函数与导数期末复习题
- 格式:doc
- 大小:272.50 KB
- 文档页数:7
高三期末复习函数方程不等式(2)编写人:刘洪志题型一、导数的几何意义⑴已知,P Q 为抛物线2=2x y 上两点,点,P Q 的横坐标分别为4,-2,过,P Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为 .⑵曲线y =x (3ln x +1)在点)1,1(处的切线方程为________.⑶已知函数()cos f x k x =的图像经过点,13P π⎛⎫⎪⎝⎭,则函数图像上过点P 的切线斜率为 .题型二、利用导数研究函数⑴已知函数()()211ln 2f x x ax a x =-+-,其中1a >,试讨论函数()f x 的单调性⑵设函数()()2x k f x x k e =-,⑴求()f x 的极大值;⑵若对任意的()0,x ∈+∞,都有()1f x e≤求实数k 的取值范围题型三、解不等式 ⑴不等式1121x x -≤+的解集是 ⑵已知关于x 的不等式101ax x ->+的解集是()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭ ,则a = ⑶已知函数()2f x x x =-,若()()212f m f --<,则实数m 的取值范围是 ⑷函数()f x 的定义域为R ,()12f -=,对任意的(),2x R f x '∈>,则()24f x x >+的解集是 题型四、基本不等式的应用⑴已知()0,0,ln 0a b a b >>+=,则11a b+的最小值为 . ⑵设椭圆2222:1(0)x y C a b a b+=>>恒过定点(1,2)A ,则椭圆的中心到准线的距离的最小值 . ⑶已知,x y 为实数,若2241x y xy ++=,则2x y +的最大值为 .⑷不等式()228a b b a b λ+≥+对任意的,a b R ∈恒成立,则实数λ的取值范围是 . 题型五、应用题⑴有一海湾,海岸线为近似半个椭圆(如图),椭圆长轴端点为A ,B ,AB 间距离为3km ,椭圆焦点为C ,D ,CD 间距离为2km ,在C ,D 处分别有甲,乙两个油井,现准备在海岸线上建一度假村P ,不考虑风向等因素影响,油井对度假村废气污染程度与排出废气的浓度成正比(比例系数都为1k ),与距离的平方成反比(比例系数都为2k ),又知甲油井排出的废气浓度是乙的8倍。
高中数学函数与导数练习题及参考答案一、选择题(每小题3分,共30分)1. 设函数f(x)=2x^3-3x^2+4x-1,则f'(x)的值为:A. 6x^2-6x+4B. 6x^2-3x+4C. 6x^2-6x-4D. 6x^2-3x-42. 已知函数f(x)=e^(2x)-x,下列说法正确的是:A. f(x)的定义域为RB. f(x)的值域为RC. 对任意x∈R,f(x)≥0D. f(x)在R上递增3. 函数f(x)=log(2x+1)的定义域为:A. x>1/2B. x≥1/2C. x>1D. x≥-1/24. 函数f(x)=(x-2)^2-1的图像对称于:A. x轴B. y轴C. 原点D. 直线x=25. 函数f(x)=x^3+3x^2-x+2的最小值为:A. -∞B. -4C. 1D. 66. 函数f(x)=log_a(x^2-4)的定义域为:A. x>2B. x<-2C. x>2或x<-2D. x>07. 设函数f(x)=(x+1)e^x,则f'(x)=:A. (x+2)e^xB. xe^xC. (x+1)e^x+e^xD. (x+1)e^x+18. 函数y=2^(x^2)的图像在y轴的左侧为:A. 上拋曲线B. 下落曲线C. 开口向上的曲线D. 开口向下的曲线9. 函数f(x)=√(x-1)的定义域为:A. x>1B. x≥1C. x>0D. x≥010. 设函数f(x)=x^3-3x^2+2,则f''(x)的值为:A. 6x-6B. 6x-2C. 6x-3D. 6x-4二、计算题(每小题5分,共40分)1. 计算函数f(x)=e^(2x)-3x在x=1处的导数f'(1)的值。
解答:f'(x)=2e^(2x)-3f'(1)=2e^2-32. 已知函数y=log_a(x^2-4),求f(x)在x=0处的导数f'(0)。
高中数学函数与导数复习题集附答案1. 函数的概念与性质1.1 函数的定义函数是一种具有对应关系的数学工具,它使得一个集合中的每个元素都与另一个集合中的唯一元素相对应。
一般来说,函数由输入和输出组成,输入称为自变量,输出称为因变量。
1.2 函数的性质函数有以下几个基本性质:- 定义域:函数的自变量能取的值的范围。
例如,对于函数f(x) =√x,定义域是非负实数集。
- 值域:函数的因变量能取的值的范围。
继续以f(x) = √x为例,值域是非负实数集。
- 单调性:函数的增减关系。
可分为严格单调递增、严格单调递减、非严格单调递增、非严格单调递减四种情况。
- 奇偶性:函数图像相对于y轴的对称性。
奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
- 周期性:函数图像的重复性。
周期函数满足f(x+T) = f(x),其中T为正数。
2. 常见函数类型及性质2.1 一次函数(线性函数)一次函数的一般形式为f(x) = kx + b,其中k和b为常数。
- 斜率 k 决定了函数图像的斜率和单调性。
- 截距 b 决定了函数图像与y轴的交点位置。
2.2 二次函数(抛物线函数)二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a ≠ 0。
- 抛物线开口方向由二次项系数a的正负决定。
- 顶点坐标为(-b/2a, f(-b/2a))。
- 对称轴方程为x = -b/2a。
2.3 幂函数幂函数的一般形式为f(x) = x^a,其中a为常数。
- 当a > 1时,函数图像在定义域上是递增的。
- 当0 < a < 1时,函数图像在定义域上是递减的。
- 当a < 0时,函数图像具有奇对称性。
2.4 指数函数指数函数的一般形式为f(x) = a^x,其中a > 0且a ≠ 1。
- 指数函数的图像都通过点(0, 1)。
- 当a > 1时,函数图像在整个定义域上递增。
导数与函数综合试题答案一、选择题1. 题目:若函数f(x)在区间[0,1]上单调递增,则下列选项中正确的是:A. f(0) < f(1)B. f(1) < f(0)C. f(0) = f(1)D. f(x)在[0,1]上可能存在极小值点答案:A2. 题目:设函数g(x) = x^3 - 3x^2 + 2x,求g(x)的单调递减区间。
答案:[0,2]3. 题目:函数h(x) = e^x的导数为:答案:e^x4. 题目:若函数k(x) = x^2 + 3x + 2在点x=1处的切线方程为:答案:y = 5x - 25. 题目:设函数p(x) = x^3 - 6x^2 + 11x - 6,求p(x)的极值点。
答案:x = 1, x = 2, x = 3二、填空题1. 题目:函数q(x) = |x^2 - 4x|在x=2处的导数为______。
答案:42. 题目:若函数r(x) = sin(x) + cos(x),则r'(x) = ______。
答案:cos(x) - sin(x)3. 题目:函数s(x) = ln(x)的定义域为______。
答案:(0, +∞)4. 题目:设函数t(x) = x^4 - 4x^3 + 6x^2 - 4x + 1,求t(x)的拐点坐标。
答案:(1, 2)5. 题目:函数u(x) = x^3的单调递增区间为______。
答案:(-∞, +∞)三、解答题1. 题目:设函数v(x) = x^4 - 4x^3 + 6x^2 - 4x + 1,求v(x)的最大值和最小值。
答案:首先求导得到v'(x) = 4x^3 - 12x^2 + 12x - 4,令v'(x) = 0,解得x = 0, 1, 2。
通过分析二阶导数v''(x) = 12x^2 - 24x + 12 = 12(x - 1)^2 + 1 > 0,可知v(x)在x = 0和x = 2处取得极小值,在x = 1处取得极大值。
导函数复习题及答案1. 定义:若函数f(x)在点x=a处可导,则称f(x)在x=a处的导数为导函数,记作f'(a)。
请给出导数的定义式。
2. 基本导数公式:列出几个常见的导数公式。
3. 导数的几何意义:解释导数在几何上的直观含义。
4. 导数的运算法则:给出求导的四则运算法则。
5. 高阶导数:解释什么是高阶导数,并给出一个例子。
6. 复合函数的导数:使用链式法则求复合函数的导数。
7. 隐函数的导数:给出隐函数求导的一般步骤。
8. 应用题:给定一个函数f(x)=x^3-2x^2+x+5,求其在x=2处的导数。
9. 应用题:若某物体的速度函数v(t)=t^2-3t+2,求其在t=1时的加速度。
10. 应用题:给定一个函数f(x)=sin(x)+cos(x),求其导数f'(x)。
答案1. 定义:若极限\( \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \)存在,则称f(x)在x=a处可导,该极限值即为f(x)在x=a处的导数,记作\( f'(a) \)。
2. 基本导数公式:- \( \frac{d}{dx}x^n = nx^{n-1} \)(幂函数)- \( \frac{d}{dx}e^x = e^x \)(指数函数)- \( \frac{d}{dx}\ln(x) = \frac{1}{x} \)(自然对数函数)- \( \frac{d}{dx}\sin(x) = \cos(x) \)- \( \frac{d}{dx}\cos(x) = -\sin(x) \)3. 导数的几何意义:导数在几何上表示函数在某点的切线斜率。
