,汽车离开余姚图书馆的距离S(千米)与所用时间t(分)之间的函数关系如图所示.已知汽车在途中停车加油一次,则下列描述不正确的是()A.汽车在途中加油用了10分钟,B.若OA∥BC,则加满油以后的速度为80千米/小时C.若汽车加油后的速度是90千米/小时,则a=25,D.该同学8:55到达宁波大学2.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个3、(2019•常州模拟)我市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.3小时C.4.4小时D.5小时4、在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)之间的函数关系的图象,下列说法错误的是()A.乙的速度是60千米/小时B.甲车整个过程用时为1.25小时C.甲出发1小时后两车相遇D.甲到B地比乙到A地晚小时5、(2019秋•庐阳区校级月考)甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/h B.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km6、如图所示,在同一条道路上,甲车从A地到B地,乙车从B地到A地,甲乙同时出发,甲车先到达目的地,图中的折线段表示甲、乙两车之间的距离y(km)与行驶时间(h)的函数关系的图象,下列说法错误的是()A.出发2h后,两车相遇B.乙的速度是48km/hC.出发3h后,甲车距离B地96km D.甲车到B地比乙车到A地早h7、甲骑摩托车从A地去B地.乙开汽车从B地去A地.同时出发,匀速行驶.各自到达终点后停止.设甲、乙两人间的距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,下列结论中,错误的是()A.出发1小时时,甲、乙在途中相遇B.出发1.5小时时,乙比甲多行驶了60千米C.出发3小时时,甲、乙同时到达终点D.甲的速度是乙速度的一半8、甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需()分钟到达终点B.A.78B.76C.16D.129.甲、乙两人赛跑,两人所跑的路程y(米)与所用的时间x(分)的函数关系如图所示,则下列说法个①比赛全程1500米②2分时甲、乙相距300米③比赛结果是乙比甲领先50秒到达终点④3分35秒时乙追上甲.其中正确的个数有()A.1B.2C.3D.410、在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C,乙车由B地驶往A地,两车同时出发,匀速行驶.甲、乙两车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇,正确的结论有()A.1个B.2个C.3个D.4个11、甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m =160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个12、甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到B地,停车1小时按原速度匀速返回,直到两车相遇.乙车速度是60千米/时,如图是两车之间的距离y(干米)与乙车行驶时间x (小时)之间的函数图象,则下列说法正确的是()A.A、B两地相距150千米B.甲车速度是100千米/时C.乙车从出发到与甲车相遇共用小时D.点M的纵坐标为9013、甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原速返回A地,乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,则下列说法中正确的个数为()①乙车的速度是60千米/时;②t的值为3③当乙车出发160分钟时,两车第一次相距120千米;④当乙车出发360分钟时,两车相距120千米.A.1个B.2个C.3个D.4个14、甲、乙两车从A地出发沿同一路线驶向B地,甲车匀速驶向B地,甲车出发30分钟后,乙车才出发,乙先匀速行驶一段时间后,到达货站装货后继续行驶,速度减少了56千米/时,结果与甲车同时到达B 地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法中正确的是()A.甲车从A地到B地行驶了6小时B.甲的速度是120千米/时C.乙出发90分钟追上甲D.当两车在行驶过程中,相距40千米时,x=2或3.515.甲、乙两位同学住在同一小区,学校与小区相距2700米,一天甲从小区步行出发去学校,12分钟后乙也出发,乙先骑公交自行车,途经学校又骑行一段路到达还车点后,立即步行走回学校.已知步行速度甲比乙每分钟快5米,图中的折线表示甲、乙两人之间的距离y(米)与甲步行时间x(分钟)的函数关系图象,则()A.乙骑自行车的速度是180米/分B.乙到还车点时,甲、乙两人相聚850米C.自行车还车点距离学校300米D.乙到学校时,甲距离学校200米16.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法不正确的是()A.甲的速度保持不变B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人不相遇D.在起跑后第50秒时,乙在甲的前面17.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程y(米)与时间/(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的有()①甲队率先到达终点;②甲队比乙队多走了200米路程;③乙队比甲队少用0.2分钟;④比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快.A.1个B.2个C.3个D.4个18.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示.下列说法错误的是()A.A,B两城相距300千米B.乙车比甲车晚出发1小时,却早到1小时C.乙车出发后1.5小时追上甲车D.在一车追上另一车之前,当两车相距40千米时,t=19.A,B两地相距20km,甲乙两人沿同一条路线从A地到B地.如图反映的是二人行进路程y(km)与行进时间t(h)之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上.在这些说法中,正确的有()A.1个B.2个C.3个D.4个20.在一条笔直的公路上有AB两地,甲,乙两辆货车都要从A地送货到B地,甲车先从A地出发匀速行驶,3小时后乙车从A地出发,并沿同一路线匀速行驶,当乙车到达B地后立刻按原速返回,在返回途中第二次与甲车相遇,甲车出发的时间记为t(小时),两车之间的距离记为y(千米),y与t的函数关系如图所示,则乙车第二次与甲车相遇是甲车距离A地()千米.A.495B.505C.515D.52521.已知A,B两地相距120千米,甲乙两人沿同一条公路匀速行驶,甲骑自行车以20千米/时从A地前往B地,同时乙骑摩托车从B地前往A地,设两人之间的距离为s(千米),甲行驶的时间为t(小时),若s与t的函数关系如图所示,则下列说法错误的是()A.经过2小时两人相遇B.若乙行驶的路程是甲的2倍,则t=3C.当乙到达终点时,甲离终点还有60千米D.若两人相距90千米,则t=0.5或t=4.522.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.②③B.①②③C.①②D.①③2020重庆中考复习数学一次函数专题训练二参考答案1.某天,某同学早上8点坐车从余姚图书馆出发去宁波大学,汽车离开余姚图书馆的距离S(千米)与所用时间t(分)之间的函数关系如图所示.已知汽车在途中停车加油一次,则下列描述不正确的是()A.汽车在途中加油用了10分钟,B.若OA∥BC,则加满油以后的速度为80千米/小时C.若汽车加油后的速度是90千米/小时,则a=25,D.该同学8:55到达宁波大学解:A、图中加油时间为25至35分钟,共10分钟,故本选项正确;B、因为OA∥BC,所以=,解得a=,所以加满油以后的速度==80千米/小时,故本选项正确.C、由题意:=90,解得a=30,本选项错误.D、该同学8:55到达宁波大学,正确.故选:C.2.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个解:汽车从出发地到目的地走了140千米,又回到出发地因而共行驶了280千米,故①错误;汽车在行驶途中停留了4﹣3=1小时,故②正确;汽车在整个行驶过程中的平均速度为:280÷(9﹣1)=35(千米/时),故③错误;汽车出发后6小时至9小时之间行驶的速度不变,故④错误.综上所述,正确的只有②.故选:A.3、(2019•常州模拟)我市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.3小时C.4.4小时D.5小时解:物资一共有6吨,调出速度为:(6﹣1)÷2=2.5吨/小时,需要时间为:6÷2.5=2.4(时)∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4小时.故选:C.4、在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)之间的函数关系的图象,下列说法错误的是()A.乙的速度是60千米/小时B.甲车整个过程用时为1.25小时C.甲出发1小时后两车相遇D.甲到B地比乙到A地晚小时解:由图象横坐标可得,乙先出发的时间为0.5小时,由于乙先出发,0.5小时,乙车走了(100﹣70)km,则乙车的速度为:60km/h,故A正确,不符合题意;乙行驶全程所用时间为:=1(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故B正确,不符合题意;甲车的速度为:=80(km/h),由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项不正确,不合题意;由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项正确,不符合题意.故选:C.5、(2019秋•庐阳区校级月考)甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/h B.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km解:根据图象可知甲用了(3.5﹣1)小时走了200千米,所以甲的速度为:200÷2.5=80km/h,故选项A说法正确;由图象横坐标可得,乙先出发的时间为1小时,两车相距(200﹣140)=60km,故乙车的速度是60km/h,故选项B说法正确;140÷(80+60)=1(小时),即甲车出发1h与乙车相遇,故选项C说法正确;200﹣(200÷60﹣1)×80=km,即乙车到达目的地时甲车离B地km,故选项D说法中不正确.故选:D.6、如图所示,在同一条道路上,甲车从A地到B地,乙车从B地到A地,甲乙同时出发,甲车先到达目的地,图中的折线段表示甲、乙两车之间的距离y(km)与行驶时间(h)的函数关系的图象,下列说法错误的是()A.出发2h后,两车相遇B.乙的速度是48km/hC.出发3h后,甲车距离B地96km D.甲车到B地比乙车到A地早h解:A、出发2h后,其距离为零,即两车相遇,正确;B、乙的速度是=48km/h,正确;C、甲的速度为:km/h,240﹣72×3=24km,错误;D、h,即甲车到B地比乙车到A地早h,正确;故选:C.7、甲骑摩托车从A地去B地.乙开汽车从B地去A地.同时出发,匀速行驶.各自到达终点后停止.设甲、乙两人间的距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,下列结论中,错误的是()A.出发1小时时,甲、乙在途中相遇B.出发1.5小时时,乙比甲多行驶了60千米C.出发3小时时,甲、乙同时到达终点D.甲的速度是乙速度的一半解:由图象可得,出发1小时时,甲乙在途中相遇,故选项A正确,甲的速度是:120÷3=40千米/时,则乙的速度是:120÷1﹣40=80千米/h,∴出发1.5小时时,乙比甲多行驶路程是:1.5×(80﹣40)=60千米,故选项B正确,在1.5小时时,乙到达终点,甲在3小时时到达终点,故选项C错误,∵甲的速度是:120÷3=40千米/时,乙的速度是:120÷1﹣40=80千米/h,∴甲的速度是乙速度的一半,故选项D正确,故选:C.8、甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需()分钟到达终点B.A.78B.76C.16D.12解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故选:A.9.甲、乙两人赛跑,两人所跑的路程y(米)与所用的时间x(分)的函数关系如图所示,则下列说法个①比赛全程1500米②2分时甲、乙相距300米③比赛结果是乙比甲领先50秒到达终点④3分35秒时乙追上甲.