1.1.1正数和负数第一课时
- 格式:doc
- 大小:34.00 KB
- 文档页数:2
第1章有理数1.1 正数和负数第1课时正数和负数【知识与技能】1。
通过实例,感受引入负数的必要性,了解正负数的实际意义.2.会判断一个数是正数还是负数;会用正负数表示互为相反意义的量。
【过程与方法】从一个学生熟悉的生活实例引入正负数的概念,并通过各种师生活动加深学生对“相反意义的量”的理解;使学生会用正负数表示生活中具有相反意义的量,进一步体会数学与生活的密切联系。
【情感态度】从学生的实际生活中提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,培养学生严谨的思维。
【教学重点】重点是理解正负数、0表示的量的意义。
【教学难点】难点是正、负数的意义。
一、情境导入,初步认识【情境1】我先向同学们作个自我介绍,我姓××,大家可以叫我××老师,身高××米,体重××千克,今年××岁,教龄是××年,我将和同学们一起度过三年的初中学习生活。
老师刚才的介绍中出现了一些数,它们是些什么数呢?人们由记数、排序,产生了数1,2,3,…等整数;为了表示“没有"、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数.所以数产生于人们实际生产和生活的需要.在生活中,仅有整数和分数够用了吗?【情境2】实物投影,并呈现问题:在《天气预报》中我们看到了哈尔滨、北京、上海三个城市某天的温度表示,如果没有播音员的解说,你能明白这些数的确切含义吗?【教学说明】学生独立思考后,小组讨论,教师注意引导学生发现生活中的数不够用了,从而引出负数.情境1中让学生发现数不够用了.情境2中让学生体验了负数的存在和意义。
【教学说明】通过现实情景再现,让学生体会到负数存在的意义,培养学生良好的数学应用意识。
通过前面的情景引入,激发学生的探究欲望,并使学生获得大量的感性材料,为正确建立相反意义的量奠定基础,有趣的情境也能激发学生学习的兴趣.二、思考探究,获取新知1。
1.1,正数与负数,教案篇一:1.1正数和负数教学设计(第一课时)1.1正数和负数(一)一、教学目的1借助生活中的实例理解相反意义的量。
2能用符号表示生活中具有相反意义的量。
3 培养学生会独立考虑、合作交流的认识。
二、教学设计通过电脑动画出示某班举行知识竞赛的得分情况,让学生从计算竞赛得分的动态情境中,接触负数的概念,引出“不够减——得出负数”,再通过“议一议”进一步体会负数的意义,鼓舞学生本人寻找生活中的例子,并在寻务实例的过程中体会负数引人的必要性.老师选择学生熟悉的场景开展讨论,通过实例的讨论分析使学生认识到用正、负数能够表示具有相反意义的量.三、教学重点与难点1.理解“相反意义的量”是重点。
2.能灵敏运用正负数表示生活中具有相反意义的量是难点。
四、课时安排1课时五、教学方法讨论法、探究法、讲授法、观察法.六、教学思路(一)情景导学、提出征询题:通过电脑动画情节的观看,让学生理解新数.动画内容:评分标准是:答对一题加10分、答错一题扣10分,不答复得0分;每个队的根本分均为0分.四个代表队答题情况如下表:如此,我们就能够用带有“+”号与“-”号的数表示各队的得分情况.(二)自主学习、尝试处理:(1)学生阅读课本2页观察与考虑部分,学生独立完成导学卡的自主学习征询题.现实生活中,像如此的相反意义的量还有特别多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进物资8吨,今天运出物资3 吨,“运进”和“运出”,其意义是相反的.(2)一写出与以下各量具有相反意义的量:1气温为零下11度.2向南走200米。
3甲地低于海平面300米4股票第一天涨0.66元.(三)讨论交流、合作处理:1如何用符号表示具有相反意义的量?2.再议一议.3做—做:用正数和负数表示一些意义相反的量.出例如1:(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?(四)展示评研、归纳提升:1.先想一想具有相反意义的量,然后老师提出:如何样区别相反意义的量才好呢? (五)稳定达标、扩展延伸:1用符号表示以下意义相反的量.(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?2课堂作业练习第2小题篇二:1.1《正数和负数》(新版)新人教版单元要点分析教学内容1.本单元结合学生的生活经历,列举了学生熟悉的用正、负数表示的实例,?从扩大运算的角度引入负数,然后再指出能够用正、负数表示现实生活中具有相反意义的量,使学生感遭到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联络.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过如何样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是特别重要的数学工具,它能够把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,提示了数形之间的内在联络,从而表达出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比拟形象化.3.关于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的间隔相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,?一种是几何意义:一个数a 的绝对值确实是数轴上表示数a的点与原点的间隔;另一种是代数意义.绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义那么是给出了求绝对值的法 ?a?那么,由绝对值的两种意义可知,有理数a?的绝对值可表示为:│a│=?0??a?(a?0)(a?0) (a?0)按照有理数的绝对值的两种意义,能够归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)假设│a│=│b│,那么a=b,或a=-b或a=b=0.三维目的1.知识与技能(1)理解正数、负数的实际意义,会推断一个数是正数仍然负数.(2)掌握数轴的画法,能将已经明白数在数轴上表示出来,?能说出数轴上已经明白点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比拟有理数的大小.2.过程与方法通过探究有理数运算法那么和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联络,鼓舞学生探究规律,并在合作交流中完善标准语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:精确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数2课时1.2 有理数5课时1.3 有理数的加减法4课时1.4 有理数的乘除法5课时1.5 有理数的乘方4课时数学活动1课时回忆与考虑1课时1.1正数和负数第一课时正数和负数(一)课本第2页至第4页.