1三角函数知识点公式总结
- 格式:doc
- 大小:323.50 KB
- 文档页数:3
三角函数所有知识点
三角函数是一种数学函数,它们描述的是在直角三角形中,三角形的角度和边长之间的关系。
在这里,将介绍一些三角函数的重要知识点,包括定义、性质、图像、公式和应用。
一、常见三角函数
在三角函数中,最常见的三个函数包括正弦函数、余弦函数和正切函数。
它们的定义如下:
正弦函数:sin(x) = 对边/斜边
余弦函数:cos(x) = 邻边/斜边
正切函数:tan(x) = 对边/邻边
其中,x代表角度,对边代表直角三角形中与角度x 相对应的直角边,邻边代表另一条直角边,斜边代表斜边。
二、三角函数的周期性
三角函数具有周期性,这意味着它们在一定范围内以特定的周期不断重复。
正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。
三、三角函数的图像
三角函数的图像都是连续的曲线,它们的形状和周期是不同的。
正弦函数的图像类似于波浪线,余弦函数的图像则类似于正弦函数图像向右平移π/2,正切函数的图像是一个连续的周期性分数函数。
四、三角函数的公式
三角函数有很多重要的公式,包括欧拉公式、和差化积公式、倍角公式、半角公式和逆三角函数公式。
这些公式可以帮助我们在计算中更方便地使用三角函数。
五、三角函数的应用
三角函数广泛应用于科学和工程领域,包括声学、天文学、物理学、计算机图形学等。
例如,在声学中,三角函数可以用于描述声波和光波的振动模式,而在计算机图形学中,它们可以用于图像处理和动画设计。
以上就是三角函数的一些重要知识点,希望能帮助你更好地理解三角函数。
高一三角函数知识点归纳总结公式三角函数是高中数学中的一个重要内容,它在数学和物理等学科中有着广泛的应用。
下面我将对高一阶段学习的三角函数的知识点进行归纳总结,并给出相应的公式。
1. 正弦函数(sin)正弦函数是三角函数中最基本的函数之一,它表示一个角的正弦值与其对边和斜边的比值。
其公式为:sinθ = 对边 / 斜边2. 余弦函数(cos)余弦函数是三角函数中另一个基本的函数,它表示一个角的余弦值与其邻边和斜边的比值。
其公式为:cosθ = 邻边 / 斜边3. 正切函数(tan)正切函数是三角函数中较为复杂的函数,它表示一个角的正切值与其对边和邻边的比值。
其公式为:tanθ = 对边 / 邻边4. 余切函数(cot)余切函数是正切函数的倒数,表示一个角的余切值与其邻边和对边的比值。
其公式为:cotθ = 邻边 / 对边5. 正割函数(sec)正割函数是余弦函数的倒数,表示一个角的正割值与其斜边和邻边的比值。
其公式为:secθ = 斜边 / 邻边6. 余割函数(csc)余割函数是正弦函数的倒数,表示一个角的余割值与其斜边和对边的比值。
其公式为:cscθ = 斜边 / 对边除了以上的基本三角函数,还有一些与三角函数相关的公式:7. 和差角公式sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)8. 二倍角公式sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ) / (1 - tan^2θ)9. 半角公式sin(θ/2) = ± √((1 - cosθ) / 2)cos(θ/2) = ± √((1 + cosθ) / 2)tan(θ/2) = ± √((1 - cosθ) / (1 + cosθ))10. 诱导公式sin(A ± π/2) = ± cosAcos(A ± π/2) = ∓ sinAtan(A ± π/2) = -cotA这些公式是高一阶段学习三角函数时需要掌握和应用的重要工具,通过熟练掌握这些公式,可以帮助我们解决各种与三角函数相关的问题。
高一三角函数知识点归纳总结公式一、正弦函数的相关公式:1. 周期公式:y = sin(x)的周期是2π,即sin(x + 2π) = sin(x)。
2. 幅值公式:y = a·sin(x)的幅值是|a|,即|sin(x)| ≤ |a|。
3. 对称公式:sin(-x) = -sin(x),即正弦函数关于y轴对称。
4. 奇偶性公式:sin(-x) = -sin(x),即正弦函数是奇函数。
5. 正弦函数图像的特点:振幅为a,最值为±a,对称轴是y = 0。
二、余弦函数的相关公式:1. 周期公式:y = cos(x)的周期是2π,即cos(x + 2π) = cos(x)。
2. 幅值公式:y = a·cos(x)的幅值是|a|,即|cos(x)| ≤ |a|。
3. 对称公式:cos(-x) = cos(x),即余弦函数关于y轴对称。
4. 奇偶性公式:cos(-x) = cos(x),即余弦函数是偶函数。
5. 余弦函数图像的特点:振幅为a,最值为±a,对称轴是y = a。
三、正切函数的相关公式:1. 周期公式:y = tan(x)的周期是π,即tan(x + π) = tan(x)。
2. 正切函数的定义域:tan(x)的定义域是x ≠ (2k + 1)·π/2,k是整数。
3. 正切函数的值域:tan(x)的值域是全体实数。
4. 正切函数图像的特点:无振幅和对称轴,有无穷多个间断点。
四、三角函数的和差化简公式:1. sin(x ± y) = sin(x)·cos(y) ± cos(x)·sin(y)。
2. cos(x ± y) = cos(x)·cos(y) ∓ sin(x)·sin(y)。
3. tan(x ± y) = (tan(x) ± tan(y)) / (1 ∓ tan(x)·tan(y))。
三角函数万能公式知识点三角函数万能公式万能公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtan B)=(tanπ-tanC)/(1+tanπtanC)三角函数公式大全三角函数常用公式:(^表示乘方,例如^2表示平方)正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ =1-cosθ余矢函数vercosθ =1-sinθ同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的`对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]。
初中三角函数公式,初中三角函数知识点归纳总结1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。
2、在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B)3.任何锐角的正弦值等于其余角的余弦值;任何锐角的余弦都等于其余角的正弦。