其中正确的个数有()A.1B.2C.3D.4解:由函数图象可得比赛全程1500米,故①正确;∵甲的速度==300米/分,∴2分时甲、乙相距为300×2﹣300=300米,故②正确;由函数图象可以得;乙比甲领先30秒到达终点,故③错误;设两分钟后,y乙=kx+b,由题意可得:解得:k=480,b=﹣660,∴y乙=480x﹣660,∵乙追上甲∴480x﹣660=300x,∴x=∴分钟=3分钟40秒,故④错误.故选:B.10、在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C,乙车由B地驶往A地,两车同时出发,匀速行驶.甲、乙两车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇,正确的结论有()A.1个B.2个C.3个D.4个解:A、B两地相距=360+80=440(千米),故①正确,甲车的平均速度==60(千米/小时),故②正确,乙车的平均速度==40千米/小时,440÷40=11(小时),∴乙车行驶11小时后到达A地,故③正确,设t小时相遇,则有:(60+40)t=440,t=4.4(小时),∴两车行驶4.4小时后相遇,故④正确,故选:D.11、甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m =160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.12、甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到B地,停车1小时按原速度匀速返回,直到两车相遇.乙车速度是60千米/时,如图是两车之间的距离y(干米)与乙车行驶时间x (小时)之间的函数图象,则下列说法正确的是()A.A、B两地相距150千米B.甲车速度是100千米/时C.乙车从出发到与甲车相遇共用小时D.点M的纵坐标为90解:根据题意仔细观察图象可知5小时后两车相距150千米,故选项A不合题意;设甲的速度变为xkm/h,根据5(x﹣60)=150,解得:x=90,故甲车A到B的行驶速度为90千米/时,故选项B不合题意;乙车从出发到与甲车相遇共用的时间为:6+(90×5﹣60×6)÷(90+60)=(小时),故选项C不合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D符合题意.故选:D.13、甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原速返回A地,乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,则下列说法中正确的个数为()①乙车的速度是60千米/时;②t的值为3③当乙车出发160分钟时,两车第一次相距120千米;④当乙车出发360分钟时,两车相距120千米.A.1个B.2个C.3个D.4个解:由图可知,乙车的速度为:60÷1=60千米/时,故①正确;由题意可得,t=,故②正确;由题意可得,乙车出发160分钟时,甲车出发160﹣60=100分钟,故此时两车相距的距离为:480﹣﹣=120千米,故③正确;当乙车出发360分钟时,甲车出发360﹣60=300分钟,故此时两车的距离为:(7﹣)×﹣(480﹣)=120千米,故④正确;故选:D.14、甲、乙两车从A地出发沿同一路线驶向B地,甲车匀速驶向B地,甲车出发30分钟后,乙车才出发,乙先匀速行驶一段时间后,到达货站装货后继续行驶,速度减少了56千米/时,结果与甲车同时到达B 地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法中正确的是()A.甲车从A地到B地行驶了6小时B.甲的速度是120千米/时C.乙出发90分钟追上甲D.当两车在行驶过程中,相距40千米时,x=2或3.5解:A、错误.甲车从A地到B地行驶了6.5小时.B、错误.甲的速度为=80千米/时.C、错误.设乙开始的速度为x千米/时,由题意3x+2.5(x﹣56)=520,解得x=120,设乙出发t小时追上甲,则(120﹣80)t=0.5×80,t=1,所以乙出发t小时追上甲.D、正确.由题意甲的函数解析式为y=80x+40,乙开始的函数解析式为y=120x,装货后的解析式为y=64x+136,由题意120x﹣(80x+40)=40或64x+136﹣(80x+40)=40,解得x=2或3.5.故选:D.15.甲、乙两位同学住在同一小区,学校与小区相距2700米,一天甲从小区步行出发去学校,12分钟后乙也出发,乙先骑公交自行车,途经学校又骑行一段路到达还车点后,立即步行走回学校.已知步行速度甲比乙每分钟快5米,图中的折线表示甲、乙两人之间的距离y(米)与甲步行时间x(分钟)的函数关系图象,则()A.乙骑自行车的速度是180米/分B.乙到还车点时,甲、乙两人相聚850米C.自行车还车点距离学校300米D.乙到学校时,甲距离学校200米解:甲步行的速度为:960÷12=80(米/分),乙骑自行车的速度为:80+960÷(20﹣12)=200(米/分),故选项A错误;乙步行的速度为:80﹣5=75(米/分),乙全程:200(c﹣12)﹣75(31﹣c)=2700,解得c=27,所以乙骑自行车的路程为:200×27=3000(米),所以自行车还车点距离学校为:3000﹣2700=300(米),故选项C正确;乙到还车点时,乙的路程为3000米,甲步行的路程为:80×27=2160(米),此时两人相距:3000﹣2160=840(米),故选项B错误;乙到学校时,甲的路程为:80×31=2480(米),此时甲离学校:2700﹣2480=220(米).故选项D错误.故选:C.16.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法不正确的是()A.甲的速度保持不变B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人不相遇D.在起跑后第50秒时,乙在甲的前面解:由图象可知,甲的速度保持不变,故选项A正确;甲的速度为:800÷180=4米/秒,乙的平均速度为:800÷220=3米/秒,∵4>3,∴乙的平均速度比甲的平均速度小,故选项B错误;在起跑后第180秒时,甲到达终点,乙离终点还有一段距离,他们不相遇,故选项C正确;在起跑后第50秒时,乙在甲的前面,故选项D正确;故选:B.17.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程y(米)与时间/(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的有()①甲队率先到达终点;②甲队比乙队多走了200米路程;③乙队比甲队少用0.2分钟;④比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快.A.1个B.2个C.3个D.4个解:①从图象看,乙先到达终点,故错误,不符合题意;②从图象看,甲乙走的距离都是1000米,错误,不合题意;③从图象看,乙队比甲队少用0.2分钟,故正确,符合题意;④从图象看,比赛中两队从出发到2.2分钟时间段,甲队的速度比乙队的速度快,故错误,不符合题意;故选:A.18.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示.下列说法错误的是()A.A,B两城相距300千米B.乙车比甲车晚出发1小时,却早到1小时C.乙车出发后1.5小时追上甲车D.在一车追上另一车之前,当两车相距40千米时,t=解:由图象可知A、B两城市之间的距离为300km,故A正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,乙的速度:150÷(2.5﹣1)=100,乙的时间:300÷100=3,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故B正确;甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故C 正确;乙在甲后面40km时,y甲﹣y乙=40,可得60t﹣100t+100=40,解得t=,乙车在甲车前面40km时,100t﹣100﹣60t=40或60t=300﹣40,解得t=或t=.即在一车追上另一车之前,当两车相距40千米时,或t=或t=,故D错误,故选:D.19.A,B两地相距20km,甲乙两人沿同一条路线从A地到B地.如图反映的是二人行进路程y(km)与行进时间t(h)之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上.在这些说法中,正确的有()A.1个B.2个C.3个D.4个解:由图象可得,甲始终是匀速行进,乙的行进不是匀速的,刚开始一段时间匀速,后来提速,继续做匀速运动,故①正确;乙用了3个小时到达目的地,故②错误;乙比甲晚出发1小时,故③错误;甲在出发4小时后被乙超过,故④错误;由上可得,正确是①,故选:A.20.在一条笔直的公路上有AB两地,甲,乙两辆货车都要从A地送货到B地,甲车先从A地出发匀速行驶,3小时后乙车从A地出发,并沿同一路线匀速行驶,当乙车到达B地后立刻按原速返回,在返回途中第二次与甲车相遇,甲车出发的时间记为t(小时),两车之间的距离记为y(千米),y与t的函数关系如图所示,则乙车第二次与甲车相遇是甲车距离A地()千米.A.495B.505C.515D.525解:设甲车的速度为akm/h,乙车的速度为bkm/h,,解得,,设甲乙第二次相遇的时间为t小时,300=(60+180)×(t﹣7),解得,t=,则乙车第二次与甲车相遇时,甲车距离A地:60×=495(千米),故选:A.21.已知A,B两地相距120千米,甲乙两人沿同一条公路匀速行驶,甲骑自行车以20千米/时从A地前往B地,同时乙骑摩托车从B地前往A地,设两人之间的距离为s(千米),甲行驶的时间为t(小时),若s与t的函数关系如图所示,则下列说法错误的是()。
2021年中考考点复习专题能力提升专练(二):《一次函数》一.选择题1.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b 的图象大致是()A.B.C.D.2.在一次函数y=(2k+3)x+k+1的研究过程中,甲、乙同学得到如下结论:甲认为当k<﹣时,y随x的增大而减小;乙认为无论k取何值,函数必定经过定点(﹣,﹣).则下列判断正确的是()A.甲正确,乙错误B.甲错误,乙正确C.甲乙都正确D.甲乙都错误3.函数y=(a﹣)x﹣1的函数值y随自变量x的增大而减小,下列描述中:①a<;②函数图象与y轴的交点为(0,﹣1);③函数图象经过第一象限;④点(a+,a2﹣4)在该函数图象上,其中正确的是()A.①②③B.①④C.①②④D.①②③④4.如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=﹣x上,依次进行下去若点B的坐标是(0,1),则点O12的纵坐标为()A.9+3B.9 C.18+6D.185.如图,一次函数y=﹣x+1的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A开始向点B运动时,则矩形CDOE的周长()A.不变B.逐渐变大C.逐渐变小D.先变小后变大6.已知点M(n,﹣n)在第二象限,过点M的直线y=kx+b(0<k<1)分别交x轴、y轴于点A,B,过点M作MN⊥x轴于点N,则下列点在线段AN的是()A.((k﹣1)n,0)B.((k+)n,0))C.(,0)D.((k+1)n,0)7.在同一直角坐标系中,将一次函数y=x﹣3(x>1)的图象,在直线x=2(横坐标为2的所有点构成该直线)的左侧部分沿直线x=2翻折,图象的其余部分保持不变,得到一个新图象.若关于x的函数y=2x+b的图象与此图象有两个公共点,则b的取值范围是()A.8>b>5 B.﹣8<b<﹣5 C.﹣8≤b≤﹣5 D.﹣8<b≤﹣58.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论中错误的是()A.k<0B.a>0C.b>0D.方程kx+b=x+a的解是x=39.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A .x >﹣5B .x >﹣2C .x >﹣3D .x <﹣210.若直线y =kx +b 平行于直线y =3x +4,且过点(1,﹣2),则该直线的解析式是( ) A .y =3x ﹣2B .y =3x ﹣5C .y =3x +1D .y =3x +511.直线y 1=2x ﹣3与直线y 2=2x +1的位置关系是( ) A .相交B .垂直C .平行D .重合12.如图,某商场将一种商品销售30天,该种商品销售量y (单位:件)与时间t (单位:天)之间的函数关系如图①所示,一件该种商品的日销售利润z (单位:元)与时间t (单位:天)之间的函数关系如图②所示(日销售利润=日销售量×一件商品的日销售利润).下列结论正确的是( )A .第12天与第30天这两天的日销售量相等B .第24天的日销售量为150件C .第10天销售一件商品的利润是10元D .第30天的日销售利润是700元 二.填空题13.已知函数y=(m﹣1)+1是一次函数,则m=.14.已知整数a,使得关于x的分式方程有整数解,且关于x的一次函数y =(a﹣1)x+a﹣10的图象不经过第二象限,则满足条件的整数a的值有个.15.如图所示,直线y=x+2与两坐标轴分别交于A、B两点,点C是OB的中点,D、E分别是直线AB、y轴上的动点,则△CDE周长的最小值是.16.