4. 导数的运算法则:- \( \frac{d}{dx}(kf(x)) = k\frac{d}{dx}f(x) \)(常数倍) - \( \frac{d}{dx}(f(x) \pm g(x)) = \frac{d}{dx}f(x) \pm\frac{d}{dx}g(x) \)(和差)- \( \frac{d}{dx}(f(x)g(x)) = f(x)\frac{d}{dx}g(x) +g(x)\frac{d}{dx}f(x) \)(乘积)- \( \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) =\frac{\frac{d}{dx}f(x)g(x) - f(x)\frac{d}{dx}g(x)}{g(x)^2} \)(商)5. 高阶导数:例如,若f'(x)存在,则f''(x)表示f'(x)的导数,称为二阶导数。
高中函数和导数试题及答案一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 3C. 2x + 1D. 3x + 22. 若函数f(x) = sin(x) + cos(x)的导数是:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)3. 已知函数g(x) = 2x^3 - 5x^2 + 7x - 1,其在x = 1处的导数值是:A. -1B. 0C. 1D. 2二、填空题4. 若f(x) = 4x^3 - 5x^2 + 6x - 7,求f'(x) = __________。
5. 若f(x) = x^4 + 2x^3 - 3x^2 + 4x + 5,求f'(2) = __________。
三、解答题6. 已知函数h(x) = x^3 - 6x^2 + 11x - 6,求h'(x),并求h'(1)的值。
7. 已知函数k(x) = √x,求k'(x),并讨论k(x)的单调性。
四、综合题8. 已知函数F(x) = ln(x) + x^2,求F'(x),并讨论F(x)在x > 0时的增减性。
答案解析:一、选择题1. 正确答案:A. 2x + 3解析:f'(x) = 2x + 3,根据导数的幂规则和线性规则计算得出。
2. 正确答案:A. cos(x) - sin(x)解析:f'(x) = cos(x) - sin(x),根据三角函数的导数规则计算得出。
3. 正确答案:B. 0解析:g'(x) = 6x^2 - 10x + 7,代入x = 1得g'(1) = 0。
二、填空题4. 答案:12x^2 - 10x + 6解析:根据导数的幂规则和线性规则计算。
5. 答案:44解析:f'(x) = 4x^3 + 6x^2 - 6x + 4,代入x = 2计算得出。
函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。
〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。
导数专题复习一、求下列函数的导数1.(08浙江)()()f x x x a =-2.(07天津)2221()()1ax a f x x x -+=∈+R ,其中a ∈R . 3.(08陕西)21()kx f x x c+=+(0c >且1c ≠,k ∈R ) 4.(06山东) ()(1)ln(1)f x ax a x =-++,其中1a ≥- 5.(08安徽)1()(01)ln f x x x x x=>≠且6.(09全国)()()21f x x aIn x =++ 7.(07海南)2()ln(23)f x x x =++. 8.(07海南理) 2()ln()f x x a x =++ .*9.(09辽宁)f(x)=21x 2-ax+(a -1)ln x ,1a > 10.(07四川) 已知函数()()22ln 0f x x a xx x=++>,11.(08山东)1()1ln(1),(1)ng x x x x =-----其中n ∈N*,a 为常数. 12.(09陕西)1()ln(1),01xf x ax x x-=++≥+,其中0a > 13.08辽宁设函数ln ()ln ln(1)1xf x x x x=-+++. 14.(11全国)h (x )=2ln x +k -1x 2-1x (x >0),15.(07安徽)a ≥0,f (x )=x -1-ln 2 x +2a ln x (x >0).16.(05全国)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,17.(11北京)kx e k x x f 2)()(-=18.(08重庆)2333()()422x g x x x e -=+- ,19.(09重庆)2()(0)xe g x k x k =>+20.(06全国)()11axx f x e x-+=- 21.(13年一模)2()=(1)x a f x x ,2()()e xf x x ax a -=++,2()xax x a f x e++=,()ln 1a f x x x =+-,x a ax x x f ln )1(21)(2-+-=,1()()2ln ()f x a x x a x =--∈R二、导数的几何意义1.(2010全国卷2文数)(7)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则(A )1,1a b == (B) 1,1a b =-= (C) 1,1a b ==- (D) 1,1a b =-=- 2.若函数()y f x =的导函数...在区间[,]a b 上是增函数, 则函数()y f x =在区间[,]a b 上的图象可能是【 A 】.A .B .C .D .3.如图,已知函数()y f x =的图象,画出()f x '的图象 ~ab ab axyy y )b4.如图,已知函数()y f x '=的图象,画出()y f x =的图象5.(2010辽宁文数)(12)已知点P 在曲线41xy e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 (A)[0,4π) (B)[,)42ππ (C ) 3(,]24ππ (D) 3[,)4ππ6.(11山东理科)函数2sin 2xy x =-的图象大致是|A .B .C .D .7.(2011石景山一模文8).定义在R 上的函数)(x f 满足1)4(=f ,()f x '为)(x f 的导函数,已知)('x f y =的图象如图所示,若两个正数a ,b 满足1)2(<+b a f ,则11++a b 的取值范围是( )A .)31,51(B .1(,)(5,)3-∞+∞ C .)5,31(D .)3,(-∞8. (2013届北京丰台区一模理科)已知函数1()f x x a=+,2()3g x x =+. (Ⅰ)若曲线()()()h x f x g x =-在点(1,0)处的切线斜率为0,求a,b 的值;;9. (2013届房山区一模理科数学)已知函数21()(1)ln 2f x ax a x x =-++ ,.(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;10. (2013届门头沟区一模理科)已知函数2()xax x af x e ++=.(Ⅰ)函数()f x 在点(0,(0))f 处的切线与直线210x y +-=平行,求a 的值; 11. (北京市东城区普通校2013届高三3月联考数学(理)试题 )已知函数x a ax x x f ln )1(21)(2-+-=xyOO yx(Ⅰ)若2=a ,求函数)(x f 在(1,)1(f )处的切线方程;12. (北京市顺义区2013届高三第一次统练数学理科试卷(解析))设函数()()()12,03123-+=>-=b bx x g a ax x x f . (I)若曲线()x f y =与曲线()x g y =在它们的交点()c ,1处具有公共切线,求b a ,的值; 13. (【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )已知函数()=ln +1,f x x ax a R -∈是常数.(Ⅰ)求函数=()y f x 的图象在点(1,(1))P f 处的切线l 的方程;}三、利用导数研究函数的性质(一)单调性与导数的符号1.已知函数2()2ln 1f x x a x =--(0)a ≠,求函数()f x 的单调区间 2.求函数()ln f x a x x =+的单调区间3.求函数2()ln f x a x x =+,a ∈R ,的单调区间 4.已知函数21()(1)ln 2f x x ax a x =-+-,1a >,讨论函数()f x 的单调性。