4.任何锐角的正切等于它的余角的余切;任何锐角的余切都等于它的余角的正切。
5、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。
6、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
7、初中三角函数两角和与差的三角函数:cos(αβ)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβsinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(αβ)=(tanαtanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1tanα·tanβ)8、初中三角函数倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]9、初中三角函数三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα10、初中三角函数半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1cosα)/2tan^2(α/2)=(1-cosα)/(1cosα)tan(α/2)=sinα/(1cosα)=(1-cosα)/sinα11、初中三角函数万能公式:sinα=2tan(α/2)/[1tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]12、初中三角函数积化和差公式:sinα·cosβ=(1/2)[sin(αβ)sin(α-β)]cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)]cosα·cosβ=(1/2)[cos(αβ)cos(α-β)]sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)]13、初中三角函数和差化积公式:sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2]sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2]cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(αβ)/2]sin[(α-β)/2]完整初中三角函数值表完整初中三角函数值表如下图所示:常见的三角函数有正弦函数、余弦函数和正切函数。
(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。
- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。
即:sinA = 对边/斜边。
- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。
即:cosA = 邻边/斜边。
- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。
即:tanA = 对边/邻边。
2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 三角函数的同角关系:sinA/cosA = tanA。
- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。
3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。
- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。
- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。
4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。
- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。
以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。
高一三角函数知识点归纳总结一、定义1. 三角函数:三角函数是以弧度为单位的函数,它以正弦(sinx)、余弦(cosx)和正切(tanx)函数作为基础,用来研究一定范围内的角度特性。
二、基本关系2. 余弦定理:即如果三角形角a,b,c的对应边长a,b,c,则满足cosa=(b²+c²-a²)/2bc3. 正弦定理:即如果三角形角a,b,c的对应边长a,b,c,则满足sina=(a²+b²-c²)/2bc4. 倒余弦和正切定理:即如果三角形角A,B,C的对应边长a,b,c,则满足c=a×b×cos(A-B)5. 余弦余切定理:即如果三角形角 A 、 B 、 C 的对应边长 a 、 b 、 c,则满足tan(A-B)=(1/cos(A+B)-1/cos(A-B))/2三、其它公式6. 全体三角函数的公式:sin(A+B)=sinA×cosB+cosA×sinB;7. 角度正切值求得正弦和余弦:tanA=sinA/cosA;8. 余弦定理与正玄定理结合:cosA=sqrt(1-sinA²);9. 三角形外接圆半径:R=a/2sinA;10. 三角形内角和外角大小关系:A+B+C=180°。
四、反三角函数11. 反三角函数:又称各自自然函数,是将三角函数的作用与变量切换过来,形成的新函数,如arcsin(y)、arccos(y)和arctan(y)12. 反余弦函数的定义:arcsin(y)=x的意思是“以实现sin(x)=y为条件,求得x的值”13. 反正弦函数的定义:arctan(y)=x的意思是“以实现tan(x)=y为条件,求得x的值”14. 反余切函数的定义:arccos(y)=x的意思是“以实现cos(x)=y为条件,求得x的值”五、图形和性质15. 三角函数的图像解释:正弦图像的横坐标表示Y轴转动的弧度;纵坐标表示正弦值。