在平面直角坐标系中,直线y=2x+1沿y轴向上平移了m(m>0)个单位后,该直线与坐标轴围成的三角形的面积增加了2,则m的值为.17.一次函数y=﹣x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,作等腰Rt △ABC,则直线BC的解析式为18.已知一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b>﹣1的解集是.三.解答题19.已知一个一次函数的自变量的取值范围是2≤x≤6,函数值的取值范围是5≤y≤9,求这个一次函数解析式.20.在平面直角坐标系中,有A(1,2),B(3,2)两点,另有一次函数y=kx+b(k≠0)的图象.(1)若k=1,b=2,判断函数y=kx+b(k≠0)的图象与线段AB是否有交点?请说明理由.(2)当b=12时,函数y=kx+b(k≠0)图象与线段AB有交点,求k的取值范围.(3)若b=﹣2k+2,求证:函数y=kx+b(k≠0)图象一定经过线段AB的中点.21.某校数学兴趣小组根据学小函数的经验,对函数的图象和性质进行了探究,探究过程如下:(1)自变量x的取值范围是全体实数,x与y的几组对应值如下表:x…﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 …y… 3 2.5 m 1.5 1 1.5 2 2.5 3 …其中m=.(2)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象:(3)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律: 序号 函数图象特征函数变化规律示例1 在y 轴左侧,函数图象呈下降状态 当x <0时,y 随x 的增大而减小① 在y 轴右侧,函数图象呈上升状态示例2 函数图象经过点(﹣4,3) 当x =﹣4时,y =3②函数图象的最低点是(0,1)(4)当2<y ≤3时,x 的取值范围为 .22.如图,一次函数y =(m +1)x +4的图象与x 轴的负半轴相交于点A ,与y 轴相交于点B ,且△OAB 面积为4.(1)则m = ,点A 的坐标为( , ).(2)过点B 作直线BP 与x 轴的正半轴相交于点P ,且OP =4OA ,求直线BP 的解析式; (3)将一次函数y =(m +1)x +4的图象绕点B 顺时针旋转45°,求旋转后的对应的函数表达式.23.一次函数y 1=kx +b 的图象经过点A (5,1),且和正比例函数y 2=2x 的图象交于点B (2,m ).(1)求一次函数的解析式;(2)在同一直角坐标系中画出两个函数的图象;(3)求直线y=kx+b和两条坐标轴围成的图形面积;1(4)在x轴上求作点P使PA+PB最小,求出P点坐标,并求出PA+PB的最小值.24.定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{0,5,5}=0.(1)根据题意填空:min=;(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.参考答案一.选择题1.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选:C.2.解:当k<﹣时,2k+3<0,即y随x的增大而减小,故甲的说法正确;在y=(2k+3)x+k+1中,当x=﹣时,y=﹣,即无论k取何值,函数必定经过定点(﹣,﹣),故乙的说法正确.故选:C.3.解:∵函数y=(a﹣)x﹣11的函数值y随自变量x的增大而减小,∴a﹣<0,∴a<.故①正确;令x=0,则y=﹣1,所以函数图象与y轴的交点为(0,﹣1).故②正确;∵函数y=(a﹣)x﹣1中的a﹣<0,∴该函数图象经过二、四象限,又∵﹣1<0,∴该函数图象经过二、三、四象限,故③错误;把x=a+代入函数y=(a﹣)x﹣1,得y=(a﹣)(a+)﹣1=a2﹣4,即点(a+,a2﹣4)在该函数图象上,故④正确;综上所述,正确的结论是①②④.故选:C.4.解:观察图象可知,O12在直线y=﹣x时,OO12=6•OO2=6(1++2)=18+6,∴O12的横坐标=﹣(18+6)•cos30°=﹣9﹣9,O 12的纵坐标=OO12=9+3,故选:A.5.解:设点C的坐标为(m,﹣m+1)(0<m<1),则CE=m,CD=﹣m+1,∴C矩形CDOE=2(CE+CD)=2,故选:A.6.解:如图所示,过M作MC⊥y轴于C,∵M(n,﹣n),MN⊥x轴于点N,∴C(0,﹣n),N(n,0),把M(n,﹣n)代入直线y=kx+b,可得b=﹣n﹣kn,∴y=kx﹣n(1+k),令x=0,则y=﹣n(1+k),即B(0,﹣n(1+k)),∴﹣n(1+k)>﹣n,∴n(1+k)<n,令y=0,则0=kx﹣n(1+k),解得x==n(),即A(n(),0),∵0<k<1,n<0,∴n()<n(1+k)<n,∴点((k+1)n,0)在线段AN上.故选:D.7.解:在y=x﹣3(x>1)中,令x=2,则y=﹣1,若直线y=2x+b经过(2,﹣1),则﹣1=4+b,解得b=﹣5;在y=x﹣3(x>1)中,令x=1,则y=﹣2,点(1,﹣2)关于x=2对称的点为(3,﹣2),若直线y=2x+b经过(3,﹣2),则﹣2=6+b,解得b=﹣8,∵关于x的函数y=2x+b的图象与此图象有两个公共点,∴b的取值范围是﹣8<b<﹣5,故选:B.8.解:∵一次函数y1=kx+b经过第一、二、三象限,∴k<0,b>0,所以A、C正确;∵直线y2=x+a的图象与y轴的交点在x轴的下方,∴a<0,所以B错误;∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,∴x=3时,kx+b=x+a,所以D正确.故选:B.9.解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2,故选:B.10.解:∵直线y=kx+b平行于直线y=3x﹣4,∴k=3,把(1,﹣2)代入y=3x+b得3+b=﹣2,解得b=﹣5,∴该直线的解析式是y=3x﹣5.故选:B.11.解:∵k1=2,k2=2,﹣3≠1,∴两直线平行,故选:C.12.解:根据图①求出y与t的函数关系为y=根据图②求出z与t的函数关系为z=当t=12时,y=150,t=30时,y=400﹣250=150 则A正确由图象,当t=24时,t=200则B错误;t=10时,z=15,故C错误;t=30时,y=150,z=5,则利润为750故,D错误故选:A.二.填空题(共6小题)13.若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).因而有m2=1,解得:m=±1,又m﹣1≠0,∴m=﹣1.14.解:∵关于x的一次函数y=(a﹣1)x+a﹣10的图象不经过第二象限,∴a﹣1>0,a﹣10≤0,∴1<a≤10,∵,∴3﹣ax+3(x﹣3)=﹣x,解得:x=,∵x≠3,∴a≠2,∴1<a≤10且a≠2,∵当a=3,5,6,7,10时,x=为整数;∴满足条件的整数a的值有5个,故答案为:5.15.解:如图,作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,∵直线y=x+2与两坐标轴分别交于A、B两点,点C是OB的中点,∴B(﹣2,0),C(﹣1,0),∴BO=2,OG=1,BG=3,易得∠ABC=45°,∴△BCF是等腰直角三角形,∴BF=BC=1,由轴对称的性质,可得DF=DC,EC=EG,当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE+EG=FG,此时△DEC周长最小,∵Rt△BFG中,FG===,∴△CDE周长的最小值是.故答案为:.16.解:如图,直线y=2x+1沿y轴向上平移了m(m>0)个单位后可得:y=2x+1+m,即C (0,1+m)在y=2x+1+m中,令y=0,则x=﹣,即D(﹣,0),由直线y=2x+1,可得A(0,1),B(﹣,0),∵平移后的直线与坐标轴围成的三角形的面积增加了2,∴S △COD ﹣S △AOB =2,即××(m +1)﹣××1=2,解得m 1=2,m 2=﹣4(舍去),故答案为:2.17.解:对于一次函数y =﹣x +2,令x =0得:y =2;令y =0,解得x =5, ∴B 的坐标是(0,2),A 的坐标是(5,0).如图,作CE ⊥x 轴于点E ,∵∠BAC =90°,∴∠OAB +∠CAE =90°,又∵∠CAE +∠ACE =90°,∴∠ACE =∠BAO .在△ABO 与△CAE 中,∴△ABO ≌△CAE (AAS ),∴OB =AE =2,OA =CE =5,∴OE=OA+AE=2+5=7.则C的坐标是(7,5).设直线BC的解析式是y=kx+b,根据题意得:解得∴直线BC的解析式是,当BC⊥AB时,BC=AB,同法可得点C的坐标为(2,7)所以BC的解析式为:y=2.5x+2故答案为:或y=2.5x+2.18.解:把(0,1)和(2,0)代入y=kx+b,可得,解得,∴一次函数为y=﹣x+1,∴﹣x+1>﹣1,解得x<4,故答案为:x<4.三.解答题(共6小题)19.解:设该一次函数的关系式是:y=kx+b(k≠0).一次函数y=kx+b的自变量的取值范围是:2≤x≤6,相应函数值的取值范围是:5≤y≤9,则①当k>0函数为递增函数,即x=2,y=5时,x=6时,y=9.根据题意列出方程组:,解得:,则这个函数的解析式是:y=x+3;②当k<0函数为递减函数时,则,解得,所以该一次函数的解析式为y=﹣x+11,综上所述,该一次函数的解析式是y=x+3,或y=﹣x+11.20.解:(1)由题意,线段AB解析式为:y=2(1≤x≤3),当k=1,b=2时,一次函数解析式为:y=x+2,将y=2代入,得:x=0,∴此时该函数与线段AB无交点;(2)将b=12代入y=kx+b,得一次函数解析式为:y=kx+12,将y=2代入,得:,∴,解得:;(3)证明:将b=﹣2k+2代入y=kx+b,得一次函数解析式为:y=kx﹣2k+2 由题意可得,线段AB的中点为(2,2),当x=2时,y=2k﹣2k+2=2,∴(2,2)在一次函数y=kx﹣2k+2上∴若b=﹣2k+2,一次函数y=kx+b(k≠0)的图象一定经过线段AB中点.21.解:(1)在中,令x=﹣2,则y=2,∴m=2,故答案为:2;(2)如图所示:(3)①在y轴右侧,函数图象呈上升状态,即当x>0时,y随x的增大而增大;②函数图象的最低点是(0,1),即当x=0时,y=1;故答案为:当x>0时,y随x的增大而增大;当x=0时,y=1;(4)由图可得,当2<y≤3时,x的取值范围为﹣4≤x<﹣2,2<x≤4.故答案为:﹣4≤x<﹣2,2<x≤4.22.解:(1)由一次函数y=(m+1)x+4,令x=0,则y=4,∴B(0,4),∴OB=4,=4,∵S△OAB∴×OA×OB=4,解得OA=2,∴A(﹣2,0),把点A(﹣2,0)代入y=(m+1)x+4,得m=1,故答案为:1;﹣2,0;(2)∵OP=4OA,OA=2,∴P(8,0),设直线BP的解析式为y=kx+b,将(8,0),(0,4)代入得,解得k=﹣,b=4,∴直线BP的解析式为y=﹣x+4;(3)设直线AB绕点B顺时针旋转 45°得到直线BE,如图,过点A作AF⊥AB交BE于点F,作FH⊥x轴于H.则∠AHF=∠BOA=90°,AF=BA,∠FAH=∠ABO,∴△AOB≌△FHA(AAS),∴FH=AO=2,AH=BO=4,∴HO=6,∴F(﹣6,2),设直线BE的解析式为y=mx+n,则把点F和点B的坐标代入,可得,解得,∴直线BE的解析式为y=x+4.=2x,可得23.解:(1)把B(2,m)代入正比例函数y2m=4,即B(2,4),=kx+b,可得把A(5,1),B(2,4)代入一次函数y1,解得,∴一次函数的解析式为:y=﹣x+6;(2)两个函数的图象如图所示:(3)在y=﹣x+6中,令x=0,则y=6;令y=0,则x=6,∴C(0,6),D(6,0),∴OC=OD=6,=×6×6=18,∴S△COD=kx+b和两条坐标轴围成的图形面积为18;即直线y1(4)如图,作点A关于x轴的对称点A'(5,﹣1),连接A'B,交x轴于P,则AP+BP 的最小值为A'B的长,设直线A'B的解析式为y=mx+n,把A'(5,﹣1),B(2,4)代入,可得,解得,∴y=﹣x+,令y=0,则x=,即P(,0),此时A'B==,∴PA+PB的最小值为.24.解:(1)∵=3,∴min=3;故答案为:3;(2)由图象得:y=;(3)当y=2时,﹣3x+11=2,x=3,∴A(3,2),当y=﹣x+m过点A时,则﹣3+m=2,m=5,如图所示:∴常数m的取值范围是m≤5.。