函数与导数一、单选题1.(2020·甘肃城关·兰州一中月考(文))函数21()log f x x x=-的零点所在区间( ) A .(1,2)B .(2,3)C .1(0,)2D .1(2,1)2.(2020·甘肃城关·兰州一中月考(文))已知函数()f x 的图象关于原点对称,且满足()0(3)1f x f x ++-=,且当)4(2x ∈,时,12()log (1)f x x m =--+,若(2021)1(1)2f f -=-,则m =( )A .43B .34C .43-D .34-3.(2020·云南昆明一中高三月考(文))已知函数()f x 是奇函数,当0x >时()22xf x x =+,则()()12f f +-=( )A .8-B .4-C .5-D .114.(2020·甘肃城关·兰州一中月考(文))下列函数中,既是奇函数又在()0,∞+单调递减的函数是( ) A .22x x y -=-B .tan y x x =C .sin y x x =-D .12y x x=- 5.(2020·甘肃城关·兰州一中月考(文))函数()sin ln f x x x x =-的图象大致是( )A .B .C .D .6.(2020·甘肃城关·兰州一中月考(文))函数()f x 的定义域为R ,对任意的[)()1212,1,x x x x ∈+∞≠,有()()21210f x f x x x -<-,且函数()1f x +为偶函数,则( )A .()()()123f f f <-<B .()()()321f f f <-<C .()()()231f f f -<<D .()()()213f f f -<<7.(2020·甘肃城关·兰州一中月考(文))若函数2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A .(,2]-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .12,8⎛⎫-- ⎪⎝⎭D .(2,)-+∞8.(2020·云南昆明一中高三月考(文))已知函数()ln f x x x =,若直线l 过点()0,e -,且与曲线()y f x =相切,则直线l 的斜率为( ) A .2- B .2 C .e -D .e9.(2020·吉林高三其他(文))已知函数2()2f x x x =-,若8log 27a =,5log 11b =,0.25log 8c =-,则( )A .f (b )f <(c )f <(a )B .f (b )f <(a )f <(c )C .f (c )f <(a )f <(b )D .f (c )f <(b )f <(a )10.(2020·四川其他(文))已知函数()sin f x x x =-,则下列关系不正确的是( ) A .函数()f x 是奇函数B .函数()f x 在R 上单调递减C .0x =是函数()f x 的唯一零点D .函数()f x 是周期函数11.(2020·四川其他(文))已知函数ln(1),0()0,0x x f x x +≥⎧=⎨<⎩,若(4)(23)f x f x -<-,则实数x 的取值范围是( )A .[2,)+∞B .[2,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .[4,)+∞12.(2020·黑龙江道里·哈尔滨三中高三月考(文))若定义域1,2⎡⎫+∞⎪⎢⎣⎭的函数()f x 满足()()xef x f x x'-=且()1f e =-,若13f e m ⎛⎫-≤- ⎪⎝⎭恒成立,则m 的取值范围为( ) A .1,12⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .20,5⎛⎤ ⎥⎝⎦D .21,52⎡⎤⎢⎥⎣⎦13.(2020·安徽庐阳·合肥一中高三月考(文))已知()13,03,0x x e x f x x x x +⎧⋅≤=⎨->⎩,若关于x 的方程()()210f x a f x -⋅-=有5个不同的实根,则实数a 的取值范围为( )A .30,2⎧⎫⎨⎬⎩⎭B .30,2⎛⎫ ⎪⎝⎭C .30,2⎡⎤⎢⎥⎣⎦D .30,2⎛⎤ ⎥⎝⎦14.(2020·广西南宁二中月考(文))已知定义在R 上的偶函数()f x 在[0,)+∞上递减,若不等式(ln 1)(ln 1)2(1)f ax x f ax x f -+++--≥对[]1,3x ∈恒成立,则实数a 的取值范围为( )A .(2,)eB .1[,)e+∞C .1,e e⎡⎤⎢⎥⎣⎦D .12ln 3,3e +⎡⎤⎢⎥⎣⎦15.(2020·甘肃城关·兰州一中月考(文))已知定义在R 上的函数()f x 满足()()2f x x =+,且当11x -≤≤时,()2xf x =,函数()g x x =,实数a ,b 满足3b a >>.若[]1,x a b ∀∈,2x ⎡⎤∃∈⎣⎦,使得()()12f x g x =成立,则b a -的最大值为( )A .12B .1CD .2二、填空题16.(2020·甘肃城关·兰州一中月考(文))设曲线()ln 1y ax x =-+在点()0,0处的切线方程为20x y -=,则a =________.17.(2020·云南昆明一中高三月考(文))函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩.若关于x 的方程()()0f x m m =< 有且只有两个不相等的实根1x ,2x ,则12x x +的值是_________.18.(2020·河南洛阳·高三月考(文))已知函数(),0,ln ,0,x e x f x x x -⎧≤⎪=⎨>⎪⎩若关于x 的方程()()102f x a f x a ⎡⎤-⋅--=⎡⎤⎣⎦⎢⎥⎣⎦恰有5个不相等的实数根,则实a 的取值范围是______. 19.(2020·甘肃城关·兰州一中月考(文))函数()212log 2y x x =-的单调递增区间是_________.20.(2020·甘肃城关·兰州一中月考(文))已知()f x 是定义域为R 的奇函数,()'f x 是()f x 的导函数,(1)0f -=,当0x >时,()3()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是________.21.(2020·甘肃城关·兰州一中月考(文))已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______.三、解答题22.(2020·云南昆明一中高三月考(文))已知函数()xf x e ax =-,()1lng x x x =+.(1)讨论函数()f x 的单调性;(2)若当0x >时,方程()()f x g x =有实数解,求实数a 的取值范围.23.(2020·甘肃城关·兰州一中月考(文))已知函数()()ln f x x x a =-,()12x g x e =-(e为自然对数的底).(1)讨论()f x 的极值;(2)当1a =时,若存在(]00,x m ∈,使得()()00f x g m -≤,求实数m 取值范围. 24.(2020·陕西西安·月考(文))已知函数()ln 1,f x x ax a R =-+∈. (1)求函数()f x 的单调区间;(2)若不等式()0f x ≤恒成立,求实数a 的取值范围;(3)当*n N ∈时,求证:111111ln(1)123123+++<+<+++++n n n. 25.(2020·广西南宁二中月考(文))已知函数3211()(1)132f x ax a x x =-+++(1a ≥). (I )若3a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (II )若()f x 在R 上无极值点,求a 的值;(III )当(0,2)x ∈时,讨论函数()f x 的零点个数,并说明理由.26.(2020·四川其他(文))已知曲线()(3)(2ln )xf x x e a x x =-+-(其中e 为自然对数的底数)在1x =处切线方程为(1) y e x b =-+.(Ⅰ)求a ,b 值;(Ⅱ)证明:()f x 存在唯一的极大值点0x ,且()0215e f x --<<-. 27.(2020·河南洛阳·高三月考(文))已知函数()()2122xf x x e x x =-+-. (1)求函数()f x 的单调区间;(2)若不等式()()21442a af x x a x ⎛⎫≥+-++⎪⎝⎭对任意()2,x ∈+∞恒成立,求实数a 的取值范围. 28.(2020·广东天河·华南师大附中高三月考(文))设2()g x lnx x x =+-.(1)求()g x 的单调区间;(2)当0a >时,2()0xxe a x a g x --≥恒成立,求实数a 的取值范围.29.(2020·湖北宜昌·高三期末(文))已知函数22()ln f x x a x ax =--.(1)当1a =时,求()f x 的单调区间;(2)若对于定义域内任意的x ,()0f x ≥恒成立,求a 的取值范围;(3)记()()g x f x a x =+,若()g x 在区间1[,]e e 内有两个零点,求a 的取值范围.30.(2020·吉林高三其他(文))已知函数()32ln f x ax bx x =--.(1)当0b =时,讨论()f x 的单调性;(2)若1a b ==,且()f x m ≥恒成立,求m 的取值范围.一、单选题1.(2020·甘肃城关·兰州一中月考(文))函数21()log f x x x=-的零点所在区间( ) A .(1,2) B .(2,3)C .1(0,)2D .1(2,1)【答案】A 【解析】函数()f x 的定义域为(0,)+∞,且函数()f x 单调递增,f (1)2log 1110=-=-<,f (2)2111log 210222=-=-=>, ∴在(1,2)内函数()f x 存在零点,故选:A .2.(2020·甘肃城关·兰州一中月考(文))已知函数()f x 的图象关于原点对称,且满足()0(3)1f x f x ++-=,且当)4(2x ∈,时,12()log (1)f x x m =--+,若(2021)1(1)2f f -=-,则m =( )A .43B .34C .43-D .34-【答案】C【解析】因为函数()f x 的图象关于原点对称,所以()f x 为奇函数, 因为()()()133f x f x f x +=--=-, 故函数()f x 的周期为4,则()()20211f f =;而()()11f f -=-,所以由(2021)1(1)2f f -=-可得1(1)3f =;而121(1)(3)log (31)3f f m =-=--=, 解得43m =-. 故选:C .3.(2020·云南昆明一中高三月考(文))已知函数()f x 是奇函数,当0x >时()22xf x x =+,则()()12f f +-=( )A .8-B .4-C .5-D .11【答案】C【解析】:因为0x >时,()22x f x x =+,所以12(1)213f =+=;又因为()f x 是奇函数,所以()()()22448f f -=-=-+=-, 即()()51238f f +-=-=-, 故选:C.4.