(一)知识点1、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭3、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.4、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. ②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭6、 周期问题()()()ωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+=T , 0 , 0A , tan 2T , 0 , 0A , 2T , 0 , 0A , x A y x ACos y x ASin y 7、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).8、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-.9、利用两角和或差公式化一角一函数 B x A y ++=)sin(ϕϖ形式。
三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。
三角函数最全知识点总结三角函数是高中数学中的重要内容,主要包括正弦函数、余弦函数、正切函数等。
下面将对这些三角函数的定义、性质以及常用的解题方法进行总结。
一、正弦函数(sin):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的纵坐标y即为θ的正弦值,记作sinθ。
正弦函数的定义域为实数集,值域为[-1,1]。
2. 周期性:sin(θ+2π)=sinθ,sin(θ+π)=-sinθ。
其中π为圆周率。
3. 奇偶性:sin(-θ)=-sinθ,即正弦函数关于原点对称。
4. 正负性:当θ为锐角时,sinθ>0;当θ为钝角时,sinθ<0。
5. 值域变化:当θ从0增加到π/2时,sinθ从0增加到1,然后再从1减小到0。
二、余弦函数(cos):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的横坐标x即为θ的余弦值,记作cosθ。
余弦函数的定义域为实数集,值域为[-1,1]。
2. 周期性:cos(θ+2π)=cosθ,cos(θ+π)=-cosθ。
3. 奇偶性:cos(-θ)=cosθ,即余弦函数关于y轴对称。
4. 正负性:当θ为锐角时,cosθ>0;当θ为钝角时,cosθ<0。
5. 值域变化:当θ从0增加到π/2时,cosθ从1减小到0。
三、正切函数(tan):1. 定义:正切值tanθ等于θ的正弦值除以θ的余弦值,即tanθ=sinθ/cosθ。
正切函数的定义域为实数集,值域为实数集。
2. 周期性:tan(θ+π)=tanθ。
3. 奇偶性:tan(-θ)=-tanθ,即正切函数关于原点对称。
4. 正负性:当θ为锐角时,tanθ>0;当θ为钝角时,tanθ<0。
四、反三角函数:1. 反正弦函数:定义域为[-1,1],值域为[-π/2,π/2]。
记作arcsin x或sin⁻¹x。
2. 反余弦函数:定义域为[-1,1],值域为[0,π]。
高中数学三角函数知识点总结高中数学三角函数知识点总结一、锐角三角函数公式sin=的对边/斜边cos=的邻边/斜边tan=的对边/的邻边cot=的邻边/的对边二、倍角公式Sin2A=2SinA?CosACos2A=CosA2-SinA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))三、三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a=tanatan(/3+a)tan(/3-a)三倍角公式推导sin3a=sin(2a+a)辅助角公式Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B 四、降幂公式sin2=(1-cos(2))/2=versin(2)/2cos2=(1+cos(2))/2=covers(2)/2tan2=(1-cos(2))/(1+cos(2))推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(3/2)-sina]=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]=4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(3/2)]=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}=-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)五、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin2(a/2)=(1-cos(a))/2cos2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))六、三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincos tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)七、两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)八、和差化积sin+sin=2sin[(+)/2]cos[(-)/2]sin-sin=2cos[(+)/2]sin[(-)/2]cos+cos=2cos[(+)/2]cos[(-)/2]cos-cos=-2sin[(+)/2]sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 九、积化和差sinsin=[cos(-)-cos(+)]/2coscos=[cos(+)+cos(-)]/2sincos=[sin(+)+sin(-)]/2cossin=[sin(+)-sin(-)]/2十、诱导公式sin(-)=-sincos(-)=costan(—a)=-tansin(/2-)=coscos(/2-)=sinsin(/2+)=coscos(/2+)=-sinsin(-)=sincos(-)=-cossin(+)=-sincos(+)=-costanA=sinA/cosAtan(/2+)=-cottan(/2-)=cottan(-)=-tantan(+)=tan诱导公式记背窍门:奇变偶不变,符号看象限十一、万能公式sin=2tan(/2)/[1+tan(/2)]cos=[1-tan(/2)]/1+tan(/2)]tan=2tan(/2)/[1-tan(/2)]十二、其它公式(1)(sin)2+(cos)2=1(2)1+(tan)2=(sec)2(3)1+(cot)2=(csc)2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n(nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot( C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*( n-1)/n]=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0以及sin2+sin2(-2/3)+sin2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0拓展阅读:学好函数的方法一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规那么而在数学当中,游戏规那么就是所谓的根本定义。