中考专题训练—一次函数的综合附解析1.已知,在平面直角坐标系中,直线l 的解析式为4y mx =-,它与y 轴交于点B .(1)若点(),0m 在直线l 上,求出直线l 的解析式;(2)当22x -≤≤时,函数值y 的最大值为m ,求m 的值;(3)若B 点关于x 轴的对称点为A ,过A 作AH l ⊥于点H ,令直线AH 与y 轴的夹角为α,当3045α︒≤≤︒时,直接写出m 的取值范围.2.已知一次函数y =kx +b 图像经过点A (2,0)、B (0,2),回答下列问题:(1)求一次函数解析式.(2)在函数y =kx +b 图像上有两个点(a ,2)、(b ,3),请说明a 与b 的大小关系.(3)以AB 为直角边作等腰直角△ABC ,点C 不与点O 重合,过点C 的反比例函数的解析式为y =kx,请直接写出点C 的坐标以及过点C 的反比例函数的解析式.(4)是否在x 轴上找一点C ,使S △ABC =2S △ABO ,若存在,写出点C 坐标若不存在,请说明理由.3.一次函数11y ax a =-+(a 为常数,且a ≠0).(1)若点(﹣1,3)在一次函数11y ax a =-+的图像上,求a 的值;(2)若0a >,当12x -≤≤时,函数有最大值5,求出此时一次函数1y 的表达式;(3)对于一次函数224y kx k =+-(0k ≠),若对任意实数x ,12y y >都成立,求k 的取值范围.4.随着信息技术的飞速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已成为我们日常学习的一种常用方式.现有某教学网站策划了A ,B 两种上网学习的月收费方式:设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为A y ,B y .收费方式月使用费/元包时上网时间/h超时费/(元/min )A 7250.01Bm n0.01(1)如图是B y 与x 之间函数关系的图像,请根据图像填空:m =___________,n =___________;(2)分别求出A y ,B y 与x 之间的函数关系式;(3)选择哪种方式上网学习合算,请说明理由?5.已知一次函数1y kx b =+的图像与反比例函数2my x=的图像交于第一、三象限内的A 、B 两点,其中点(1,4)A ,(2,)B n -.(1)求反比例函数和一次函数的解析式,画出一次函数与反比例函数的图像;并写出一次函数1y kx b =+的一条性质:;(2)过A 作AC x ⊥轴于点C ,连接BC ,求三角形ABC 的面积;(3)当12y y ≥时,请直接写出x 的取值范围.6.定义:如果在给定的自变量取值范围内,函数既有最大值,又有最小值,则称该函数在此范围内有界,函数的最大值与最小值的差叫做该函数在此范围内的界值.(1)当21x -≤≤时,下列函数有界的是______(只要填序号);①21y x =-;②2y x=-;③2y x 2x 3=-++.(2)当2m x m ≤≤+时,一次函数()12y k x =+-的界值不大于2,求k 的取值范围;(3)当2a x a ≤≤+时,二次函数223y x ax =+-的界值为94,求a 的值.7.已知函数12y x m =+,2y mx m =-+(m 为常数,0m ≠).(1)若点()1,1-在1y 的图象上,①求m 的值.②求函数1y 与2y 的交点坐标.(2)当0m >,且210y y <<时,求自变量x 的取值范围.8.2021年春,河南某高校为做好新型冠状病毒感染的防治工作,计划为教职工购买一批洗手液(每人2瓶).学校派王老师去商场购买,他在商场了解到,某个牌子的洗手液有两种优惠活动:活动一:一律打9折;活动二:当购买量不超过100瓶时,按原价销售;当购买量超过100瓶时,超过的部分打8折.已知所需费用y (元)与购买洗手液的数量x (瓶)之间的函数图象如图所示.(1)根据图象可知,洗手液的单价为元/瓶,请直接写出y 与x 之间的函数关系式;(2)请求出a 的值;(3)如果该高校共有m 名教职工,请你帮王老师设计最省钱的购买方案.9.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点B ,交y 轴于点A ,3OA OB ==.(1)求直线AB 的解析式;(2)如图,点C 在OA 的延长线上,点D 在x 轴的负半轴上,连接CD 交直线AB 于点E ,点E 为线段CD 的中点,设点D 的横坐标为t ,点C 的纵坐标为d ,求d 与t 的函数解析式;(3)如图,在(2)的条件下,过点E 作EF x ⊥轴于点F ,点G 在OB 的延长线上,点M 为EB 的中点,连接MG 并延长交线段EF 于点H ,点N 在AB 的延长线上,连接NG 、DN 、CM ,MNG ∠为钝角,若,,2FG d ACM GDN MG NG =∠=∠=,求点G 的坐标.10.如图,在平面直角坐标系xOy 中,已知直线l 1:y=mx(m≠0)与直线l 2:y=ax+b(a≠0)相交于点A (1,2),直线l 2与x 轴交于点B (3,0).(1)分别求直线l 1和l 2的表达式;(2)过动点P (0,n )且平行于x 轴的直线与l 1,l 2的交点分别为C ,D ,当点C 位于点D 左方时,写出n 的取值范围.11.某工厂每天工作15个小时,生产线上生产出来的产品数量y (件)与时间x (小时)之间满足210180(09)810(915)x x x y x ⎧-+<≤=⎨<≤⎩;同时,2个包装小组对生产出来的产品进行装箱.(1)生产线生产4小时后,共有____件产品;(2)若每个包装小组每小时装箱20件,求等待装箱的产品最多时有多少件?(3)全部产品完成装箱需要多长时间?若要在15小时内完成产品全部装箱,那么从一开始就应该至少增加几个装箱小组?12.问题探究:嘉嘉同学根据学习函数的经验,对函数y =-2|x |+5的图象和性质进行了探究.下面是嘉嘉的探究过程,请你解决相关问题:(1)如图,嘉嘉同学在平面直角坐标系中,描出了以表中各对对应值为坐标的点,请你根据描出的点,画出该函数的图象:若A (m ,n ),B (6,n )为该函数图象上不同的两点,则m =;(2)观察函数y =-2|x |+5的图象,写出该图象的两条性质;(3)直接写出,当0<-2|x |+5≤3时,自变量x 的取值范围.13.随着国内疫情得到有效控制,某产品的销售市场逐渐回暖.某经销商与生产厂家签订了一份该产品的进货合同,约定一年内进价为0.1万元/台.根据市场调研得知,一年内该产品的售价y (万元/台)与签约后的月份数x (1≤x ≤12且为整数)满足关系式:0.050.40.2x y -+⎧=⎨⎩14412x x ≤<⎫⎬≤≤⎭.估计这一年实际每月的销售量p (台)与月份x 之间存在如图所示的变化趋势.(1)求实际每月的销售量p (台)与签约后的月份数x 之间的函数表达式;(2)求前4个月中,第几个月的利润为6万元?(3)请估计这一年中签约后的第几个月实际销售利润W 最高,最高为多少万元?14.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果y ′=(0)(0)y x y x ≥⎧⎨-<⎩,那么称点Q 为点P 的“关联点”.例如点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6).(1)在点E (0,0),F (2,5),G (-1,-1),H (-3,5)中,的“关联点”在函数y =2x +1的图象上;(2)如果一次函数y =x +3图象上点M 的“关联点”是N (m ,2),求点M 的坐标;(3)如果点P 在函数y =-x 2+4(-2<x ≤a )的图象上,其“关联点”Q 的纵坐标y ′的取值范围是-4<y ′≤4,求实数a 的取值范围.15.问题:探究函数|2|1y x +=-的图象和性质小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)下表是y 与x 的几组对应值,请将表格补充完整:x …-5-4-3-2-10123…y…21mn-2-112…表格中m 的值为,n 的值为.(2)如图,在平面直角坐标系中描点并画出此函数的图象;(提示:先用铅笔画图,确定后用签字笔画图)(3)进一步探究:观察函数的图象,可以得出此函数的如下结论:①当自变量x 时,函数y 随x 的增大而增大;②当自变量x 的值为时,y =3;③解不等式|1|20x +-<的结果为16.问题:探究函数y =|x +1|﹣2的图象与性质.小明根据学习函数的经验,对函数y =|x +1|﹣2的图象与性质进行了研究.下面是小明的研究过程,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:x …﹣5﹣4﹣3﹣2﹣10123…y…21﹣1m﹣1n2…其中,m =,n =;(2)在如图所示的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象,并写出该函数的两条性质;(3)在同一坐标系中直接画出函数y =|x |的图像,并说明它是由函数y =|x +1|﹣2如何平移得到的.17.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质的过程.小红对函数1(3)2(3)x x y x -<⎧=⎨≥⎩的图象和性质进行了如下探究,请同学们认真阅读探究过程并解答:(1)请同学们把小红所列表格补充完整,并在平面直角坐标系中画出该函数的图象:(2)根据函数图象,以下判断该函数性质的说法,正确的有.①函数图象关于y 轴对称;②此函数无最小值;③当x <3时,y 随x 的增大而增大;当x ≥3时,y 的值不变.(3)若直线y =12x +b 与函数y =1(3)2(3)x x x -<⎧⎨≥⎩的图象只有一个交点,则b =.18.问题:探究函数y=|x﹣1|+1的图象与性质.小东根据学习一次函数的经验,对函数y=|x﹣1|+1的图象与性质进行了探究:(1)在函数y=|x﹣1|+1中,自变量x可以是任意实数,如表是y与x的几组对应值.x……﹣4﹣3﹣2﹣10n234……y……65432123m……①表格中n的值为,m的值为;②在平面直角坐标系中画出该函数的图象;(2)结合函数图象,写出该函数的两条性质.19.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质并对其性质进行应用的过程.小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.请同学们阅读探究过程并解答:在函数y=|x|﹣2中,自变量x可以是任意实数.(1)下表是y与x的几组对应值:x…﹣3﹣2﹣10123…y…10m﹣2﹣10n…m=_____,n=_____;在平面直角坐标系xOy中,描出表中各组对应值为坐标的点.并根据描出的点,画出该函数的图象;(2)根据函数图象可得:①当x=_____时,y有最小值为_____;②请写出该函数的一条性质;③如果y =|x |﹣2的图象与直线y =k 有两个交点,则k 的取值范围是_____.20.某同学对函数11||2y x =,21||22y x =-,31||12y x =+的图象和性质进行探究:无论x 为何值时,函数均有意义,所得自变量与函数的对应值如表.x …﹣3﹣2﹣10123…y 1… 1.510.500.51 1.5…y 2…﹣0.5﹣1m ﹣2﹣1.5﹣1﹣0.5…y 3…2.5n1.511.522.5…(1)表中m =,n =;(2)根据表中数据,补画函数图象位于y 轴左边的部分.(3)归纳函数1||2y x b =+的性质:①函数1||2y x b =+与y 轴交点坐标是;②当x时,y 随x 的增大而增大;当x时,y 随x 的增大而减小.(4)类比上述探究函数的图象与性质的过程,探究并写出函数||(0)y k x b k =+<的性质;①;②;.(5)对于函数1||62y x =-+,若函数值1y >,请直接写出自变量x 的取值范围:.参考答案:1.(1)直线的解析式为:y=2x-4或y=-2x-4;(2)43m=-或4m=;13m≤≤或13m-≤≤-【分析】(1)将点(m,0)代入y=mx-4,求出m的值,即可得直线l的解析式;(2)分三种情况:①当m<0时,②当m=0时,③当m>0时,根据一次函数的性质即可求解;(3)由y=mx-4可得它与:x轴交点C(m,0),分三种情况:①当m=0时,②当m>0时,③当m<0时,根据含30°角的直角三角形的性质即可求解.(1)∵点(m,0)在直线l上,代入解析式y=mx-4,得:240m-=,∴m=±2,∴直线的解析式为y=2x-4或y=-2x-4;(2)m<0时,y随着x的增大而减小,∴x=-2时,函数值y的值最大,最大值为m,∴m=-2m-4,∴43 m=-;m=0时,直线的解析式为y=-4,∴此种情况不存在;m>0时,随着x的增大而增大,∴x=2时,函数值y的值最大,最大值为m,∴m=2m-4,∴4m=综上,43m=-或4m=;(3)由题意可得,直线l 与y 轴交于点B (0,-4),∵点A 为B 点关于x 轴的对称点,∴A (0,4),设直线l 与x 轴交于点C ,当y =0时,mx -4=0,∴4x m =,∴4(,0)C m,m =0时,直线l 为y =-4,与x 轴平行,AH 即为y 轴,不满足题目条件的3045α︒≤≤︒,故0m ≠;0m >时,若30α=︒,则30BAH ∠=︒,∴60ABH ∠=︒,∴30OCB ∠=︒,∴OC =∴4m=解得3m =,若45α=︒,则45BAH ∠=︒,∴45ABH ∠=︒,∴4OC OB ==,∴44m=,解得1m =,∴当3045α︒≤≤︒1m ≤≤;0m <时,若30α=︒,则30BAH ∠=︒,∴60ABH ∠=︒,∴30OCB ∠=︒,∴OC =∴4m=-解得m =若45α=︒,则45BAH ∠=︒,∴45ABH ∠=︒,∴4OC OB ==,∴44m-=,解得1m =-,∴当3045α︒≤≤︒时,1m -≤≤-综上,当3045α︒≤≤︒时,m 1m ≤≤或1m -≤≤【点评】本题是一次函数综合题,考查了一次函数的性质,一次函数图像上点的坐标特征,含30°角的直角三角形的性质,利用分类讨论思想解决问题是本题的关键.2.(1)y =−x +2;(2)a >b ;(3)点C 的坐标为(2,4)或(4,2),过点C 的反比例函数的解析式为:y =8x;(4)存在,点C 坐标为(−2,0)或(6,0).