(2020·甘肃城关·兰州一中月考(文))下列函数中,既是奇函数又在()0,∞+单调递减的函数是( ) A .22x x y -=-B .tan y x x =C .sin y x x =-D .12y x x=- 【答案】D【解析】对A ,函数22xxy -=-在()0,∞+单调递增,故A 不符合;对B ,函数tan y x x =为偶函数,故B 不符合;对C ,函数'1cos 0y x =-≥在()0,∞+恒成立,所以在()0,∞+单调递增,故C 不符合; 对D ,函数既是奇函数又在()0,∞+单调递减,故D 符合; 故选:D5.(2020·甘肃城关·兰州一中月考(文))函数()sin ln f x x x x =-的图象大致是( )A .B .C .D .【答案】B【解析】()sin()ln sin ln ()f x x x x x x x f x -=----=-=,()f x ∴为偶函数,排除A ,C 选项;当(0,1)x ∈时,sin 0,ln 0x x x ><,()0f x ∴>,排除D 选项,故选B .故选B6.(2020·甘肃城关·兰州一中月考(文))函数()f x 的定义域为R ,对任意的[)()1212,1,x x x x ∈+∞≠,有()()21210f x f x x x -<-,且函数()1f x +为偶函数,则( )A .()()()123f f f <-<B .()()()321f f f <-<C .()()()231f f f -<<D .()()()213f f f -<<【答案】C【解析】因为对任意的[)()1212,1,x x x x ∈+∞≠,有2121()()0f x f x x x -<-,所以对任意的[)()1212,1,x x x x ∈+∞≠,21x x -与21()()f x f x -均为异号, 所以()f x 在[1,)+∞上单调递减,又函数()1f x +为偶函数,即(1)(1)f x f x +=-,所以(2)(4)f f -=,所以()()()2(4)31f f f f -=<<. 故选:C.7.(2020·甘肃城关·兰州一中月考(文))若函数2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A .(,2]-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .12,8⎛⎫-- ⎪⎝⎭D .(2,)-+∞【答案】D【解析】因为2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间, 所以1()20f x ax x '=+>在区间1,22⎛⎫⎪⎝⎭上成立, 即212a x >-在区间1,22⎛⎫⎪⎝⎭上有解,因此,只需212412a >-=-⎛⎫ ⎪⎝⎭,解得2a >-.故选D8.(2020·云南昆明一中高三月考(文))已知函数()ln f x x x =,若直线l 过点()0,e -,且与曲线()y f x =相切,则直线l 的斜率为( ) A .2- B .2 C .e - D .e【答案】B【解析】设切点坐标为(),ln t t t ,()ln f x x x =,()ln 1f x x '=+,直线l 的斜率为()ln 1f t t '=+,所以,直线l 的方程为()()ln ln 1y t t t x t -=+-,将点()0,e -的坐标代入直线l 的方程得()ln ln 1e t t t t --=-+,解得t e =, 因此,直线l 的斜率为()2f e '=. 故选:B.9.(2020·吉林高三其他(文))已知函数2()2f x x x =-,若8log 27a =,5log 11b =,0.25log 8c =-,则( )A .f (b )f <(c )f <(a )B .f (b )f <(a )f <(c )C .f (c )f <(a )f <(b )D .f (c )f <(b )f <(a )【答案】A【解析】27982443log log 3log log 82a ===>=,5553log 11log log 2b ==<=,0.2543log 8log 82c =-==,又55log 11log 51b =>=,1b c a ∴<<<,又2()2f x x x =-在[1,)+∞上单调递增,f ∴(b )f <(c )f <(a ).故选:A .10.(2020·四川其他(文))已知函数()sin f x x x =-,则下列关系不正确的是( ) A .函数()f x 是奇函数B .函数()f x 在R 上单调递减C .0x =是函数()f x 的唯一零点D .函数()f x 是周期函数【答案】D【解析】因为()sin f x x x =-的定义域为R ,()sin()()sin ()f x x x x x f x -=---=-+=-,所以函数为奇函数,故A 正确;因为()cos 10f x x '=-≤,所以()sin f x x x =-在R 上为减函数,故B 正确;因为(0)sin 000f =-=,且()sin f x x x =-在R 上为减函数,所以函数()f x 的唯一零点是0,故C 正确;因为()sin f x x x =-,不存在0T ≠,使得()sin()()f x T x T x T f x +=+--=,故D 错误. 故选:D11.(2020·四川其他(文))已知函数ln(1),0()0,0x x f x x +≥⎧=⎨<⎩,若(4)(23)f x f x -<-,则实数x 的取值范围是( )A .[2,)+∞B .[2,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .[4,)+∞【答案】C【解析】:因为ln(1),0()0,0x x f x x +≥⎧=⎨<⎩,当0x ≥时,()()ln 1f x x =+在定义域上单调递增,且()00f =,当0x <时()00f =,要使(4)(23)f x f x -<-,则423230x x x -<-⎧⎨->⎩解得32x >,即3,2x ⎛⎫∈+∞⎪⎝⎭故选:C12.(2020·黑龙江道里·哈尔滨三中高三月考(文))若定义域1,2⎡⎫+∞⎪⎢⎣⎭的函数()f x 满足()()xef x f x x'-=且()1f e =-,若13f e m ⎛⎫-≤- ⎪⎝⎭恒成立,则m 的取值范围为( ) A .1,12⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .20,5⎛⎤ ⎥⎝⎦D .21,52⎡⎤⎢⎥⎣⎦【答案】D【解析】函数()f x 满足()()x e f x f x x '-=,()(1)x f x f x e x '-∴=,则()1x f x e x'⎛⎫= ⎪⎝⎭, 可设()ln xf x x c e=+,c 为常数,故()()ln x f x x c e =+,()11f c e e ∴=⋅=-, 1c ∴=-,故()()ln 1xf x x e =-,1()ln 1x f x e x x ⎛⎫'=+- ⎪⎝⎭,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,令1()ln 1g x x x =+- ,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,则22111()x g x x x x -'=-=, 1,12x ⎡⎫∈⎪⎢⎣⎭时,()0g x '<,故()g x 单调递减;()1,∈+∞x 时,()0g x '>,故()g x 单调递增,()g x ∴在1x =时取得最小值(1)0g =,()0g x ∴≥恒成立,1()ln 10x f x e x x ⎛⎫'=+-≥ ⎪⎝⎭在1,2x ⎡⎫∈+∞⎪⎢⎣⎭成立,故()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上递增,又()1f e =-,所以不等式13f e m ⎛⎫-≤- ⎪⎝⎭即13(1)f f m ⎛⎫-≤ ⎪⎝⎭,根据单调性得11312m ≤-≤,解得2152m ≤≤. 故选:D.13.(2020·安徽庐阳·合肥一中高三月考(文))已知()13,03,0x x e x f x x x x +⎧⋅≤=⎨->⎩,若关于x 的方程()()210f x a f x -⋅-=有5个不同的实根,则实数a 的取值范围为( )A .30,2⎧⎫⎨⎬⎩⎭B .30,2⎛⎫ ⎪⎝⎭C .30,2⎡⎤⎢⎥⎣⎦D .30,2⎛⎤ ⎥⎝⎦【答案】B【解析】设()t f x =,则方程为210t at --=,解得t =,且10t =>,20t =<,当0x ≤时,()1x f x xe+=,则()()11x f x x e+'=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减,当()1,0x ∈-时,()0f x '>,()f x 单调递增, 可知()f x 在1x =-处取得极小值()11f -=-;当0x >时,()33=-f x x x ,则()()()233311f x x x x '=-=-+,当()0,1x ∈时,()0f x '>,()f x 单调递增, 当()1,x ∈+∞时,()0f x '<,()f x 单调递减, 可知()f x 在1x =处取得极大值()12f =, 如图作出函数()f x 的图象,要使关于x 的方程()()210fx a f x -⋅-=有5个不同的实根,有1221t t <⎧⎨>-⎩,解得302a <<.故选:B.14.(2020·广西南宁二中月考(文))已知定义在R 上的偶函数()f x 在[0,)+∞上递减,若不等式(ln 1)(ln 1)2(1)f ax x f ax x f -+++--≥对[]1,3x ∈恒成立,则实数a 的取值范围为( )A .