高一数学三角函数必备知识点总结归纳三角函数章节主要包括三角函数的图象及其性质、函数y=Asin(ax+b)、y=Acos(ax+b)及y=Atan(ax+b)的图象及其性质。
数学三角函数必备知识点是理解并掌握三角函数的图象及其性质、三角函数图象的变换。
1.任意角和弧度制任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P(x,y),那么角α的正弦、余弦、正切分别是:sin α=y,cos α=x,tan α=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.具体内容请点击:高一数学任意角和弧度制知识要点2、任意角的三角函把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与X轴重合,顶点放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。
这点的坐标为(x,y)。
3、三角函数诱导公式掌握三角函数的公式是解三角函数题的关键,尤其是要明白其中是如何变换的。
三角函数公式请点击:三角函数诱导公式知识点4、三角函数的图象与性质本节知识在段考中是必考内容,多以选择题和填空题形式考查基础知识,多以解答题的形式考查三角函数的图像和性质。
点击进入>>>>>《三角函数的图象与性质》知识点整理5、函数y=Asin(ωx+ψ)三角函数y=Asin(ωx+φ)是三角函数中一个较重要的内容,它是由基本函数变化而来,变化步骤也适用于余弦函数与正切函数。
在每年的高考中都有一道小题及解答题,需熟练掌握其基本图像与性质。
具体内容请点击高一数学函数y=Asin(ωx+φ)变换知识点总结学习三角函数必备知识点的内容就是这些,接下来需要的就是大家通过做题巩固知识,灵活运用,充实自己的过程了。
三角函数拓展知识点总结一、三角函数的定义与性质1. 三角函数的定义在直角三角形中,我们可以定义三角函数为一个角的对边、邻边和斜边之比。
具体来说,正弦函数(sine)、余弦函数(cosine)、正切函数(tangent)等,它们的定义分别如下: - 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边2. 三角函数的性质* 周期性:对于任意角θ,三角函数都是周期函数,具有周期2π。
* 奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数则是奇函数。
* 定义域和值域:正弦函数和余弦函数的定义域是实数集,值域是[-1, 1];而正切函数的定义域是全体实数,值域是实数集。
二、三角函数的图像与性质1. 正弦函数的图像与性质正弦函数的图像是一条连续的波浪线,它在每个周期内有一个最大值1和一个最小值-1,而且它的图像是周期性的。
正弦函数的性质还包括:- 对称性:正弦函数关于原点对称。
- 单调性:一个周期内,正弦函数在(0, π)上是增函数,在(π, 2π)上是减函数。
- 零点:正弦函数有无穷多个零点,即sin(kπ)=0,其中k为整数。
2. 余弦函数的图像与性质余弦函数的图像是一条连续的波浪线,它在每个周期内有一个最大值1和一个最小值-1,而且它的图像也是周期性的。
余弦函数的性质还包括:- 对称性:余弦函数关于y轴对称。
- 单调性:一个周期内,余弦函数在(0, π)上是减函数,在(π, 2π)上是增函数。
- 零点:余弦函数的零点为cos((2k+1)π/2)=0,其中k为整数。
3. 正切函数的图像与性质正切函数的图像是一条连续的周期性函数,其图像在每个周期中有许多奇点,其性质包括: - 奇点:正切函数在每个周期内有许多奇点,即在θ=(2k+1)π/2处,tanθ的值无定义。
- 增减性:正切函数在每个周期内有无穷多个极大值和极小值,并且在每个周期内均为增函数或减函数。
高中数学三角函数知识点总结1.特殊角的三角函数值:sin 00= 0 cos 00= 1 tan 00= 0sin300=21 cos300=23tan300=33sin 045=22cos 045=22tan 045=1sin600=23cos600=21 tan600=3sin900=1 cos900=0 tan900无意义2.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )003004560900120 0135 0150 1802703606π 4π 3π 2π 32π 43π 65π π23π π23.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。
r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy(2)各象限的符号:sin α cos α tan αxy+O— —+x yO — ++— +y O— ++ —5.同角三角函数的基本关系:(1)平方关系:s in 2α+ cos 2α=1。
(2)商数关系:ααcos sin =tan α (z k k ∈+≠,2ππα)6.诱导公式:记忆口诀:2k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质8、三角函数公式:降幂公式: 升幂公式 :两角和与差的三角函数关系 sin(α±β)=sin α·cos β±cos α·sin β cos(α±β)=cos α·cos βμsin α·sin β βαβαβαtan tan 1tan tan )tan(⋅±=±μ倍角公式 s in2α=2sin α·cos α cos2α=cos 2α-sin 2α=2cos 2α-1 =1-2sin 2αααα2tan 1tan 22tan -=1+cos α=2cos 22α cos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-= 9.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.。