【分析】(1)根据待定系数法求解即可;(2)根据一次函数的增减性判断即可;(3)画出图形,根据等腰直角三角形的性质求出符合题意的点C 的坐标,再利用待定系数法求出过点C 的反比例函数解析式;(4)根据2ABC ABO S S = 可知BC =2OB =4,然后分情况求解即可.(1)解:∵一次函数y =kx +b 图像经过点A (2,0)、B (0,2),∴202k b b +=⎧⎨=⎩,解得:12k b =-⎧⎨=⎩,∴一次函数解析式为y =−x +2;(2)∵一次函数y =−x +2中k =−1<0,∴y 随x 的增大而减小,∵2<3,∴a >b ;(3)∵OA =OB =2,∠AOB =90°,∴△AOB 为等腰直角三角形,如图,△CAB ,C AB ' ,C AB '' ,C AB ''' 都是以AB 为直角边的等腰直角三角形,∵△AOB 为等腰直角三角形,∴AOC '' ,BOC ''' 为等腰直角三角形,∴点C ''的坐标为(−2,0),点C '''的坐标为(0,−2),∵这两个点在坐标轴上,∴不符合题意;过点C 作CD ⊥x 轴于点D ,在△AOB 和△CDB 中,9045AOB CDB ABO CBD AB CB ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOB ≌△CDB (AAS ),∴BD =OB =2,CD =OA =2,∴点C 的坐标为:(4,2),设过点C 的反比例函数的解析式为:y =k x ,则k =4×2=8,则过点C 的反比例函数的解析式为:y =8x ,同理可得:点C '的坐标为:(2,4),过点C '的反比例函数的解析式为:y =8x,综上所述:点C 的坐标为(2,4)或(4,2),过点C 的反比例函数的解析式为:y =8x ;(4)存在,∵点C 在x 轴上,2ABC ABO S S = ,∴BC =2OB =4,∴当点C 在点B 的左侧时,点C 的坐标为(−2,0),当点C 在点B 的右侧时,点C 的坐标为(6,0),综上所述:点C 坐标为(−2,0)或(6,0).【点评】本题考查的是反比例函数、一次函数的综合运用、等腰直角三角形的性质、待定系数法、坐标与图形性质等知识,灵活运用数形结合思想与分类讨论思想是解题的关键.3.(1)1a =-(2)143y x =-(3)53k <且0k ≠【分析】(1)将点(﹣1,3)代入一次函数解析式,转化为关于a 的一元一次方程并求解即可;(2)由0a >时,y 随x 的增大而增大,可确定当2x =时,函数有最大值,然后代入函数解析式求解即可;(3)由题意可知,两直线应该平行,即有k a =,再根据12y y >列出不等式并求解即可.(1)解:将点(﹣1,3)代入一次函数11y ax a =-+,可得31a a =--+,解得1a =-;(2)∵0a >时,y 随x 的增大而增大,∴当2x =时,函数有最大值,即1=215y a a -+=最大,解得4a =,∴此时一次函数1y 的表达式为143y x =-;(3)由题意可知,0k a =≠,∴11y kx k =-+,∵对任意实数x ,12y y >都成立,∴124k k -+>-,解得53k <,∴k 的取值范围为53k <且0k ≠.【点评】本题主要考查了一次函数解析式与点的关系、一次函数的图像与性质、一次函数与不等式的综合应用等知识,熟练掌握一次函数的性质,灵活运用数形结合的思想分析问题是解题的关键.4.(1)10;50(2)()()70250.6825A x y x x ⎧≤≤⎪=⎨->⎪⎩;()()100500.62050B x y x x ⎧≤≤⎪=⎨->⎪⎩(3)当030x ≤<时,A B y y <,选择A 方式上网学习合算;当30x =时,A B y y =,选择两种方式上网学习一样;当30x >时,A B y y >,选择B 方式上网学习合算.理由见解析【分析】(1)观察函数图像,即可找出m 、n 的值;(2)分025x ≤≤和25x >两段来考虑A y 与x 之间的函数关系式,合并在一起即可得出结论;分050x ≤≤和50x >两段来考虑B y 与x 之间的函数关系式;(3)令10A y =求出x 的值,再结合710<、810->-,即可得出结论.(1)解:当0x =时,10y =,∴10m =,∵当50x =时,折线拐弯,∴50n =.故答案为:10;50.(2)解:当025x ≤≤时,7A y =,当25x >时,()725600.010.68A y x x =+-⨯⨯=-,∴A y 与x 之间的函数关系式为:()()70250.6825A x y x x ⎧≤≤⎪=⎨->⎪⎩;当050x ≤≤时,10B y =.当50x >时,()1050600.010.620B y x x =+-⨯⨯=-,∴B y 与x 之间的函数关系式为:()()100500.62050B x y x x ⎧≤≤⎪=⎨->⎪⎩.(3)解:当025x ≤≤时,7A y =,10B y =,∵710<∴A B y y <,∴选择A 方式上网学习合算,当2550x <≤时,A B y y =,即0.6810x -=,解得:30x =,∴当2530x <<时,A B y y <,选择A 方式上网学习合算,当30x =时,A B y y =,选择两种方式上网学习一样,当3050x <≤是,A B y y >,选择B 方式上网学习合算当50x >时,∵0.68A y x =-,0.620B y x =-,820->-∴A B y y >,∴选择B 方式上网学习合算.综上所述:当030x ≤<时,A B y y <,选择A 方式上网学习合算,当30x =时,A B y y =,选择两种方式上网学习一样,当30x >时,A B y y >,选择B 方式上网学习合算.【点评】本题考查一次函数的应用,得到两种收费方式的关系式是解决本题的关键.注意较合算的收费的方式应通过具体值的代入得到结果.5.(1)4y x=;y =2x +2;y 随x 的增大而增大(2)6(3)−2≤x <0或x ≥1【分析】(1)利用待定系数法即可求得函数的解析式;(2)利用三角形面积公式求得即可;(3)根据图像即可求得.(1)∵反比例函数2m y x=的图像过点(1,4)A ,(2,)B n -,∴m =1×4=−2n ,∴m =4,n =−2,∴反比例函数为4y x =,B (−2,−2),把点A (1,4),B (−2,−2)代入1y kx b =+得422k b k b +=⎧⎨-+=-⎩,解得22k b =⎧⎨=⎩,∴一次函数的解析式为y =2x +2,画出一次函数与反比例函数的图像,如图所示,一次函数y =2x +2的图像中,y 随x 的增大而增大,故答案为:y 随x 的增大而增大;(2)∵AC ⊥x 轴于点C ,A (1,4),B (−2,−2),∴AC =4,∴S △ABC =12×4×(1+2)=6;(3)由函数图像可得,当y 1≥y 2时,x 的取值范围是−2≤x <0或x ≥1.【点评】此题是反比例函数与一次函数的交点问题,考查了待定系数法求函数解析式以及三角形面积,正确利用数形结合分析是解题关键.6.(1)①③(2)21k -≤<-或10k -≤<,函数2y x =-(3)34-或14-【分析】(1)利用函数有意义时自变量x 的取值范围结合有界函数的定义判定;(2)分情况讨论,①k >0时;②k <0时,然后求出x =m 和x =m +2时的函数值,再结合有界函数与界高的定义列出方程求得k 的取值,最后得到一次函数的解析式;(3)先求得二次函数的对称轴,得到函数的增减性,从而求得a ≤x ≤a +2时的最大值与最小值,再结合界值为94求得a 的值.(1)解:函数21y x =-,∵2>0,∴y 随x 的增大而增大,;∵21x -≤≤,∴()min max 2215,2111y y =⨯--=-=⨯-=,∴①有界;函数2y x =-,-2<0,∴函数的图像在第二、第四象限,在每个象限内,y 随x 的增大而增大,212y ∴≥-=-或221y ≤-=∴②无界如图,函数2y x 2x 3=-++的称轴为()2121x =-=⨯-,∵-1<0,∴当1x ≤时,y 随x 增大而增大,21x -≤≤ ()()22min max 22235,12136y y ∴=--+⨯-+=-=+⨯+=,如图,∴③有界;故答案为:①③.(2)解:当x m =时,()12y k m =+-;当1x m =+时,()()112y k m =++-.①当10k +>时,即1k >-时,y 随x 的增大而增大,由题意得()()()122122k m k m ++--+-≤⎡⎤⎣⎦,解得,0k ≤.∴10k -≤<.②当10+<k 时,即1k <-时,y 随x 的增大而减小,由题意得()()()121222k m k m +--++-≤⎡⎤⎣⎦,解得,2k ≥-.∴21k -≤<-.∴k 的取值范围为21k -≤<-或10k -≤<.(3)解:∵()222233y x ax x a a =+-=+--,∴该抛物线开口向上,对称轴为22a x a =-=-.∴当x a >-时,y 随x 的增大而增大;当x a <-时,y 随x 的增大而减小.令x a =,得233y a =-;令2x a =+,得2381y a a =++;令x a =-,得23y a =--.①当a a -<,即0a >时,由题意得,()229381334a a a ++--=,解得732a =-(舍去);②当1a a a ≤-<+,即102-<≤a 时,由题意得,()22938134a a a ++---=,解得114a =-,274a =-(舍去);③当12a a a +≤-<+,即112a -<≤-时,由题意得,()2293334a a ----=,解得134a =-,234a =(舍去);④当2a a -≥+,即1a ≤-时,由题意得,()229333814a a a --++=,解得2532a =-(舍去).综上所述,a 的值为34-或14-.【点评】本题考查了二次函数的性质、一次函数与反比例函数图象上点的坐标特征、二次函数的增减性,解题的关键是熟练利用函数的性质进行分类讨论.7.(1)①3m =;②()0,3;(2)01x <<【分析】(1)①将点()1,1-代入12y x m =+求解即可;②令1y =2y ,即2333x x +=-+,求解即可;(2)根据210y y <<,建立不等式组,求解即可.(1)①将点()1,1-代入12y x m =+得,12m=-+解得3m =所以,m 的值为3;②3m = ∴123y x =+,233y x =-+令1y =2y ,即2333x x +=-+解得0x =3y ∴=∴函数1y 与2y 的交点坐标为()0,3;(2)210y y << 02mx m x m∴<-+<+ 0m >解得01x <<所以,自变量x 的取值范围为01x <<.【点评】本题考查了待定系数法求函数解析式,一次函数图象的交点坐标及函数图象上的点的特征,熟练掌握知识点是解题的关键.8.(1)4,1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩.(2)720a =元;(3)当100m <时选活动一:一律打9折合算;当100m =时选活动一:活动二均可,当100m >时选活动二合算.【分析】(1)利用购买100瓶费用400元,洗手液的单价为400÷100=4元/瓶,根据单价×件数=费用均可列出函数均可;(2)利用两函数值相等联立方程组 3.63.280a x a x =⎧⎨=+⎩,解方程组均可;(3)该高校共有m 名教职工,教职工购买一批洗手液(每人2瓶).一共买2m 瓶分类三种情况两函数作差比较均可.【详解】解:(1)400元购买100瓶,洗手液的单价为400÷100=4元/瓶,19410y x =⨯⋅,1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩,故答案为4,1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩.(2)联立 3.63.280a x a x =⎧⎨=+⎩,解得720{200a x ==,∴720a =;(3)该高校共有m 名教职工,教职工购买一批洗手液(每人2瓶).一共买2m 瓶,当2200m <时,即100m <时选活动一:一律打9折合算;∵12 3.6242 1.6050y y m m m m -=⨯-⨯=-<≤,;()12 3.62 3.22800.880050100y y m m m m -=⨯-⨯-=-<<≤;当100m =时选活动一:活动二均可,()12 3.62 3.22800.8800100y y m m m m -=⨯-⨯-=-==;当100m >时选活动二合算,()12 3.62 3.22800.8800100y y m m m m -=⨯-⨯-=->>.【点评】本题考查列一次函数关系,利用一次函数值相等联立方程组,解方程组,根据函数自变量的取值范围进项方案设计,掌握列一次函数关系的方法,利用函数值相等联立方程组,解方程组,根据函数自变量的取值范围进项方案设计.9.(1)y=-x+3;(2)d=-t+6;(3)(6,0)【解析】(1)由题意可得A 、B 坐标,再利用待定系数法可得直线AB 的解析式;(2)由题意可得E 点坐标为(0.5t ,0.5d ),再根据E 在直线AB 上可得d 与t 的函数解析式;(3)由题意可得△ACM ∽△NDG ,再根据已知条件可得OG=2OB ,从而得到G 点坐标.【详解】解:(1)∵直线y=kx+b 交x 轴于点B ,交y 轴于点A ,OA=OB=3.