(2,)eB .1[,)e+∞C .1,e e⎡⎤⎢⎥⎣⎦D .12ln 3,3e +⎡⎤⎢⎥⎣⎦【答案】D 【解析】由于定义在R 上的偶函数()f x 在[)0,+∞上递减,则()f x 在(,0)-∞上递增,又ln 1(ln 1)ax x ax x --=--++,则(ln 1)(ln 1)2(1)f ax x f ax x f -+++--≥ 可华化为: 2(ln 1)2(1)f ax x f --≥,即(ln 1)(1)f ax x f --≥对[]1,3x ∈恒成立,则1ln 11ax x -≤--≤,所以:ln x a x ≥且ln 2x a x+≤ 对[1,3]x ∈同时恒成立. 设ln ()xg x x =,21ln ()x g x x -'=,则()g x 在[1,e)上递增,在(,3]e 上递减,max1()()g x g e e ∴==. 设ln 2()x h x x+=,21ln ()0x h x x --'=< ,()h x 在[1,3] 上递减,min2ln 3()(3)3h x h +== . 综上得:a 的取值范围是12ln 3[,]3e +.15.(2020·甘肃城关·兰州一中月考(文))已知定义在R 上的函数()f x 满足()()2f x x =+,且当11x -≤≤时,()2xf x =,函数()g x x =,实数a ,b 满足3b a >>.若[]1,x a b ∀∈,2x ⎡⎤∃∈⎣⎦,使得()()12f x g x =成立,则b a -的最大值为( )A .12B .1CD .2【答案】B【解析】当)x ⎡∈⎣时,()(g x ∈,令2x =12x =±.∵()()2f x f x =+,∴()f x 的周期为2,所以()f x 在[-1,5]的图象所示:结合题意,当17422a =-+=,19422b =+=时,b a -取得最大值.最大值为1. 故选:B.二、填空题16.(2020·甘肃城关·兰州一中月考(文))设曲线()ln 1y ax x =-+在点()0,0处的切线方程为20x y -=,则a =________. 【答案】3 【解析】()ln 1y ax x =-+,11y a x '∴=-+. 由题意可知,当0x =时,12y a '=-=,解得3a =. 故答案为:3.17.(2020·云南昆明一中高三月考(文))函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩.若关于x 的方程()()0f x m m =< 有且只有两个不相等的实根1x ,2x ,则12x x +的值是_________.【答案】3【解析】画出()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩的图像如下,因为()(0)f x m m =<有且只有两个不等实根, 即函数()y f x =与y m =有两个不同交点,由图像可得,112m -<<-, 所以1x ,2x ,关于直线32x =对称, 则123232x x +=⨯=. 故答案为:3.18.(2020·河南洛阳·高三月考(文))已知函数(),0,ln ,0,x e x f x x x -⎧≤⎪=⎨>⎪⎩若关于x 的方程()()102f x a f x a ⎡⎤-⋅--=⎡⎤⎣⎦⎢⎥⎣⎦恰有5个不相等的实数根,则实a 的取值范围是______. 【答案】1,12⎡⎫⎪⎢⎣⎭【解析】作出函数()f x 的大致图象如图所示,由已知关于x 的方程()f x a =或()12f x a =+恰有5个不相等的实数根,则01,11,2a a <<⎧⎪⎨+≥⎪⎩解得1,12a ⎡⎫∈⎪⎢⎣⎭.故答案为:1,12⎡⎫⎪⎢⎣⎭19.(2020·甘肃城关·兰州一中月考(文))函数()212log 2y x x =-的单调递增区间是_________.【答案】(),0-∞【解析】由220x x ->, 可得2x >或0x <, 所以函数的定义域为()(),02,-∞+∞又()211t x =--在区间(),0-∞的单调递减,13log y t =单调递减,∴函数()212log 2y x x =-的单调递增区间是(),0-∞, 故答案为(),0-∞.20.(2020·甘肃城关·兰州一中月考(文))已知()f x 是定义域为R 的奇函数,()'f x 是()f x 的导函数,(1)0f -=,当0x >时,()3()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是________.【答案】(,1)(0,1)-∞-【解析】 令3()()f x g x x =,0x >, 因为当0x >时,()3()0xf x f x '-<,则当0x >时,4()3()()0xf x f x g x x'-'=<,即()g x 在(0,)+∞上单调递减, 又因为()f x 为奇函数,即()()f x f x -=-,则33()()()()()f x f x g x g x x x--===-, 故()g x 为偶函数且在(,0)-∞上单调递增, 因为()10f -=,故()()110g g -==,由()0f x >可得3()0x g x >,所以0()0x g x >⎧⎨>⎩或0()0x g x <⎧⎨<⎩,所以001x x >⎧⎨<<⎩或01x x <⎧⎨<-⎩. 解可得,1x <-或01x <<. 故答案为:()(),10,1-∞-⋃.21.(2020·甘肃城关·兰州一中月考(文))已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______.【答案】3,4∞⎛⎫-+ ⎪⎝⎭【解析】1240xxa ++⋅>可化为212224xx x xa --+>-=--, 令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.三、解答题22.(2020·云南昆明一中高三月考(文))已知函数()xf x e ax =-,()1lng x x x =+.(1)讨论函数()f x 的单调性;(2)若当0x >时,方程()()f x g x =有实数解,求实数a 的取值范围.【答案】(1)答案见解析;(2)[e 1,)-+∞.【解析】 【分析】(1)先对函数求导,分0a ≤和0a >两种情况讨论,可求解函数的单调性;(2)由已知得e 1ln x a x x x=--有实数解,构造函数,利用函数的单调性及函数的性质求得a 的范围.【详解】解:(1)函数()f x 的定义域为R ,()e '=-xf x a当0a ≤时,()0f x '>,则()f x 在(,)-∞+∞上单调递增;当0a >时,令()xf x e a '=-,得ln x a =,则()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.(2)由()()f x g x =,得e ln 1xax x x =--,因为0x >,所以e 1ln x a x x x=--.令e 1()ln x h x x x x=--,0x >,则()22e 1(1)e e 1()x x x x x x h x x x----+'==. 令()0h x '=,得1x =.当(0,1)x ∈时,()0h x '<,()h x 为减函数;当(1,)x ∈+∞时,()0h x '>,()h x 为增函数.所以min ()(1)e 1h x h ==-.又因为e 1e 1()ln ln x x h x x x x x x -=--=-,因为0x >,e 1x>,所以e 10x x->,所以当0x →时,()h x →+∞. 所以函数()h x 的值域为[e 1,)-+∞,因此实数a 的取值范围为[e 1,)-+∞.23.(2020·甘肃城关·兰州一中月考(文))已知函数()()ln f x x x a =-,()12x g x e =-(e为自然对数的底).(1)讨论()f x 的极值;(2)当1a =时,若存在(]00,x m ∈,使得()()00f x g m -≤,求实数m 取值范围.【答案】(1)1a f e -=-极小值,()f x 无极大值;(2)0ln3m <≤.【解析】 【分析】(1)对函数进行求导得()ln 1f x x a '=-+,令()10a f x x e -'=⇒=,再列表,从而求得函数的极值;(2)利用导数研究函数的最值,对m 分两种情况讨论,即01m <≤和1m ,即可得答案; 【详解】(1)依题()ln 1f x x a '=-+,()10a f x x e-'=⇒=,x ,()f x ',()f x 的变化如下:列表分析可知,()11a a f f ee --==-极小值,()f x 无极大值. (2)对于()()ln 1f x x x =-,可得()ln f x x '=.因此,当()0,1x ∈时,()f x 单调递减;当()1,x ∈+∞时,()f x 单调递增. (1)当01m <≤时,()()()min ln 1ln f x f m m m m m m ==-=-. 依题意可知()()()02ln 210mf mg m m m e m -≤⇒+--≤.构造函数:()21mm e m ϕ=--(01m <≤),则有()2mm e ϕ'=-.由此可得;当()0,ln 2m ∈时,()0m ϕ'<;当()ln 2,1m ∈时,()0m ϕ'>, 即()m ϕ在()0,ln 2m ∈时单调递减,()ln 2,1m ∈单调递增. 注意到:()00ϕ=,()13e ϕ=-,因此()0m ϕ<.同时注意到2ln 0m m ≤,故有()2ln 210mm m e m +--≤. (2)当1m 时,()()min 11f x f ==-.依据题意可知()()101031ln 322m me f m g m e m ⎛⎫-≤⇒---≤⇒≤⇒<≤ ⎪⎝⎭.综上(1)、(2)所述,所求实数m 取值范围为0ln3m <≤.24.(2020·陕西西安·月考(文))已知函数()ln 1,f x x ax a R =-+∈. (1)求函数()f x 的单调区间;(2)若不等式()0f x ≤恒成立,求实数a 的取值范围;(3)当*n N ∈时,求证:111111ln(1)123123+++<+<+++++n n n. 【答案】(1)答案见解析;(2)1a ≥;(3)证明见解析. 