教学目的1.知识与技能能推断一个数是正数仍然负数,能用正数或负数表示生活中具有相反意义的量.2.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性. 3.情感态度与价值观培养学生积极考虑,合作交流的认识和才能.重、难点与关键1.重点:正确理解负数的意义,掌握推断一个数是正数仍然负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生四周熟悉的事物,?加深对负数意义的理解.教具预备投影仪.教学过程一、负数的引入我们明白,数是人们在实际生活和生活需要中产生,并不断扩大的.人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、消费、科研中经常遇到数的表示与数的运算的征询题,例如课本第2?页至第3页中提到的四个征询题,这里出现的新数:-3,-2,-2.7%在前面的实际征询题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.像-3,-2,-2.7%如此的数(即在往常学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在征询题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把如此的数(即往常学过的0?以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+11,?确实是3,2,0.5,,?一个33 数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.中国古代用算筹(表示数的工具)进展计算,红色算筹表示正数,黑色算筹表示负数.数0既不是正数,也不是负数,但0是正数与负数的分界数.0能够表示没有,还能够表示一个确定的量,现在天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.三、用正负数表示具有相反意义的量把0以外的数分为正数和负数,起源于表示两种相反意义的量.?正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.你能再举一些用正负数表示数量的实际例子吗?例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.四、稳定练习课本第3页,练习1、2、3、4题.五、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数确实是我们过去学过的数(除0外),在正数前放上“-”号,确实是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.假设原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应留意“0”既不是正数,也不是负数.六、作业布置1.课本第5页习题1.1复习稳定第1、2、3题.2.选用课时作业.第一课时作业设计一、填空题.1.假设向北走5米记作+5,那么向南走10米记作________.2.假设节约30千瓦·时电记作+30千瓦·时,那么浪费10千瓦·时电记作_____.3.假设-26.80表示亏损26.80元,那么+100元表示________.4.假设体重增加1.5千克记作+1.5千克,那么-0.5千克表示________.二、选择题.5.以下说法正确的选项().A.0是正数B.0是负数C.0是整数D.0不是自然数6.有六个数:-5,0,3 111,-0.3,+,-,?,其中正数的个数是().234A.1B.2C.3D.411,0,-6.3,,-?,以下说法完全正确的选项().2811 A.-7,-?是负整数B.5,0,是正数28 7.有六个数:-7,5C.-7,-6.3,-?是负数D.只有-6.3是负分数三、解答题.8.指出以下各数中哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?0,-2,31391,-0.08,-,,-4,3.14,77,-103.27239.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”,?你对此如何样理解?10.假设把公元1997年记作+1997,那么-97表示什么?:篇三:1.1正数与负数讲义、教案例5 假设规定上升为正,那么水位上升-0.5m的意义是()A.水位上升0.5mB.水位下降0.5mC.水位没有变化D.水位下降-0.5m对点练习1.假设+30m表示向东走30m,那么向西走40m表示为()A.+40mB.-40m C.+30mD.-30m2.假设超出标准质量0.05g记作+0.05g,那么低于标准质量0.03g记作()3.某奶粉每袋标准质量为454g,在质量检测中,假设超过标准质量2g记作+2g,假设质量低于标准质量3g以上,那么这袋奶粉那么视为不合格产品,先抽取10袋样品进展质量检测,结果如下:袋号12345678910记作-203 -4 -3 -5 +4+4 -5 -3⑴这10袋奶粉中,有哪几袋不合格?⑵质量最多的是哪袋?实际质量是多少?⑶质量最小的是哪袋,实际质量是多少?课后练习一、根底训练1.假设气温上升3度记作+3度,下降5度记作-5度,那么以下各量分别表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.以下语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数确实是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个4.以下说法中,正确的选项()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既能够是正整数,也能够是负分数D.所有的分数都是有理数5.以下各数中,哪些属于正数集、负数集、非负数集、整数集、分数集?-1,-3.14156,-6.某水库的平均水位为80米,在此根底上,假设水位变化时,把水位上升记为正数;水库治理员记录了3月~8月水位变化的情况(单位:米):-5,-4,0,+3,+6,+8.试征询这几个月的实际水位是多少米?二、递进演练1.(05年宜昌市·课改卷)假设收入15?元记作+?15?元,?那么支出20?元记作________元.2.(05年吉林省中考·课改卷)某食品包装袋上标有“净含量385±5”,?这包食品的合格净含量范围是______克~______克.3.以下说法正确的选项()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.以下不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和缺乏2克5.以下说法正确的选项()A.有理数是指整数、分数、零、正有理数、负有理数这五类B.一个有理数不是正数确实是负数C.一个有理数不是整数确实是分数D.以上说法都正确6.把以下各数:-3,4,-0.5,-1,-5%,-6.3,2006,-0.1,30000,200%,0,-0.01001 315,0.86,0.8,8.7,0,-,-7,分别填在相应的大括号里.36正有理数集合:{ };非负有理数集合:{};整数集合:{ };负分数集合:{ }.7.孔子出生于公元前551年,假设用-551年表示,那么李白出生于公元701年可表示为___________.。