∴A (0,3)、B (3,0),将A 、B 两点坐标代入y=kx+b 得:b=3,3k+b=0,∴k=-1,∴直线AB 的解析式为:y=-x+3;(2)由题意得:D (t,0)、C (0,d ),∵E 是CD 中点,∴E 为(,22t d ),又E 在直线AB 上,∴322d t =-+,整理得:d=-t+6,∴d 与t 的函数解析式:d=-t+6;(3)由已知得F 为(,02t ),∵点M 为EB 中点,∴M 点坐标为(6,44t d +),∵FG=d ,设G (x,0),∴x-0.5t=d ,∴x=0.5t+d ,又∵∠MNG 为钝角,∠ACM=∠GDN,MG=2NG∴△ACM ∽△NDG ,∴OG=2OB ,∴G 点坐标为(6,0).【点评】本题考查一次函数的应用,熟练掌握一次函数的性质和解析式的求法是解题关键.10.(1)直线l 1的表达式为y=2x ;(2)直线l 2的表达式为y=-x+3;(2)n 的取值范围是n<2.【分析】(1)利用待定系数法求直线l 1,l 2的表达式;(2)直线在点A 的下方时符合条件,根据图象写出结果.【详解】解:(1)∵点A (1,2)在l 1:y=mx 上,∴m=2,∴直线l 1的表达式为:y=2x ;∵点A (1,2)和B (3,0)在直线l 2:y=ax+b 上,∴a 230b a b +=⎧⎨+=⎩解得:a 13b =-⎧⎨=⎩,∴直线l 2的表达式为:y=-x+3;(2)由图象得:当点C 位于点D 左方时,n 的取值范围是:n <2.【点评】本题考查用待定系数法求解函数解析式、两直线平行和相交的问题,明确待定系数法只需把所给的点的坐标代入函数表达式列方程或方程组解出即可,同时利用数形结合的思想求n 的取值.11.(1)560(2)490件(3)20.25小时,至少增加1个包装小组【分析】(1)把4x =代入210180,y x x =-+从而可得答案;(2)设第x 小时后等待装箱的产品为W 件,可得40,W y x =-再建立函数关系式为()()21014009=81040915x x x W x x ì-+<£ïíï-<£î,再利用函数的性质可得到最大值;(3)由810400,x -=可得全部产品完成装箱需要20.25小时,设从开始就至少增加m 个包装小组,再列不等式()15202810,m ´+³从而可得答案.(1)解:当4x =时,2101801016720560y x x =-+=-´+=,所以生产线生产4小时后,共有560件产品;(2)解:设第x 小时后等待装箱的产品为W 件,则40,W y x =-()()21014009=81040915x x x W x x ì-+<£ï\íï-<£î当09x <≤时,()2210140107490,W x x x =-+=--+所以当7x =时,函数最大值为490,当915x <≤时,81040,W x =-40,k =-Q W 随x 的增大而减小,210450,W \£<所以等待装箱的产品最多时有490件(3)解:由810400,x -=解得:20.25x =,所以全部产品完成装箱需要20.25小时,设从开始就至少增加m 个包装小组,则()15202810,m ´+³解得:0.7m ³m 为整数,1m ∴=答:从开始就至少增加1个包装小组.【点评】本题考查的是一次函数与二次函数的综合应用,二次函数的性质,一元一次不等式的应用,理解题意,列出函数关系式与不等式是解本题的关键.12.(1)图见解析,6-(2)该图象的两条性质:1、函数25y x =-+的图象关于y 轴对称;2、当0x ≤时,y 随x 的增大而增大;当0x >时,y 随x 的增大而减小(3) 2.51x -<≤-或1 2.5x ≤<【分析】(1)将各点连接起来,画出该函数的图象;将点(6,)B n 代入函数的解析式求出n 的值,再将点(,)A m n 代入函数的解析式即可得;(2)分析函数的对称性和增减性即可得;(3)先求出0y =和3y =时,x 的值,再结合函数图象即可得.(1)解:将各点连接起来,画出该函数的图象如下:(,),(6,)A m n B n Q 为该函数图象上不同的两点,6m ∴≠,将点(6,)B n 代入25y x =-+得:6257n =-⨯+=-,将点(,7)A m -代入25y x =-+得:257m -+=-,解得6m =-或6m =(舍去),故答案为:6-.(2)解:该图象的两条性质:1、函数25y x =-+的图象关于y 轴对称;2、当0x ≤时,y 随x 的增大而增大;当0x >时,y 随x 的增大而减小.(3)解:对于函数25y x =-+,当0y =时,250x -+=,解得 2.5x =或 2.5x =-,当3y =时,253x -+=,解得1x =或1x =-,结合图象可知,当0253x <-+≤时, 2.51x -<≤-或1 2.5x ≤<.【点评】本题考查了一次函数的图象与性质、一次函数与不等式组,熟练掌握函数的图象与性质是解题关键.13.(1)()()540142124x 12x x p x ⎧-+≤⎪=⎨+≤≤⎪⎩<(2)第2月获利6万元(3)这一年中签约后的第1个月实际销售利润W 最高,最高为8.75万元【分析】(1)分段利用待定系数法求一次函数解析式当1≤x <4,p kx b =+,过点(0,40),(4,20)代入得40420b k b =⎧⎨+=⎩,当4≤x ≤12,p k x b 11=+,过点(4,20),(12,36),代入得11114201236k b k b +=⎧⎨+=⎩解方程组即可;(2)设利润用w 表示,根据每台利润(售价-进价)×销售台数列出w =(-0.05x +0.4-0.1)(-5x +40),然后求函数值即可;(3)根据销售利润=每台利润(售价-进价)×销售台数,得出销售利润w =()()()()()()0.050.40.1540140.2-0.12x 12412x x x x ⎧-+--+≤⎪⎨+≤≤⎪⎩<,分段确定函数的最值,再比较即可.(1)解:当1≤x <4,p kx b =+,过点(0,40),(4,20)代入得:40420b k b =⎧⎨+=⎩,解得:405b k =⎧⎨=-⎩,∴p x 540=-+,当4≤x ≤12,p k x b 11=+,过点(4,20),(12,36),代入得:11114201236k b k b +=⎧⎨+=⎩,解得:11212k b =⎧⎨=⎩,p x 212=+,∴()()540142124x 12x x p x ⎧-+≤⎪=⎨+≤≤⎪⎩<,(2)解:设利润用w 表示,w =(-0.05x +0.4-0.1)(-5x +40)当x =1,w =(-0.05+0.4-0.1)(-5+40)=8.75,当x =2,w =(-0.05×2+0.4-0.1)(-5×2+40)=6,当x =3,w =(-0.05×3+0.4-0.1)(-5×3+40)=3.75,当x =4,w =(-0.05×4+0.4-0.1)(-5×4+40)=2,第2月获利5万元(3)解:销售利润w =()()()()()()0.050.40.1540140.2-0.12x 12412x x x x ⎧-+--+≤⎪⎨+≤≤⎪⎩<,当x ≥4时,w =0.2x +1.2,k =0.2>0,w 随x 的增大而增大,当x =12时,w =3.6(万元),∵3.6<8.75,∴这一年中签约后的第1个月实际销售利润W 最高,最高为8.75万元,【点评】本题考查分段函数的解析式求法,函数图像获取信息与处理信息,待定系数法求函数解析式,销售利润=每台利润×台数,求函数值,函数的性质,掌握分段函数的解析式求法,函数图像获取信息与处理信息,待定系数法求函数解析式,销售利润=每台利润×台数,求函数值,函数的性质是解题的关键.14.(1)F、H(2)点M(-5,-2)(3)2≤<a【分析】(1)点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y=2x+1,看是否在函数图象上,即可求解;(2)当m≥0时,点M(m,2),则2=m+3;当m<0时,点M(m,-2),则﹣2=m+3,解方程即可求解;(3)如图为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束.都符合要求-4<y'≤4,只要求出关键点即可求解.(1)解:由题意新定义知:点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y=2x+1,得到:F(2,5)和H(-3,-5)在函数y=2x+1图象上;(2)解:当m≥0时,点M(m,2),则2=m+3,解得:m=-1(舍去);当m<0时,点M(m,-2),-2=m+3,解得:m=-5,∴点M(-5,-2);(3)解:如下图所示为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束,都符合要求,∴-4=-a2+4,解得:a=舍去负值),观察图象可知满足条件的a的取值范围为:2≤<a【点评】本题考查二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,属于创新题目,读懂题意是解决本类题的关键.15.(1)0,-1(2)见解析(3)①>-1,②4或-6,③-3<x<1【分析】(1)把x=-3,-2分别代入y=|x+1|-2即可得到答案;(2)描出表中以各对对应值为坐标的部分点,然后连线;(3)根据函数图象和性质解决.(1)解:当x=-3时,y=|-3+1|-2=0,则m=0,当x=-2时,y=|-2+1|-2=-1,则n=-1.故答案为:0,-1.(2)函数图象如图所示.(3)①当自变量x >-1时,函数y 随x 的增大而增大;②当自变量x 的值为4或-6时,y =3;③解不等式|x +1|-2<0的结果为-3<x <1.故答案为:>-1,4或-6,-3<x <1.【点评】本题主要考查了一次函数的性质,一次函数与一元一次不等式,函数图象点的坐标的求法、函数图象的画法以及看函数图象,熟练掌握函数图象点的坐标的求法、函数图象的画法以及看函数图象是解决本题关键.16.(1)2-,1;(2)图见解析;当1x <-时,y 随x 的增大而减小;当1x =-时,函数有最小值2-;(3)图见解析,y x =是由函数|2|1y x +=-向左平移1个单位,再向下平移2个单位平移得到的【分析】(1)将x =﹣1,x =2分别代入函数y =|x +1|﹣2即可求m 、n 的值;(2)根据表中的数据,描点连线即可,观察函数图像,写出函数图像的两条性质即可;(3)描点法画出函数y =|x |的图像,然后观察图像求解即可.【详解】解:(1)1x =-时,1122m =--+=-,2x =时,1122n =+-=,故答案为2-,1;(2)函数图像如下图:。
考点08 一次函数的图象和性质一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。
各地对一次函数的图象与性质的考察也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面。
也因为一次函数是一个结合型比较强的知识点,所以其图象和性质也是后续函数问题学习的一个基础。
故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。
一、一次函数的图象与平移二、一次函数的性质三、待定系数法求解一次函数的表达式四、一次函数与方程、不等式的关系五、一次函数与三角形面积考向一:一次函数的图象与平移一.一次函数的图象二.一次函数图象的画法1.下列函数:①y =4x ;②y =﹣;③y =;④y =﹣4x +1,其中一次函数的个数是( )A .1B .2C .3D .4【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:y =﹣4x ,y =﹣,y =﹣4x +1都符合一次函数的定义,属于一次函数;y =是反比例函数,综上所述,其中y 是x 的一次函数的个数有3个.故选:C.一次函数的图象是经过点和点的一条直线2.如图,在平面直角坐标系中,函数y=k(x﹣1)(k>0)的图象大致是( )A.B.C.D.【分析】根据一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:∵y=k(x﹣1)(k>0),∴一次函数图象过点(1,0),y随x的增大而增大,故选项B符合题意.故选:B.3.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是( )A.B.C.D.【分析】根据一次函数的系数与图象的关系逐项分析即可.【解答】解:A、一次函数y=kx+b的图象经过第二、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的图象与y轴交于正半轴,则kb>0,kb>0与kb<0相矛盾,不符合题意;B、一次函数y=kx+b的图象经过第一、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的一次项系数为正,与题干图形相矛盾,不符合题意;C、一次函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,则kb<0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb<0与kb<0相一致,符合题意;D、一次函数y=kx+b的图象经过第二、三、四象限,则k<0,b<0,则kb>0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb>0与kb<0相矛盾,不符合题意;故选:C.4.在平面直角坐标系中,直线是函数y=6x﹣2的图象,将直线l平移后得到直线y=6x+2,则下列平移方式正确的是( )A.将1向右平移4个单位长度B.将1向左平移4个单位长度C.将1向上平移4个单位长度D.