【解析】 【分析】(1)对函数求导,然后分0a ≤,0a >两种情况,由导函数的正负可求得其单调区; (2)利用导数求()f x 的最大值小于零即可,或()ln 10f x x ax =-+≤恒成立,等价于ln 1x a x+≥,0x >,然后构造函数ln 1()x g x x+=,利用导数求其最大值即可; (3)由(2)知,当1a =时,()0f x ≤恒成立,即ln 1≤-x x (仅当1x =时等号成立).当*1,k x k N k+=∈时,有11lnk k k +<,然后利用累加法可得111ln(1)123n n +<+++…+,当*,1kx k N k =∈+时,有11ln 1k k k +>+,再利用累加法可得1111ln(1)2341n n +>+++…+,从而可证得结论【详解】(1)()ln 1,0f x x ax x =-+>,1()f x a x'=- .当0a ≤时,()0f x '≥,所以()f x 在(0,)+∞上递增;.当0a >时,令()0f x '=,则1x a=, 当10x a <<时,()0f x '>;当1x a>时,()0f x '<, 所以()f x 在区间1(0,)a上递增,在1(,)a+∞上递减.(2)方法1:构造函数()ln 1,0f x x ax x =-+>,1()f x a x'=- .当0a ≤时,由(1)()f x 在(0,)+∞上递增,又(1)10f a =->,不符合题意,舍;.当0a >时,由(1)知()f x 在区间1(0,)a 上递增,在1(,)a+∞上递减;所以max 11()()ln()0f x f a a==≤,解得:1a ≥. 综上:1a ≥ 方法2:分离参数()ln 10f x x ax =-+≤恒成立,等价于ln 1x a x+≥,0x >设ln 1()x g x x+=,0x >,2ln ()xg x x -'=,令()0g x '=,1x =,则 当01x <<时,()0g x '>;当1x >时,()0g x '<,所以()g x 在区间(0,1)上递增,在(1,)+∞上递减;所以max ()(1)1g x g ==,所以:1a ≥(3)由(2)知,当1a =时,()0f x ≤恒成立,即ln 1≤-x x (仅当1x =时等号成立).当*1,k x k N k +=∈时,11ln 1k k k k ++<-,即11ln k k k +<; 所以,2ln11<,31ln 22<,41ln 33<,……,11ln n n n +<; 上述不等式相加可得:2341111lnln ln ln112323n n n+++++<+++…+, 即:2341111ln112323n n n +⋅⋅<+++…+, 即:111ln(1)123n n+<+++…+,*n N ∈; .当*,1k x k N k =∈+时,ln 111k k k k <-++,即111ln 1k k k -+⎛⎫<- ⎪+⎝⎭,即11ln 1k k k +>+ 所以,21ln12>,31ln 23>,41ln 34>,……,11ln 1n n n +>+;上述不等式相加可得:23411111lnln ln ln1232341n n n +++++>+++…+, 即:23411111ln1232341n n n +⋅⋅>+++…+, 即:1111ln(1)2341n n +>+++…+,*n N ∈; 综上:当*n N ∈时,111111ln(1)123123+++<+<+++++n n n.25.(2020·广西南宁二中月考(文))已知函数3211()(1)132f x ax a x x =-+++(1a ≥). (I )若3a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (II )若()f x 在R 上无极值点,求a 的值;(III )当(0,2)x ∈时,讨论函数()f x 的零点个数,并说明理由.【答案】(1)1y =; (2)19a ≤<时函数()f x 在(0,2)上无零点;当9a =时,函数()f x 在(0,2)上有一个零点;当9a >时,函数()f x 在(0,2)上有两个零点. 【解析】(I )当3a =时,()3221f x x x x =-++,()2'341f x x x =-+,()'10f =,()11f =,所以曲线()y f x =在点()()1,1f 处的切线方程为1y =.(II )()()2'11f x ax a x =-++,1a >,依题意有()'0f x ≥,即0∆≤,()2140a a +-≤,解得1a =.(III)(1)1a =时,函数()f x 在R 上恒为增函数且()01f =,函数()f x 在()0,2上无零点. (2)1a >时:当10,x a ⎛⎫∈ ⎪⎝⎭,()'0f x >,函数()f x 为增函数;当1,1x a ⎛⎫∈⎪⎝⎭,()'0f x <,函数()f x 为减函数; 当()1,2x ∈,()'0f x >,函数()f x 为增函数. 由于()22103f a =+>,此时只需判定()3162a f =-+的符号:当19a <<时,函数()f x 在()0,2上无零点; 当9a =时,函数()f x 在()0,2上有一个零点; 当9a >时,函数()f x 在()0,2上有两个零点. 综上,19a ≤<时函数()f x 在()0,2上无零点; 当9a =时,函数()f x 在()0,2上有一个零点; 当9a >时,函数()f x 在()0,2上有两个零点.26.(2020·四川其他(文))已知曲线()(3)(2ln )xf x x e a x x =-+-(其中e 为自然对数的底数)在1x =处切线方程为(1) y e x b =-+. (Ⅰ)求a ,b 值;(Ⅱ)证明:()f x 存在唯一的极大值点0x ,且()0215e f x --<<-. 【答案】(1)1a =,2b e =--;(2)证明见详解【解析】(1) ()f x 在1x =处切线方程为(1)y e x b =-+,而2()(2)(1)xf x x e a x'=-+-∴(1)1f e a e '=-+=-,即1a =而(1)21f e =--,故切点为(1,21)e -- ∴121e b e -+=--,即2b e =-- 故有:1a =,2b e =--(2)由(1)知:()(3)2ln x f x x e x x =-+-且定义域(0,)x ∈+∞∴(2)2(1)(2)()x x x x e x xe x f x x x--+--'==,若()(2)(1)xg x x xe =-- 令()1x h x xe =-,即()(1)x h x x e '=+在(0,)x ∈+∞有()0h x '>恒成立∴()h x 单调增,又(0)10h =-<,(1)10h e =->:即()h x 的零点1x 在(0,1)内 ∴1(0,)x 上()0h x <,1(,)x +∞上()0h x > 故在()g x 中1(0,1)x ∈,(0,)x ∈+∞上有当10x x <<时,()0>g x ,即()0f x '>,()f x 单调增 当12x x <<时,()0<g x ,即()0f x '<,()f x 单调减 当2x >时,()0>g x ,即()0f x '>,()f x 单调增 ∴()f x 存在唯一的极大值点0x =1(0,1)x ∈又有01()()(1)21f x f x f e =>=--而001xx e =,000000003()32ln 13x x f x x e e x x x x =-+-=--且0(0,1)x ∈ ∴0()5f x <-(利用均值不等式,但等号不成立,因为0x 无法取1)综上,得证:021()5e f x --<<-27.(2020·河南洛阳·高三月考(文))已知函数()()2122xf x x e x x =-+-. (1)求函数()f x 的单调区间;(2)若不等式()()21442a af x x a x ⎛⎫≥+-++⎪⎝⎭对任意()2,x ∈+∞恒成立,求实数a 的取值范围.【答案】(1)单调递减区间为(),1-∞,单调递增区间为()1,+∞;(2)31,e ⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)依题意()()()()()1111xx f x ex x x e '=-+-=-+,当(),1x ∈-∞时,()0f x '<,()f x 单调递减; 当()1,x ∈+∞时,()0f x '>,()f x 单调递增,所以()f x 的单调递减区间为(),1-∞,单调递增区间为()1,+∞.(2)当2x >时,()()21442a af x x a x ⎛⎫≥+-++⎪⎝⎭恒成立, 即()()222e 14422xa a a x x ax x a x ⎛⎫-+-≥+-++ ⎪⎝⎭, 即()()222e 442x a x x x x --+=-≥,即2e xx a -≥恒成立,即max 2e x x a -⎛⎫≥ ⎪⎝⎭.令()()22e x x h x x -=>,则()()123e exx x x h x ---'==, 易知()h x 在区间()2,3内单调递增,在区间()3,+∞内单调递减, 所以()()3max 13e h x h ==,所以31e a ≥. 所以实数a 的取值范围是31,e ⎡⎫+∞⎪⎢⎣⎭. 28.(2020·广东天河·华南师大附中高三月考(文))设2()g x lnx x x =+-.(1)求()g x 的单调区间;(2)当0a >时,2()0x xe a x a g x --≥恒成立,求实数a 的取值范围.【答案】(1)单调递增区间为()0,1,单调递减区间为()1,+∞;(2)(]0e ,. 