高一三角函数知识点归纳总结公式三角函数是数学中非常重要的一个概念,它在几何学、物理学、工程学等领域都有广泛的应用。
在高一阶段,我们学习了三角函数的基本定义、性质和常用公式。
下面我将对这些知识点进行归纳总结,以便大家更好地掌握和应用。
1. 三角函数的基本定义:在一个直角三角形中,对于一个锐角A,我们定义正弦函数sin(A)、余弦函数cos(A)和正切函数tan(A)如下:sin(A) = 对边/斜边cos(A) = 临边/斜边tan(A) = 对边/临边2. 三角函数的周期性:正弦函数、余弦函数和正切函数都是周期函数,其中正弦函数和余弦函数的周期是2π,正切函数的周期是π。
3. 三角函数的性质:(1) 正弦函数和余弦函数的值域都是[-1, 1],即 -1 ≤ sin(A) ≤ 1,-1 ≤ cos(A) ≤ 1。
(2) 正弦函数和余弦函数的图像关于y轴对称。
(3) 正弦函数和余弦函数的图像都是连续的曲线。
(4) 正弦函数和余弦函数的图像都是周期性的。
(5) 正弦函数和余弦函数的图像都是振荡曲线。
4. 三角函数的基本关系:(1) sin(A) = cos(90° - A)(2) cos(A) = sin(90° - A)(3) sin^2(A) + cos^2(A) = 15. 三角函数的和差公式:(1) sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)(2) cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)(3) tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))6. 三角函数的倍角公式:(1) sin(2A) = 2sin(A)cos(A)(2) cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A)(3) tan(2A) = (2tan(A))/(1 - tan^2(A))7. 三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cos(A))/2](2) cos(A/2) = ±√[(1 + cos(A))/2](3) tan(A/2) = ±√[(1 - cos(A))/(1 + cos(A))]8. 三角函数的积化和差公式:(1) sin(A)sin(B) = (cos(A - B) - cos(A + B))/2(2) cos(A)cos(B) = (cos(A - B) + cos(A + B))/2(3) sin(A)cos(B) = (sin(A + B) + sin(A - B))/2通过对三角函数的定义、性质和常用公式的学习,我们可以解决很多与角度相关的问题。
高中数学三角函数知识点高中数学第四章-三角函数知识点汇总1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+?=,360|αββ②终边在x 轴上的角的集合:{}Z k k ∈?=,180|ββ③终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ ⑥终边在xy-=轴上的角的集合:{}Z k k ∈-?=,45180| ββ⑦若角α与角β的终边对于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边对于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.017451=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ.1°=180π≈0.01745(rad )3、弧长公式:r l ?=||α. 扇形面积公式:211||22s lr r α==扇形4、三角函数:设α是一具任意角,在α的终旁边任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 ry =αsin ;rx =αcos ; xy =αtan ; yx =αcot ; xr =αsec ;. yr =αcsc .5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:SIN \C O S 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域 (3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin =αααc o t s i n c o s =1cot tan =?αα 1sin csc =α?α1c o s s e c =α?α 1c o s s i n 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶别变,符号看象限,α当成锐角看!”(Z k ∈)三角函数的公式:(一)基本关系公式组二公式组三xx k x x k x x k x x k c o t )2c o t (t a n )2t a n (c o s )2c o s (s i n )2s i n (=+=+=+=+ππππxx x x x x xx c o t )c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=-=--=- 公式组四公式组五公式组六xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx c o t )2c o t (t a n )2t a n (c o s )2c o s (s i n )2s i n(-=--=-=--=-ππππ xx x x x x xx c o t )c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=--=-=-ππππ (二)角与角之间的互换公式组一公式组二βαβαβαsin sin cos cos )cos(-=+ αααc o s s i n22s i n = βαβαβαsin sin cos cos )cos(+=- ααααα2222s i n 211c o s 2s i n c o s 2c o s -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2t a n 1t a n 22t a n -=βαβαβαsin cos cos sin )sin(-=-2c o s 12s i nαα-±= βαβαβαtan tan 1tan tan )tan(-+=+2c o s 12c