将1向下平移4个单位长度【分析】利用一次函数图象的平移规律,右加左减,上加下减,即可得出答案.【解答】解:设将直线y=6x﹣2向左平移a个单位后得到直线y=6x+2(a>0),∴6(x+a)﹣2=6x+2,解得:a=,故将直线y=6x﹣2向左平移个单位后得到直线y=6x+2,同理可得,将直线y=6x﹣2向上平移4个单位后得到直线y=6x+2,观察选项,只有选项C符合题意.故选:C.5.直线y=2x﹣4向上平移2个单位后所得的直线与x轴交点的坐标是 (1,0) .【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【解答】解:直线y=2x﹣4沿y轴向上平移2个单位,则平移后直线解析式为:y=2x﹣4+2=2x﹣2,当y=0时,则x=1,故平移后直线与x轴的交点坐标为:(1,0).故答案为:(1,0).6.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1与y2=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是( )A.k1k2<0B.k1+k2<0C.b1﹣b2>0D.b1b2>0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图象位置,可得k1<0,b1<0,k2<0,b2>0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图象过四、二、三象限,∴k1<0,b1<0,∵一次函数y=k2x+b2的图象过一、二、四象限,∴k2<0,b2>0,∴A、k1•k2>0,故A不符合题意;B、k1+k2<0,故B符合题意;C、b1﹣b2<0,故C不符合题意;D、b1•b2<0,故D不符合题意;故选:B.考向二:一次函数的性质对于任意一次函数y=kx+b(k≠0),点A (x1,y1)B(x2,y2)在其图象上1.一次函数y=﹣3x+1的图象经过( )A.第一、二、四象限B.第一、三、四象限C.第一、二、三象限D.第二、三、四象限【分析】利用一次函数的性质即可确定直线经过的象限.【解答】解:∵y=﹣3x+1,∴k<0,b>0,故直线经过第一、二、四象限.故选:A.2.已知点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,则y1,y2的大小关系是( )A.y1>y2B.y1<y2C.y1=y2D.大小不确定【分析】利用偶次方的非负性,可得出m2≥0,进而可得出k=m2+1>0,利用一次函数的性质,可得出y随x的增大而增大,结合﹣3<﹣1,可得出y1<y2.【解答】解:∵m2≥0,∴k=m2+1>0,∴y随x的增大而增大.又∵点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,且﹣3<﹣1,∴y1<y2.故选:B.3.已知A(x1,y1),B(x2,y2)是关于x的函数y=(m﹣1)x图象上的两点,当x1<x2时,y1<y2,则m 的取值范围是( )A.m>0B.m<0C.m>1D.m<1【分析】由“当x1<x2时,y1<y2”,可得出y随x的增大而增大,结合一次函数的性质,可得出m﹣1>0,解之即可得出m的取值范围.【解答】解:∵当x1<x2时,y1<y2,∴y随x的增大而增大,∴m﹣1>0,解得:m>1,∴m的取值范围是m>1.故选:C.4.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是( )A .函数图象经过第一、二、四象限B .图象与y 轴的交点坐标为(1,0)C .y 随x 的增大而减小D .图象与坐标轴调成三角形的面积为【分析】根据一次函数的性质分别判断后即可确定正确的选项.【解答】解:A .∵k =﹣2<0,b =1>0,∴函数图象经过第一、二、四象限,正确,不符合题意;B .当x =0时,y =1,∴函数图象与y 轴的交点坐标为(0,1),错误,符合题意;C .∵k =﹣2<0,∴y 的值随着x 增大而减小,正确,不符合题意;D .令y =0可得y =1,∴函数图象与坐标轴围成的三角形面积为:×1×=,故D 正确,不符合题意.故选:B .5.已知点(﹣2,y 1),(2,y 2)都在直线y =2x ﹣3上,则y 1 < y 2.(填“<”或“>”或“=”)【分析】由k =2>0,利用一次函数的性质可得出y 随x 的增大而增大,再结合﹣2<2即可得出y 1<y 2.【解答】解:∵k =2>0,∴y 随x 的增大而增大,又∵﹣2<2,∴y 1<y 2.故答案为:<.考向三:待定系数法求一次函数的解析式1.一个正比例函数的图象过点(﹣2,3),它的表达式为( )A.B.C.D.【分析】利用待定系数法即可求解.【解答】解:设函数的解析式是y=kx.根据题意得:﹣2k=3.解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.2.已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m的值为( )A.2B.﹣2C.2或﹣2D.m的值不存在【分析】结合一次函数的性质,对m分类讨论,当m>0时,一次函数y随x增大而增大,此时x=1,y =2且x=3,y=6;当m<0时,一次函数y随x增大而减小,此时x=1,y=6且x=3,y=2;最后利用待定系数法求解即可.【解答】解:当m>0时,一次函数y随x增大而增大,∴当x=1时,y=2且当x=3时,y=6,令x=1,y=2,解得m=,不符题意,令x=3,y=6,解得m=﹣6,不符题意,当m<0时,一次函数y随x增大而减小,∴当x=1时,y=6且当x=3时,y=2,令x=1,y=6,解得m=﹣2,令x=3,y=2,解得m=﹣2,符合题意,故选:B.3.已知y与x成正比例,且当x=2时,y=﹣3.则当x=﹣时,y= .【分析】设y=kx,把x=2,y=﹣3代入,求出k得到函数解析式,把x=﹣代入函数解析式,求出即可.【解答】解:根据题意,设y=kx,把x=2,y=﹣3代入得:﹣3=2k,解得:k=﹣,∴y与x的函数关系式为y=﹣x,把x=﹣代入y=﹣x,得y=﹣×(﹣)=,故答案为:.4.已知一次函数的图象经过A(2,0),B(0,4)两点.(1)求此一次函数表达式;(2)试判断点(﹣1,6)是否在此一次函数的图象上.【分析】(1)设一次函数的解析式为y=kx+b(k≠0),再把A(2,0),B(0,4)代入求出k的值即可;(2)把x=﹣1代入(1)中函数解析式进行检验即可.【解答】解:(1)设一次函数的解析式为y=kx+b(k≠0),∵A(2,0),B(0,4)在函数图象上,∴,解得,∴一次函数的解析式为:y=﹣x+4;(2)由(1)知,函数解析式为:y=﹣x+4,∴当x=﹣1时,y=5≠6,∴点(﹣1,6)不一次函数的图象上.5.如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD 的解析式.【分析】(1)把C (0,6)代入函数解析式,可得答案.(2)先求D 的坐标,再利用待定系数法求解AD 的解析式.【解答】解:(1)直线y =﹣2x +a 与y 轴交于点C (0,6),∴﹣2×0+a =6,∴a =6,∴直线的解析式为y =﹣2x +6;(2)点D (﹣1,n )在y =﹣2x +6上,∴n =﹣2×(﹣1)+6=8,∴D (﹣1,8),设直线AD 的解析式为y =kx +b ,把点A (﹣3,0)和D (﹣1,8)代入得,解得,∴直线AD 的解析式为y =4x +12.考向四:一次函数与方程不等式间的关系的交点坐标由函数图象直接写出不等式解集的方法归纳:1.已知方程2x ﹣1=﹣3x +4的解是x =1,则直线y =2x ﹣1和y =﹣3x +4的交点坐标为( )A .(1,0)B .(1,1)C .(﹣1,﹣3)D .(﹣1,1)【分析】把x =1代入直线解析式y =2x ﹣1求出y 的值即可得到交点坐标.【解答】解:∵x =1是方程2x ﹣1=﹣3x +4的解,∴把x =1代入y =2x ﹣1,得y =2×1﹣1=1.∴交点坐标为(1,1).故选:B .2.如图,直线y =ax +b (a ≠0)过点A (0,1),B (2,0),则关于x 的方程ax +b =0的解为 x =2 .【分析】所求方程的解,即为函数y =ax +b 图象与x 轴交点横坐标,确定出解即可.【解答】解:方程ax +b =0的解,即为函数y =ax +b 图象与x 轴交点的横坐标,∵直线y =ax +b 过B (2,0),∴方程ax +b =0的解是x =2,故答案为:x =2.3.如图,一次函数y =2x +1的图象与y =kx +b 的图象相交于点A ,则方程组的解是( )A.B.C.D.【分析】先求点A的横坐标,然后根据两条直线的交点坐标即可写出方程组的解.【解答】解:y=3代入y=2x+1得2x+1=3,解得x=1,所以A点坐标为(1,3),所以方程组的解是.故选:B.4.如图,已知直线y=ax+b和直线y=kx交于点P,若二元一次方程组的解为x、y,则x+y= 3 .【分析】根据由图象可知,直线y=ax+b和直线y=kx交于点P(1,2),即可确定二元一次方程组的解,进一步求值即可.【解答】解:由图象可知,直线y=ax+b和直线y=kx交于点P(1,2),∴二元一次方程组的解为,∴x+y=1+2=3,故答案为:3.5.若定义一种新运算:,例如:2@4=2+4﹣3=3,2@1=2﹣1+3=4,下列说法:①(﹣1)@(﹣2)=4;②若x@(x+2)=5,则x=3;③x@2x=3的解为x=2;④函数y=(x2+1)@1与x轴交于(﹣1,0)和(1,0).其中正确的个数是( )A.4B.3C.2D.1【分析】根据新定义,逐项判断即可.【解答】解:(﹣1)@(﹣2)=﹣1﹣(﹣2)+3=4,故①正确;∵x@(x+2)=x+(x+2)﹣3=2x﹣1,∴x@(x+2)=5即是2x﹣1=5,解得x=3,故②正确;当x<2x,即x>0时,∵x@2x=3,∴x+2x﹣3=3,解得x=2;当x≥2x,即x≤0时,∵x@2x=3,∴x﹣2x+3=3,解得x=0,∴x@2x=3的解是x=2或x=0,故③错误;∵x2+1≥1,∴y=(x2+1)@1=x2+1﹣1+3=x2+3,令y=0得x2+3=0,方程无实数解,∴函数y=(x2+1)@1与x轴无交点,故④错误;∴正确的有①②,共2个,故选:C.6.如图,已知一次函数y1=kx﹣b与y2=nx函数图象相交于点M,当kx﹣b=nx时,x的值是 1 ,当y1>y2时,x的取值范围是 x<1 ,当y1<y2时,x的取值范围是 x>1 .【分析】根据两条直线的交点、结合图象解答即可.【解答】解:由图象可知,当kx﹣b=nx时,x的值是1,当y1>y2时,x的取值范围是x<1,当y1<y2时,x的取值范围是x>1.故答案为:1,x<1,x>1.7.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m= 0 ,n= ﹣1 .(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质: 当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大 .(3)当时,x的取值范围为 x≤﹣1或x≥2 .【分析】(1)把x=﹣1和x=4分别代入解析式即可得到m、n的值;(2)利用描点法画出图象,观察图象可得出函数的性质;(3)利用图象即可解决问题.【解答】解:(1)把x=﹣1代入y=2﹣|x﹣1|得,y=2﹣|﹣1﹣1|=0,∴m=0;把x=4代入y=2﹣|x﹣1|得,y=2﹣|4﹣1|=﹣1,∴n=﹣1;故答案为:0,﹣1;(2)画出函数的图象如图:观察图象可知:当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大;故答案为:当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大;(3)画出一次函数y=x+的图象,观察图象可知:当时,x的取值范围为x≤﹣1或x≥2,故答案为:x≤﹣1或x≥2.考向五:一次函数与三角形面积一.一次函数与坐标轴围成三角形面积的规律方法归纳1.一次函数y=kx+b(k≠0)与坐标轴交点规律与x轴交点坐标(,0)故:当k、b同号时,直线交于x轴负半轴;当k、b异号时,直线交于x轴正半轴对于直线y=kx+b(k≠0)与y轴交点坐标(0,b)故:当b>0时,直线交于y轴正半轴;当b<0时,直线交于y轴负半轴2.求两直线交点坐标方法:联立两直线解析式,得二元一次方程组,解方程组得交点坐标;3.求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高;二.一次函数图象与几何图形动点面积1.此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息2.对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点3.动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。