【解析】(1)函数的定义域为()0,+∞,()()()211112x x g x x x x-+-=+-=', 令()0g x '>即()()2110x x +-<,解得112x -<<, 当()0,1x ∈时,()0g x '>,()g x 单调递增, 当()1,x ∈+∞时,()0g x '<,()g x 单调递减, 故()g x 的单调递增区间为()0,1,单调递减区间为()1,+∞. (2)依题意得()222()ln ln x x x xe a x a g x xe a x a x ax ax xe a x ax --=--+-=--设()()ln 0xh x xe a x ax x =--∈∞,,+,则()()()()+111xx a x a h x x e x e x x ⎛⎫=+-=+- ⎝'⎪⎭, 0a >,∴设()0h x '=的根为0x ,即有00xae x =,可得00x lna lnx =-, 当()00,x x ∈时,()0h x '<,()h x 单调递减, 当()0,x x ∈+∞时,()0h x '>,()h x 单调递增,∴()()()00000000min 0ln ln xah x h x x e a x ax x a x a ax x ==--=+--⋅ln 0a a a =-≥解得a e ≤,∴实数a 的取值范围是(]0e ,. 29.(2020·湖北宜昌·高三期末(文))已知函数22()ln f x x a x ax =--.(1)当1a =时,求()f x 的单调区间;(2)若对于定义域内任意的x ,()0f x ≥恒成立,求a 的取值范围;(3)记()()g x f x a x =+,若()g x 在区间1[,]e e内有两个零点,求a 的取值范围.【答案】(1)在(0,1)上单调递减,在(1,)+∞上单调递减;(2)342,1a e ⎡⎤∈-⎢⎥⎣⎦;(3)[,]a e e ∈-⋃.【解析】(1)()f x 的定义域为(0,)+∞,1(21)(1)()21x x f x x x x+-'=--= 令()0f x '>,得1x >;令()0f x '<,得01x <<,所以()f x 的单调减区间(0,1),单调递增区间为(1,)+∞.(2) ()f x 的定义域为(0,)+∞,2222(2)()()2a x ax a x a x a f x x a x x x--+-'=--==, 当0a =时,2()0f x x =≥恒成立;当0a >时,(0,)x a ∈时,()0f x '<;(,)x a ∈+∞时,()0f x '>,所以()f x 在(0,)a 上单调递减,(,)a +∞上单调递增,所以2min ()()ln 0f x f a a a ==-≥,解得01a <≤;当0a <时,()f x 在(0,)2a -上单调递减,(,)2a-+∞上单调递增, 所以222min()()ln()02422a a a af x f a =-=+--≥,解得3420-≤<e a ;综上,a 的取值范围34[2,1]e -. (3)法一:显然,1x =不是()g x 的零点,所以1x ≠由()0g x =,得22ln x a x =,令2()ln x h x x=,2(2ln 1)()(ln )x x h x x '-=,令()0h x '=得12x e =, 当121[,1)(1,]x e e∈时,()0f x '<;当12(,]e x e ∈时,()0f x '>,所以()h x 在1[,1)e和12(1,]e 单调递减,12(,]e e 单调递增,又1[,1)x e ∈时,()0h x <,22ln x a x=不成立,所以只需12222()2()a h e e a h e e⎧⎪>=⎨⎪≤=⎩,故a 的取值范围[,]e e -⋃.法二:22222()ln ,()x a g x x a x g x x-'=-=,当0a =时,不合题意,舍去;当0a >时,()g x在上单调递减,)+∞上单调递增,要使()g x 在区间1[,]e e内有两个零点,则需满足1(,)01()0()0e e g g e g e ⎪<⎪⎨⎪⎪≥⎪⎪≥⎩,即222222ln 0211ln 0ln 0a e a a a e e e a e ⎧<<⎪⎪⎪-<⎪⎨⎪⎪-≥⎪⎪-≥⎩,解得]a e ∈; 当0a <时,()g x在(0,上单调递减,()+∞上单调递增,要使()g x 在区间1[,]e e内有两个零点,则需满足1(,)(01()0()0e e g g e g e ⎧⎪⎪⎪<⎪⎨⎪⎪≥⎪⎪≥⎩,即222222ln(0211ln 0ln 0a a a a e e e a e ⎧<<⎪⎪⎪-<⎪⎨⎪⎪-≥⎪⎪-≥⎩,解得[,a e ∈-; 综上,a的取值范围[,]e e -⋃.30.(2020·吉林高三其他(文))已知函数()32ln f x ax bx x =--.(1)当0b =时,讨论()f x 的单调性;(2)若1a b ==,且()f x m ≥恒成立,求m 的取值范围. 【答案】(1)分类讨论,答案见解析;(2)(],0-∞.【解析】(1)当0b =时,函数()3ln f x ax x =-,可得()f x 的定义域为()0,∞+,则()321313ax f x ax x x-'=-=,①当0a ≤时,()0f x '<,()f x 在()0,∞+上单调递减.②当0a >时,由()0f x '>,得x >()f x 在⎫+∞⎪⎭上单调递增;由()0f x '<,得0x <<,则()f x 在⎛ ⎝上单调递减. (2)由1a b ==,知()32ln f x x x x =--,可得()322132132x x f x x x x x--'=--=,又由()()()()()32322223213313111131x x x x x xx x x x x x --=-+-=-+-+=-++,当01x <<时,()0f x '<,()f x 单调递减; 当1x >时,()0f x '>,()f x 单调递增,所以()()min 10f x f ==,则0m ≤,故m 的取值范围为(],0-∞.。
函数与导数期末复习题一、选择题(本大题12小题,每小题5分,共60分)1. 已知函数y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定2.已知函数()f x 在1x =处存在导数,则011lim ()(3)x f x f x∆→+∆-=∆A .(1)f 'B .31()f 'C .113()f 'D 3()f '3.已知曲线y =2ax 2+1过点(a ,3),则该曲线在该点处的切线方程为( )A .y =-4x -1B .y =4x -1C .y =4x -11D .y =-4x +7 4.已知e e ()x f x x -=+的导函数为()f 'x ,则1()f '=A B C D .05x 3+ax (1a 的取值范围是( )A .[3,+∞)B .[-3,+∞)C .(-3,+∞)D .(-∞,-3)6.已知函数2s n )i (x xf x x+=,则该函数的导函数()f 'x =A .22cos x x x +B .22cos sin x x x xx +-C .22cos sin x x x x x +- D .2cos x x - 7.已知a >0,函数f (x )=-x 3+ax 在[1,+∞)上是单调减函数,则a 的最大值为( )A .1B .2C .3D .48.若函数f (x )=a sin x +13cos x 在x =π3处有最值,那么a 等于( )A.33 B .-33 C.36 D .-369.函数y =x -sin x ,x ∈⎣⎡⎦⎤π2,π的最大值是( )A .π-1 B.π2-1 C .π D .π+110. 函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个 11.丹麦数学家琴生是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方向留下了很多宝贵的成果.设函数()f x 在(),a b 上的导函数为()f 'x ,()f 'x 在(),a b 上的导函数记为()f ''x ,若在(),a b 上(0)f ''x <恒成立,则称函数()f x 在(),a b 上为“凸函数”,在(1,4)上为“凸函数”,则实数t 的取值范围是A .[3,)+∞B .(3,)+∞ CD12.已知点P 与2()ln 32(0)g x a x b a =+>图象的公共点,若以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为AB CD 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=14.设函数f (x )=ax 3-3x +1 (x ∈R ),若对于x ∈[-1,1],都有f (x )≥0,则实数a 的值为15. f (x )=ax 3﹣x 2+x+2,,∀x 1∈(0,1],∀x 2∈(0,1],使得f (x 1)≥g (x 2),则实数a 的取值范围是 .16.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示过原点的曲线,且在x =±1处的切线的倾斜角均为34π,有以下命题:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2].②f (x )的极值点有且只有一个. ③f (x )的最大值与最小值之和等于零.其中正确命题的序号为________. 三、解答题(本大题共6小题,共70分)17.若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.18.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值.(1)求a ,b 的值与函数f (x )的单调区间;(2)若对x ∈[-1,2],不等式f (x )<c 2恒成立,求c 的取值范围.19.一个圆柱形圆木的底面半径为1 m ,长为10 m ,将此圆木沿轴所在的平面剖成两部分.