题型六 二次函数图像与a, b, c之间的关系
例题6 [衡阳中考]图1-2-6为二次函数y=ax2 +bx+c的图像, 则下列
说法:①a>0;②2a+b>0;③a+b+c>0;④当-1<x<3时, y>0.
其中正确的个数为( B ).
A.1
B.2
C.3
D.4
1.2 二次函数的图像与性质
分析 ∵二次函数图像的开口向下, ∴a<0,①错误;
1.2 二次函数的图像与性质
题型三 利用二次函数的性质比较函数值的大小
例题3 [河南中考]已知点A(4, y1 ), B( , y2 ),C(-2, y3 )都在二次 函数y=(x-2)2 -1的图像上, 则y1 ,y2 , y3 的大小关系是 __y_2 _<__y_1_<__y_3_ (用“<”连接).
1.2 二次函数的图像与性质
解: (1)∵二次函数y=-x2 +2x+m的图像与x轴的一个交点为A(3, 0), ∴-9+2×3+m=0, 解得m=3. (2)由(1), 得二次函数的表达式为y=-x2 +2x+3.当y=0时, -x2 +2x+3=0, 解得x=3或x=-1, ∴点B的坐标为(-1, 0).
1.2 二次函数的图像与性质
解: ∵y=x2 +2x-1=x2 +2x+1-2=(x+1)2 -2, ∴函数图像的顶点坐标为(-1, -2), 对称轴为直线x=-1, 当x=-1时, y最小值 =-2.
1.2 二次函数的图像与性质
锦囊妙计
求二次函数y=ax2 +bx+c(a≠0)的图像的顶点坐标、对称轴 及函数的最值时, 将表达式化成y=a(x-h)2 +k(a≠0)的形式, 可快 速求解.