2023年中考数学专题——二次函数与一次函数的综合一、综合题1.已知:如图,抛物线y =ax 2+4x+c 经过原点O (0,0)和点A (3,3),P 为抛物线上的一个动点,过点P作x 轴的垂线,垂足为B (m ,0),并与直线OA 交于点C.(1)求抛物线的解析式;(2)当点P 在直线OA 上方时,求线段PC 的最大值.2.如图,抛物线 212y x bx c =-++ 与 x 轴交于点 A 和点 ()10B , ,交 y 轴于点C ,连接 AC , BC ,已知 2OA OC = ,且 ABC 的面积为 212.(1)求抛物线的解析式;(2)点 P 是直线 AC 上方抛物线上一动点,过点 P 作 //PQ y 轴,交直线 AC 于点 Q .抛物线上是否存在点 P ,使以 P , Q , O , C 为顶点的四边形是平行四边形?若存在,请求出点 P 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线与x 轴交于点 ()10A -, , ()30B , ,与y 轴交于点C ,直线 BC 的解析式为 3y kx =+ .(1)求直线 BC 的解析式和抛物线的解析式;(2)点 ()P m n , 在平面直角坐标系第一象限内的抛物线上运动,设 PBC 的面积为S ,求S 关于m 的函数表达式和S 的最大值,并指出m 的取值范围.4.如图,抛物线y =x 2+bx+c 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C(0,3).(1)若抛物线的对称轴是直线x=-2.①求抛物线的解析式;②点P 在对称轴上,若△PBC 的面积是6,求点P 的坐标;(2)当b≤0,﹣2≤x≤0时,函数y 的最大值满足2≤y≤10,求b 的取值范围.5.如图,抛物线y=x 2+bx+c 与x 轴交于A(-1,0)和B(3,0)两点,交y 轴于点E .(1)求此抛物线的函数表达式;(2)若直线y=x+1与抛物线交于A ,D 两点,与y 轴交于点F ,连接DE ,求 ∆ DEF 的面积.6.如图,已知抛物线 212y x bx =+ 与直线 2y x = 交于点O (0,0),A (a ,12),点B 是抛物线上O 、A 之间的一个动点,过点B 分别作x 轴和y 轴的平行线与直线OA 交于点C 、E ,(1)求抛物线的函数解析式;(2)若点C 为OA 的中点,求BC 的长;(3)以BC 、BE 为边构造矩形BCDE ,设点D 的坐标为(m ,n ),求出m 、n 之间的关系式.7.如图,直线l : 33y x =-+ 与x 轴、y 轴分别相交于A 、B 两点,抛物线 ()2240y ax ax a a =-++< 经过点B .(1)求该抛物线的函数表达式:(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值.8.如图,在平面直角坐标系中,点 O 为坐标原点,抛物线 22y ax x c =-+ 与 x 轴交于点 (1,0)A ,点(3,0)B - ,与 y 轴相交于点 C .(1)求抛物线的表达式和顶点坐标;(2)已知点 C 关于抛物线对称轴的对称点为点 N ,连接 BC , BN ,点 H 在 x 轴上,当HCB NBC ∠=∠ 时,求满足条件的点 H 的坐标.9.如图,抛物线y=-x 2+bx+c(b>0),交x 轴于点A 、B ,交y 轴于点C ,已知A 的横坐标为-1。
2016年中考总复习专题二一次函数探究一、一次函数的性质:1).一次函数y=kx+b(k≠0)①系数k的重要意义; ②b=0时函数为正比例函数; ③函数图像经过的象限及增减性。
1. (2015•江苏盐城)如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x 和y=﹣x+7的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.2.(2015,广西河池)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆,若一次购买绣球花超过20盆时,超过20盆的部分绣球花打8折.(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数关系式;(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花的数量不超过绣球花数量的一半,两种花卉各买多少盆时,总费用最少........?.....,最少总费用多少元二、一次函数的图像:1). ①一次函数的图像过(0,b ))0,(k b,可以确定图像与坐标轴的交点②特殊的直线:y=x+b,y=-x+b ③两直线平行,k 值相等,两直线垂直,k 1k 2=-11.(2015•广东梅州)如图,已知直线y =﹣x +3分别与x ,y 轴交于点A 和B .(1)求点A ,B 的坐标; (2)求原点O 到直线l 的距离;(3)若圆M 的半径为2,圆心M 在y 轴上,当圆M 与直线l 相切时,求点M 的坐标.2. (2015•浙江丽水)甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走. 设甲乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数函数图像的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s 关于t 函数图象的其余部分;(3)问甲、乙两人何时相距360米?3. (2015•四川南充)反比例函数与一次函数交于点A (1,2k -1)(1)求反比例函数的解析式;(2)若一次函数与x 轴交于点B ,且△AOB 的面积为3,求一次函数的解析式.4. (2015•四川成都)如图,一次函数4y x =-+的图象与反比例ky x=(k 为常数,且0k ≠)的图象交于()1,A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA PB +的值最小,求满足条件的点P 的坐标及PAB ∆的面积.5.(2015•乌鲁木齐)一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y 1(km ),小轿车的路程y 2(km )与时间x (h )的对应关系如图所示. (1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y 1与x 的函数关系式; ②当x ≥5时,求y 2与x 的函数解析式; (3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?6.(2015•山东日照)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.7.(2015•山东德州,第22题10分)某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?8.有一项工作,由甲、乙合作完成,工作一段时间后,甲改进了技术,提高了工作效率.设甲的工作量为y甲(件),乙的工作量为y乙(件),甲、乙合作完成的工作量为y(件),工作时间为x(时).y与x之间的部分函数图象如图①所示,y乙与x之间的部分函数图象如图②所示.(1)分别求出甲2小时、6小时的工作量.(2)当0≤x≤6时,在图②中画出y甲与x的函数图象,并求出y甲与x之间的函数关系式.(3)求工作几小时,甲、乙完成的工作量相等.(4)若6小时后,甲保持第6小时的工作效率,乙改进了技术,提高了工作效率.当x=8时,甲、乙之间的工作量相差30件,求乙提高工作效率后平均每小时做多少件.三、一次函数的实际应用:1、(2015年四川省广元市) 经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在某一交通时段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?2.(2015•内蒙古呼伦贝尔兴安盟)某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.例如,第一个月用水16吨,需交水费17.8元,第二个月用水20吨,需交水费23元.(1)求每吨水的基础价和调节价;(2)设每月用水量为n吨,应交水费为m元,写出m与n之间的函数解析式;(3)若某月用水12吨,应交水费多少元?3. (2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?2016年中考总复习专题二一次函数探究一、一次函数的性质:1).一次函数y=kx+b(k≠0)①系数k的重要意义; ②b=0时函数为正比例函数; ③函数图像经过的象限及增减性。
1. (2015•江苏盐城)如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)设x 轴上有一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交y=x 和y=﹣x+7的图象于点B 、C ,连接OC .若BC=OA ,求△OBC 的面积.解:(1)∵由题意得,,解得,∴A(4,3);(2)过点A 作x 轴的垂线,垂足为D ,在Rt△OAD 中,由勾股定理得,OA===5.∴BC=OA=×5=7.∵P(a ,0),∴B(a ,a ),C (a ,﹣a+7),∴BC=a ﹣(﹣a+7)=a ﹣7,∴a ﹣7=7,解得a=8,∴S △OBC =BC•OP=×7×8=28.2.(2015,广西河池)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆,若一次购买绣球花超过20盆时,超过20盆的部分绣球花打8折.(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数关系式;(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花的数量不超过绣球花数量的一半,两种花卉各买多少盆时,总费用最少.....,最少总费用多少元........? 解:(1)太阳花:y=6x; 绣球花:y= 10x(0≤x≤20); 200+8(x-20)(20<x)(2)设购买绣球花x 盆,则购买太阳花90-x 盆.根据题意可得:90-x≤,解得60≤x≤90,结合(1)中的结果,y 总=6·(90-x)+200+8(x-20),得y 总=2x+580,当x=60时,即购买绣球花60盆,购买太阳花30盆时,费用最小,最小费用为700元.二、一次函数的图像:1). ①一次函数的图像过(0,b ))0,(k b,可以确定图像与坐标轴的交点②特殊的直线:y=x+b,y=-x+b ③两直线平行,k 值相等,两直线垂直,k 1k 2=-11.(2015•广东梅州)如图,已知直线y =﹣x +3分别与x ,y 轴交于点A 和B .(1)求点A ,B 的坐标;(2)求原点O 到直线l 的距离;(3)若圆M 的半径为2,圆心M 在y 轴上,当圆M 与直线l 相切时,求点M 的坐标.解:(1)对于直线y =﹣x +3,令x =0,得到y =3;令y =0,得到x =4,∴A (4,0),B (0,3);(2)直线整理得:3x +4y ﹣12=0,∴原点O 到直线l 的距离d ==;(3)设M 坐标为(0,m )(m >0),即OM =m ,若M在B 点下边时,BM =3﹣m ,∵∠MBN ′=∠ABO ,∠MN ′B =∠BOA =90°,∴△MBN ′∽△ABO ,∴=,即=,解得:m =,此时M (0,);若M 在B 点上边时,BM =m ﹣3,同理△BMN ∽△BAO ,则有=,即=,解得:m =.此时M (0,).2. (2015•浙江丽水)甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走. 设甲乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数函数图像的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s 关于t 函数图象的其余部分;(3)问甲、乙两人何时相距360米?解:(1)甲行走的速度为:150530÷=(米/分).(2)补画s 关于t 函数图象如图所示(横轴上对应的时间为50):(3)由函数图象可知,当12.5t =和50t =时,0s =;当35t =时,450s =,当12.535t ≤≤时,由待定系数法可求:20250s t =-,令360s =,即20250360t -=,解得30.5t =.当35<50t ≤时,由待定系数法可求:301500s t =-+,令360s =,即301500360t -+=,解得38t =.∴甲行走30.5分钟或38分钟时,甲、乙两人相距360米.3. (2015•四川南充)反比例函数与一次函数交于点A (1,2k -1)(1)求反比例函数的解析式;(2)若一次函数与x 轴交于点B ,且△AOB 的面积为3,求一次函数的解析式.①、当一次函数过A (1,1)和B (6,0)时,得: 解得:∴一次函数的解析式为y =-②、当一次函数过A (1,1)和B (-6,0)时,得: 解得: ∴一次函数的解析式为y =4. (2015•四川成都)如图,一次函数4y x =-+的图象与反比例ky x=(k 为常数,且0k ≠)的图象交于()1,A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA PB +的值最小,求满足条件的点P 的坐标及PAB ∆的面积.(1)由已知可得,143a=-+=,1133k a =⨯=⨯=, ∴反比例函数的表达式为3y x=,联立43y x y x =-+⎧⎪⎨=⎪⎩解得13x y =⎧⎨=⎩ 或31x y =⎧⎨=⎩,所以()3,1B 。