o sαα+±=βαβαβαtan tan 1tan tan )tan(+-=-公式组三公式组四公式组五2tan12tan2sin 2ααα+=2tan12tan1cos 2ααα+-=公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =11+cot 2x =csc 2x=1()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2 cossin2sin sin βαβαβα-+=+αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπsin )21cos(=-ααπcos )21sin(=-α απcot )21tan(=-2tan12tan2tan 2ααα-=42675cos 15sin -==, ,3275cot 15tan -==,.3215cot 75tan +==42615cos 75sin +==x y sin -=x y sin =xy cos-=x ycos=)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增). ②x y sin =与xycos =的周期是π.③)sin(?ω+=x y 或)cos(?ω+=x y(0≠ω)的周期ωπ2=T .2tanx y =的周期为2π(πωπ2=?=T T,如图,翻折无效).④)sin(?ω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk ); )c o s (?ω+=x y 的对称轴方程是π k x=(Z k ∈),对称中心(0,21ππ+k );)t a n (?ω+=x y 的对称中心(0,2πk ).x x y x y 2cos )2cos(2cos -=--=→?=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥xycos =与??++=ππk x y 22sin 是同一函数,而)(?ω+=x y 是偶函数,则 2sin 2cos 2sin sin βαβαβα-+=-2cos2cos2cos cos βαβαβα-+=+2sin2sin2cos cos βαβαβα-+-=-ααπcos )21sin(=+ααπcot )21tan(-=+)cos()21sin()(x k x x y ωππω?ω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域对于原点对称是)(x f 具有奇偶性的必要别充分条件.(奇偶性的两个条件:一是定义域对于原点对称(奇偶都要),二是满脚奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31t an(π+=x y 是非奇非偶.(定义域别对于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ?0的定义域,则无此性质)⑨x ysin=别是周期函数;x y sin =为周期函数(π=T );xy cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:R k k x f x f y ∈+===),(5)(.⑩ab ba b a y=+++=+=??αβαcos )sin(sin cos 22 有y b a ≥+22.11、三角函数图象的作法:1)几何法:2)描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线). 3)利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||Tπω=,频率1||2fTωπ==,相位;x ω?+初相?(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持别变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持别变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行挪移|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行挪移|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特殊注意:当周期变换和相位变换的先后顺序别并且,原图象延x 轴量伸缩量的区不。
三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1) 角的概念推广根据旋转方向的不同,角可分为正角、负角、零角。
正角:按逆时针方向旋转形成的角。
负角:按顺时针方向旋转形成的角。
零角:不作任何旋转形成的角。
根据终边位置的不同,角可分为象限角和轴线角。
以角α的顶点为原点,角的始边与x轴的非负半轴重合,终边落在第几象限,则称α为第几象限角。
第一象限角的集合为αk·360 < α < k·360 + 90,k∈Z。
第二象限角的集合为αk·360 +90 < α < k·360 + 180,k∈Z。
第三象限角的集合为αk·360 + 180 < α < αk·360 + 270,k∈Z。
第四象限角的集合为αk·360 + 270 < α < αk·360 + 360,k∈Z。
终边在x轴上的角的集合为α= k·180,k∈Z。
终边在y轴上的角的集合为α= k·180 + 90,k∈Z。
终边在坐标轴上的角的集合为α= k·90,k∈Z。
2) 终边与角α相同的角可写成α+k·360°(k∈Z)。
终边与角α相同的角的集合为β= k·360 + α,k∈Z。
3) 弧度制1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角。
弧度与角度的换算:360°=2π弧度;180°=π弧度。
半径为r的圆的圆心角α所对弧的长为l,则角α的弧度数的绝对值是α=l/r。
若扇形的圆心角为α(弧度制),半径为r,弧长为l,周长为C,面积为S,则l=rα,C=2r+l,S=lr=αr²/2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r=√(x²+y²),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。
初中数学三角函数公式知识点总结三角函数公式表sin是对边比斜边,cos是邻边比斜边,tan是对边比邻边cot邻边比对边。
sin30是二分之一,sin45是二分之根二,sin60是二分之根三。