如图所示,现要把其中一部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD,其中O为圆心,C,D在半圆上,设BOCθ∠=,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求θ的值,使体积V最大,并判断此时表面积S是否也最大.20.已知函数f(x)=x2+ln x.(1)求函数f(x)在[1,e]上的最大值和最小值;(2)求证:当x∈(1,+∞)时,函数f(x)的图象在g(x)=23x3+12x2的下方.21.设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f (x )的单调区间与极值; (2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.22.已知函数21ln 12()a f x a x x +=++. (1)当12a =-时,求函数()f x 在区间1[,e]e上的最值; (2)讨论()f x 的单调性; (3)当10a -<<时,2())1ln(af x a >+-恒成立,求实数a 的取值范围.参考答案1.B [f ′(x A )和f ′(x B )分别表示函数图象在点A 、B 处的切线斜率,故f ′(x A )<f ′(x B ).] 2.B [物体的初速度即为t =0时物体的瞬时速度,即函数s (t )在t =0处的导数.s ′(0)=s ′|t =0=(3-2t )|t =0=3.]3.B [∵曲线过点(a ,3),∴3=2a 2+1,∴a =1,∴切点为(1,3).由导数定义可得y ′=4ax =4x , ∴该点处切线斜率为k =4,∴切线方程为y -3=4(x -1),即y =4x -1.] 4.B5.B [f ′(x )=3x 2+a .令3x 2+a ≥0,则a ≥-3x 2,x ∈(1,+∞),∴a ≥-3.]6.A [∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2,∴k =y ′|x =-1=2(-1+2)2=2, ∴切线方程为:y +1=2(x +1),即y =2x +1.] 7.C8.A [f ′(x )=a cos x -13sin x ,由题意f ′⎝⎛⎭⎫π3=0,即a ·12-13×32=0,∴a =33.] 9.C [y ′=1-cos x ≥0,所以y =x -sin x 在⎣⎡⎦⎤π2,π上为增函数.∴当x =π时,y max =π.] 10.A [由图象看,在图象与x 轴的交点处左侧f ′(x )<0,右侧f ′(x )>0的点才满足题意,这样的点只有一个B 点.]11.C [∵f ′(x )=x ′(1-x )-x (1-x )′(1-x )2=1-x +x (1-x )2=1(1-x )2>0,又x ≠1,∴f (x )的单调增区间为(-∞,1),(1,+∞).]12.B [由题意知,存款量g (x )=kx (k >0),银行应支付的利息h (x )=xg (x )=kx 2,x ∈(0,0.048).设银行可获得收益为y ,则y =0.048kx -kx 2.于是y ′=0.048k -2kx ,令y ′=0,解得x =0.024,依题意知y 在x =0.024处取得最大值.故当存款利率为0.024时,银行可获得最大收益.] 13.314.4解析 若x =0,则不论a 取何值,f (x )≥0,显然成立;当x ∈(0,1]时,f (x )=ax 3-3x +1≥0可转化为a ≥3x 2-1x 3,设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎭⎫0,12上单调递增,在区间⎝⎛⎦⎤12,1上单调递减, 因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4;当x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可转化为a ≤3x 2-1x 3, 设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间[-1,0)上单调递增.因此g (x )min =g (-1)=4,从而a ≤4,综上所述,a =4.15.439 解析 设CD =x ,则点C 坐标为⎝⎛⎭⎫x 2,0.点B 坐标为⎝⎛⎭⎫x 2,1-⎝⎛⎭⎫x 22, ∴矩形ABCD 的面积S =f (x )=x ·⎣⎡⎦⎤1-⎝⎛⎭⎫x 22=-x 34+x (x ∈(0,2)). 由f ′(x )=-34x 2+1=0,得x 1=-23(舍),x 2=23,∴x ∈⎝⎛⎭⎫0,23时,f ′(x )>0,f (x )是递增的,x ∈⎝⎛⎭⎫23,2时,f ′(x )<0,f (x )是递减的,当x =23时,f (x )取最大值439.16.①③解析 f ′(x )=3x 2+2ax +b ,由题意得f (0)=0,f ′(-1)=f ′(1)=tan 3π4=-1.∴⎩⎪⎨⎪⎧c =03-2a +b =-13+2a +b =-1,∴a =0,b =-4,c =0.∴f (x )=x 3-4x ,x ∈[-2,2].故①正确.由f ′(x )=3x 2-4=0得x 1=-233,x 2=233.根据x 1,x 2分析f ′(x )的符号、f (x )的单调性和极值点.∴x f (x )min +f (x )max =0.∴②错,③正确.17.解 f ′(x )=x 2-ax +a -1,由题意知f ′(x )≤0在(1,4)上恒成立,且f ′(x )≥0在(6,+∞)上恒成立.由f ′(x )≤0得x 2-ax +a -1≤0,即x 2-1≤a (x -1).∵x ∈(1,4),∴x -1∈(0,3),∴a ≥x 2-1x -1=x +1.又∵x +1∈(2,5),∴a ≥5, ①由f ′(x )≥0得x 2-ax +a -1≥0,即x 2-1≥a (x -1).∵x ∈(6,+∞),∴x -1>0,∴a ≤x 2-1x -1=x +1. 又∵x +1∈(7,+∞),∴a ≤7, ②∵①②同时成立,∴5≤a ≤7.经检验a =5或a =7都符合题意,∴所求a 的取值范围为5≤a ≤7.18.解 (1)f (x )=x 3+ax 2+bx +c ,f ′(x )=3x 2+2ax +b ,由f ′⎝⎛⎭⎫-23=129-43a +b =0, f ′(1)=3+2a +b =0得a =-12,b =-2.f ′(x )=3x 2-x -2=(3x +2)(x -1),令f ′(x )>0,得x <-23或x >1,令f ′(x )<0,得-23<x <1.所以函数f (x )的递增区间是⎝⎛⎭⎫-∞,-23和(1,+∞),递减区间是⎝⎛⎭⎫-23,1. (2)f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],由(1)知,当x =-23时,f ⎝⎛⎭⎫-23=2227+c 为极大值, 而f (2)=2+c ,则f (2)=2+c 为最大值,要使f (x )<c 2,x ∈[-1,2]恒成立, 则只需要c 2>f (2)=2+c ,得c <-1或c >2.19.解 设每次订购电脑的台数为x ,则开始库存量为x 台,经过一个周期的正常均匀销售后,库存量变为零,这样又开始下一次的订购,因此平均库存量为12x 台,所以每年的保管费用为12x ·4 000·10%元,而每年的订货电脑的其它费用为5 000x·1 600元,这样每年的总费用为5 000x ·1 600+12x ·4 000·10%元.令y =5 000x ·1 600+12x ·4 000·10%,y ′=-1x 2·5 000·1 600+12·4 000·10%.令y ′=0,解得x =200(台).也就是当x =200台时,每年订购电脑的其它费用及保管费用总费用达到最小值,最小值为80 000元.20.解 (1)对函数f (x )求导数,得f ′(x )=(x 2-2ax )e x +(2x -2a )e x =[x 2+2(1-a )x -2a ]e x .令f ′(x )=0,得[x 2+2(1-a )x -2a ]e x =0,从而x 2+2(1-a )x -2a =0. 解得x 1=a -1-1+a 2,x 2=a -1+1+a 2,其中x 1<x 2. 当x 变化时,f ′(x )、f (x )的变化如下表:12当a ≥0时,x 1<-1,x 2≥0.f (x )在(x 1,x 2)为减函数,在(x 2,+∞)为增函数.而当x <0时,f (x )=x (x -2a )e x >0; 当x =0时,f (x )=0,所以当x =a -1+1+a 2时,f (x )取得最小值.(2)当a ≥0时,f (x )在[-1,1]上为单调函数的充要条件是x 2≥1,即a -1+1+a 2≥1,解得a ≥34.综上,f (x )在[-1,1]上为单调函数的充分必要条件为a ≥34.即a 的取值范围是⎣⎡⎭⎫34,+∞. 21.(1)解 由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0, 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.22.(1)解 ∵f (x )=x 2+ln x ,∴f ′(x )=2x +1x.∵x >1时,f ′(x )>0,∴f (x )在[1,e]上是增函数,∴f (x )的最小值是f (1)=1,最大值是f (e)=1+e 2.(2)证明 令F (x )=f (x )-g (x )=12x 2-23x 3+ln x ,∴F ′(x )=x -2x 2+1x =x 2-2x 3+1x =x 2-x 3-x 3+1x =(1-x )(2x 2+x +1)x.∵x >1,∴F ′(x )<0,∴F (x )在(1,+∞)上是减函数,∴F (x )<F (1)=12-23=-16<0.∴f (x )<g (x ).∴当x ∈(1,+∞)时,函数f (x )的图象在g (x )=23x 3+12x 2的下方.。