1.1.1 正数和负数的概念(第1课时)〔教学目标〕知识与技能:了解负数产生是生活、生产的需要;过程与方法:掌握正、负数的概念和表示方法,理解数0表示的量的意义;情感、态度与价值观:理解具有相反意义的量的含义。
〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点;正确理解负数、数0表示的量的意义是难点。
〔教学过程〕一、负数的引入我们知道,数产生于人们实际生产和生活的需要。
人们由记数、排序,产生了数1,2,3……;为了表示“没有”、“空位”引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
(1)北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?(2)有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?(3)2006年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?上面三个问题中,哪些数的形式与以前学习的数有区别?数-3、-2、-2.7%与以前学习的数有区别。
-3表示零下3摄氏度,-2是由2-4得到的,表示净输2个球,-2.7%表示减少2.7%,而3表示零上3摄氏度,2表示净赢2个球,2.7%表示增长2.7%。
像3、2、2.7%这样大于零的数叫做正数。
像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。
根据需要,有时在正数前面也加上“+”(正)号,例如,+3、+2、+0.5、+1/3,…就是3、2、0.5、1/3,…。
这样,一个数由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值。
请你指出数-3.2,5,-2/3的符号和绝对值。
二、对数“0”的重新认识大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?数0既不是正数,也不是负数,它是正数和负数的分界。
第一章有理数
一袋食品的包装袋上印着:净含量238±5克,你知道这袋食品的净含量是多少吗?
二、自学交流:
1、 同学们自学教科书第2—3页,完成下问题:
① 生活中什么时候需要用负数?
② 你认为正数和负数的区别是什么?
正数的定义:
负数的定义:
0是什么数?
○
3你能举出一些生活中的用正数和负数表示数量的实际例子吗? 观察教材图1.1—2及图1.1—3,讨论:图中的正负数的含义是什么?
三、成果展示:
所有的正数组成正数集合,所有的负数组成负数集合。
把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4.8,+73,-2.7,61,127,-8.12,43
四、巩固提高:
1.读出下列各数,并指出其中哪些是正数,哪些是负数.
﹣2 ,0.5 , 27 ,0 ,﹣3.14 , ,160 ,53
2. 举出具有相反意义的量,并分别用正负数表示
①、如果80m 表示向东走80m ,那么﹣60m 表示: ,向东走﹣80m 表示向 走了80m .
②、如果把一个物体向后移动5m 记作移动﹣5m ,那么这个物体又移动﹢5 m 是什么意思?这时物体离它两次移动前的位置多远?
③、在某次食品质量检测中,如果一袋食品超过标准质量2克记作﹢2克,那么﹣3克表示什么?
现在你能猜出净含量为238±5克的食品所表示的意思了吗?
五、拓展延伸:
1、 “有正号的数是正数,有负号的数就是负数”这个说法对吗?
2、 填空:﹣1 ,2 ,﹣3 ,4 ,﹣5 , , , ,第81个数是 ,
第2005个数是 .
3、
六、学后反思:。
2013年初中数学七年级数学第一章第1学时
内容:正数和负数(1)
一、学前准备
1、小学里学过哪些数请写出来: 、
2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
3、阅读课本P 1和P 2三幅图(重点是三个例子,边阅读边思考)
回答上面提出的问题: .
二、探究新知
1、正数与负数的产生
1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.
请你也举一个具有相反意义量的例子: .
2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
3)练习 P3第一题到第四题(直接做在课本上)
三、练习
1、读出下列各数,指出其中哪些是正数,哪些是负数?
—2, 0.6, +13
, 0, —3.1415, 200, —754200, 2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示
四、应用迁移,巩固提高(A 组为必做题)
A 组 1.任意写出5个正数:________________;任意写出5个负数:_______________.
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.
3.已知下列各数:51-,4
32-,3.14,+3065,0,-239.
则正数有_____________________;负数有____________________.
4.如果向东为正,那么 -50m 表示的意义是………………………( )
A .向东行进50m C .向北行进50m
B .向南行进50m D .向西行进50m
5.下列结论中正确的是 …………………………………………( )
A .0既是正数,又是负数
B .O 是最小的正数
C .0是最大的负数
D .0既不是正数,也不是负数
6.给出下列各数:-3,0,+5,213
-,+3.1,21-,2004,+2008.
其中是负数的有 ……………………………………………………( )
A .2个
B .3个
C .4个
D .5个
B 组
1.零下15℃,表示为_________,比O℃低4℃的温度是_________.
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中
最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________.
C 组
1.写出比O 小4的数,比4小2的数,比-4小2的数.
2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10
米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.。