cos30是二分之根三,cos45是二分之根二,cos60是二分之一tan30是三分之根三,tan45是一,tan60是根三。
cot30是根三,cot45是一,cot60是三分之根三。
(1)互余关系sinA=cos(90°—A),cosA=sin(90°—A)tanA=cot(90°—A),cotA=tan(90°—A)(2)平方关系sin2A+cos2A=1(3)倒数关系tanAtan(90°—A)=1(4)弦切关系tanA= sinA/cosA(5)三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)三角函数和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]三角函数积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]三角函数万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]三角函数半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三角函数三倍角公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三角函数倍角公式sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)]三角函数两角和与差公式cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)三倍角公式推导tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα。
1. ①与 ②终边在 ③终边在 04. 三 角函数 知识要 点0°≤ <360°)终边相同的角的集合(角 与角x 轴上的角的集合: y 轴上的角的集合: ④终边在坐标轴上的角的集合:⑤终边在 y=x 轴上的角的集合: yk 180 ,k Z32sinxsinx4 1 k 180 90 ,k Z cosxcosxxk 90 ,k Zcosx cosx 14sinx sinx k 180 45 ,k Z23的终边重合) :| | | | k 180 45 ,k Z4表示第一、四象限一半所在区域 | k 360 ,k ZSIN COS 三角函数值大小关系图1、 2、3、 4表示第一、二、三、 ⑦若角 与角 的终边关于 x 轴对称,则角 与角 的关系: 360 k ⑧若角 与角 的终边关于 y 轴对称,则角 与角 的关系: 360 k 180⑨若角 与角 的终边在一条直线上,则角 与角 的关系: 180 k⑩角 与角 的终边互相垂直,则角 与角 的关系 : 360 k 90 x 轴上的角的集合: ⑥终边在 y |1° =0.01745 1=57.30 180°= 2. 角度与弧度的互换关系: 注意:正角的弧度数为正数, 360°=2 负角的弧度数为负数,零角的弧度数为零 =57° 18′ 、弧度与角度互换公式:1rad = 180 °≈ 57.30°=57°18ˊ. 1° ≈ 0.01745rad )3、弧长公式: l | r .4、三角函数:设 是 个任意角,在 1扇形面积公式: s扇形1lr 2|r12|180原点的)一点 x,y ) P 与原点的距离为 cot x ; y sec r ; x 5、三角函数在各象限的符号: 正弦、余割 y + o +x 余弦、正割 6、三角函数线 正弦线: MP; 余弦线: r , cscOMyx的终边上任取(异于9、诱导公式:k把 的三角函数化为 的三角函数,概括为:2奇变偶不变,符号看象限” 三角函数的公式: (一)基本关系sin( x) sinx sin(2 x) sinx sin( x) sinx cos( x)cosxcos(2 x) cosx cos( x) cosx tan( x) tanx tan(2 x) tanx tan( x) tanx cot(x) cot xcot(2x)cotxcot( x)cot x(二) 角与角之间的互换公式组一公式组二cos( )cos cos sin sin sin22sin coscos( )cos cos sin sin cos2 cos22 2 2 sin22cos 21 1 2sin 2sin()sin coscos sintan2 2tan 1 tan 2sin( )sin coscos sin sin21 cos7. 三角函数的定义域:8、同角三角函数的基本关系式:sintancos cotsincossinx ·cscx=1tanx=sin x cos x22sin x+cos x=1cosx 22cosx · secx=1x=1+tan x =secxsin xtanx ·cotx=1221+cot x=csc x公式组四公式组五公式组二公式组三sin(2k x) sinx sin( x) sinx cos(2kx) cosx cos( x) cosxtan(2k x) tanx tan( x) tanx cot(2kx) cotxcot( x)cotxtan(tan tan1 tan tancos21 cos公式组一公式组六10.tan(tan tan 1 cossin1 cos 1 tan tansin cossin2tan2 cos sintan 221 cos cos cos1 tan2 2 sin sin1tan22sin sinsinsin2tantan2cos cos1tan 22coscos sin15 cos75 6 24,sin 75 cos15sin 2 sin1 cos(1 sinsin2 21 1 coscossin(2 21 1tan(1 cos 2cos2 2sincos(1222 2cos2sin 1 tan(222coscos2 212sin 2 sin 2sin(2 公式组五) sin ) cos ) cot ) sin ) cot) cos cot15 2 3.公式组三 公式组四1 tan2 1 cos 1 cossin6 2 , tan15 cot 75 2 3 , tan754注意:① y sin x与y sinx 的单调性正好相反;y f (x)在[a,b] 上递增(减),则y y cosx与y cosx 的单调性也同样相反.一般地,若f(x)在[a,b] 上递减(增).②y sin x与y cosx 的周期是y sin( x ) 或y cos( x )(0 )的周期T 2tan x2的周期为 2 (T T sin( x )的对称轴方程是k Z ),对称中心(k cos2x 原点对称cos( 2x),如图,翻折无效)2(k Z ),,0);y tan( x12cos2x⑤当tan ·tan 1, k 2 (k Z) ;tan ·tan 对称中心(k ,0);y cos( x )的对称轴方程是)的对称中心k2 ,0).1, 2 (k Z).⑥ y cosx 与y sin 2k是同一函数, 而y (2 )是偶函数,y ( x ) sin( xk 1 ) cos( x).2⑦函数y tanx在R 上为增函数.(×)[只能在某个单调区间单调递增. 若在整个定义域,y tanx 为增函数,同样也是错误的].⑧定义域关于原点对称是f(x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f( x)奇偶性的单调性:奇同偶反. 例如:y tan x是奇函数,yf (x),奇函数:f( x) f (x))1)是非奇非偶.(定义域不关于原点3tan(x对称)奇函数特有性质:若0 x 的定义域,则f (x)一定有 f (0) 0.( 0x 的定义域,则无此性质)⑨ y sinx 不是周期函数;y sinx 为周期函数(T);x1/2cosx 是周期函数(如图);y cosx 为周期函数();y= cos|x| 图象cos2x 1的周期为2y=| cos2x+1/2| 图象如图),并非所有周期函数都有最小正周期,例如:f (x) 5 f (x k),k R.22y acos bsin a b sin( ) cos b有a2b2y .a11、三角函数图象的作法:1)、几何法:2)、描点法及其特例五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线)3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等. 函数 y = Asin (ω x + φ)的振幅 |A| ,周期 T 2 ,频率 fT| | f 时的相位) .(当 A >0,ω> 0 时以上公式可去绝对值符号) , 由 y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当的|A|倍,得到 y =Asinx 的图象,叫做 振幅变换 或叫沿 y 轴的伸缩变换. (用 y/A 替换 y )由 y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长( 0< |ω |< 1)或缩短( |ω |>1)到原来的 |1 |倍,得到 y = sin ω x 的图象,叫做 周期变换 或叫做沿 x 轴的伸缩变换. (用ω x 替换 x )由 y = sinx 的图象上所有的点向左(当 φ> 0)或向右(当 φ< 0)平行移动| φ|个单位,得到 y =sin ( x + φ)的图象,叫做 相位变换 或叫做沿 x 轴方向的平移. (用 x +φ替换 x )由 y =sinx 的图象上所有的点向上(当 b > 0)或向下(当 b < 0)平行移动| b |个单位,得到 y =sinx +b 的图象叫做沿 y 轴方向的平移. (用 y+(-b )替换 y )由 y =sinx 的图象利用图象变换作函数 y = Asin (ω x + φ)( A > 0,ω> 0)( x ∈ R )的图象,要特别注 意:当周期变换和相位变换的先后顺序不同时,原图象延 x 轴量伸缩量的区别。
《三角函数知识点总结》
二. 三角函数在各象限的符号:(口诀)一全正,二正弦,三正切,四余弦
三角函数的定义:终边与单位圆的交点坐标为(,)x y ,
则可得: 三、同角三角函数的基本关系
(1)平方关系: ; (2)商数关系: 四、诱导公式:
k πα± 或 180k α︒± “函数名不变,符号看象限”
2
k π
α± 或 90k α︒± “奇变偶不变,符号看象限” 五、两角和差公式:
sin()αβ±= ; cos()αβ±= ;
tan()αβ±= . 六、二倍角公式
sin 2α= .
cos 2________________________________________________α===.
tan 2α= .
七、降幂公式: 222
2
2cos 1cos 2, cos ____________;
2sin 1cos 2, sin ____________;
sin 22sin cos , sin cos =_______________
ααααααααααα=+⇒==-⇒==⇒
八、辅助角公式
)sin(cos sin 22ϕ++=+=x b a x b x a y 其中a
b =
ϕtan
九、正弦函数、余弦函数和正切函数的图象与性质:
,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
十、三角函数图像变换
(1)在sin()y A x B ωϕ=++中,平移变换:①,ϕ (左+右-),②B (上+下-);
伸缩变换:①,A (最大值);②ω,(周期变换)
(2)已知函数的部分图像求函数解析式一般步骤:①,A B (看最大值以及最小值);
②ω,(求出周期的大小)
③,ϕ (一般代最高点或最低点求之)
解三角形
十一、正弦定理
_______________________________2R ===.(R 为外接圆的半径)
十二、余弦定理
2_________________________cos _______________
a A =⇒=
十三、三角形面积公式
________________________________________S ===.
十四、三角形内角和定理
在△ABC 中,有()A B C C A B ππ++=⇔=-+ 222C A B π+⇒=- 即有sin sin()C A B =+,cos cos()C A B =-+,sin sin()cos 2222
C A B A B
π++=-=
平面向量
十五、平面向量的运算 22、向量的平行与垂直
(1)若平行//⇔(0)b a a λ=≠.(2)若垂直)(≠⊥ ⇔0=⋅. (3)数量积θcos ||||b a b a ⋅=⋅ (4)模长2||a a = (5)夹角cos a b a b
θ⋅=。
十六、平面向量的坐标运算
(1)有向线段的坐标:设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (2)数量积:设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +. (3)模长:设a =),(y x ,则22y x a +=
(4)平行:设b a // 12210x y x y ⇔-=. (5)垂直:设)(≠⊥ 12120x x y y ⇔+=. (6)、两向量的夹角:2
2
2
22
12
12121cos y x y x y y x x b
a b a +⋅++=
⋅=θ。